电子元器件基础知识详解之三极管
电子元器件——二极管、三极管、集成电路介绍
电感
电感器的图形如上面所示。在电子制作中虽然使用得不是很多,但它们 在电路中同样重要。电感器和电容器一样,也是一种储能元件,它能把 电能转变为磁场能,并在磁场中储存能量。电感器用符号L表示,它的基 本单位是亨利(H),常用毫亨(mH)为单位。它经常和电容器一起工作,构 成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了扼流 圈、变压器、继电器等。 电感器的特性恰恰与电容的特性相反, 它具有阻止交流电通过而让直流电通过的特性。 小小的收音机上就有不少电感线圈,几乎都 是用漆包线绕成的空心线圈或在骨架磁芯、铁 芯上绕制而成的。有天线线圈(它是用漆包线在 磁棒上绕制而成的)、中频变压器(俗称中周)、 输入输出变压器等等。
第三课 电子元器件—二极管、三级管、集成电路
根据二极管正向电阻小,反向电阻大的特点,将万用表拨到 电阻挡(一般用R×100或R×1k挡。不要用R×1或R×10k挡, 因为R× 1挡使用的电流太大,容易烧坏管子,而 R×10k挡 使用的电压太高,可能击穿管子 ) 。用表笔分别与二极管的 两极相接,测出两个阻值。在所测得阻值较小的一次,与黑 表笔相接的一端为二极管的正极。同理,在所测得较大阻值 的一次,与黑表笔相接的一端为二极管的负极。如果测得的 正、反向电阻均很小,说明管子内部短路;若正、反向电阻 均很大,则说明管子内部开路。在这两种情况下,管子就不 能使用了。
第三课 电子元器件—二极管、三级管、集成电路
2、开关元件
二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接 通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断 开的开关。利用二极管的开关特性,可以组成各种逻辑电路。
3、限幅元件
二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗 管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度 限制在一定范围内。
晶体三极管
晶体三极管晶体三极管简称三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
一、三极管的结构三极管是在一块半导体基片上制作两个相距很近的PN结,这两个PN结为:发射结和集电结。
两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
根据三个区半导体材料性质的不同,三极管排列方式有PNP型和NPN 型两种,如图所示。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
两种类型管子符号的区别:NPN型管发射极箭头向外,PNP型管发射极箭头向内。
箭头方向表示发射结加正向电压时的电流方向。
NPN型和PNP型两种管子的工作原理是相同的。
为保证三极管具有放大作用,三极管的内部结构具有如下两个特点:(1)三极管的基区做得很薄,约为几到几十微米。
(2)发射区掺入杂质的浓度远大于基区掺杂浓度。
例如,NPN型管发射区(N型区)的电子浓度大于基区(P型区)的空穴浓度。
另外,由于集电区的掺杂浓度不是远大于基区掺杂浓度,集电结的面积比发射结的面积大,所以在使用三极管时,集电极和发射极是不能对调使用的。
NPN型和PNP型两种类型的三极管按照选用半导体材料的不同,有硅管和锗管之分。
目前应用较多的是NPN型硅管。
二、晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
三、晶体三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
三极管种类与定义
三极管种类与定义三极管是一种重要的电子器件,广泛应用于电子电路中。
根据不同的工作原理和结构特点,可以分为多种类型的三极管。
本文将介绍几种常见的三极管种类及其定义。
1. NPN型三极管NPN型三极管是一种常见的三极管类型。
它由三个掺杂不同类型的半导体材料组成,中间的P型区域被夹在两个N型区域之间。
NPN 型三极管的基极(B)连接到一个输入信号源,发射极(E)连接到地,而集电极(C)连接到输出负载。
当输入信号施加在基极时,控制电流将流经基极-发射极结,从而控制从集电极到发射极的电流,实现信号放大功能。
2. PNP型三极管PNP型三极管是另一种常见的三极管类型。
与NPN型三极管相比,PNP型三极管的掺杂类型相反。
PNP型三极管的基极(B)连接到一个输入信号源,发射极(E)连接到电源正极,而集电极(C)连接到输出负载。
当输入信号施加在基极时,控制电流将流经基极-发射极结,从而控制从集电极到发射极的电流,实现信号放大功能。
PNP型三极管与NPN型三极管在工作原理上相反,但其放大功能原理相同。
3. MOSFET三极管MOSFET(金属-氧化物-半导体场效应晶体管)是一种基于金属氧化物半导体技术的三极管。
它由金属栅极、绝缘氧化层和半导体基底组成。
MOSFET的工作原理是通过调节栅极电压来控制源极和漏极之间的电流。
MOSFET具有输入电阻高、功耗低、速度快等优点,广泛应用于各种电子设备中。
4. JFET三极管JFET(结型场效应晶体管)是一种基于PN结的三极管。
它由P型或N型半导体材料形成的两个反向偏置的PN结组成。
JFET的工作原理是通过控制栅极-源极电压来控制源极和漏极之间的电流。
JFET 具有输入电阻高、噪音低、线性度好等特点,广泛应用于放大、开关和稳压等电路中。
5. IGBT三极管IGBT(绝缘栅双极型晶体管)是一种结合了MOSFET和双极型晶体管特点的三极管。
它具有MOSFET的输入电阻高、功耗低和速度快的特点,同时又具有双极型晶体管的控制性好和承受大电流的特点。
三极管引脚的命名-概述说明以及解释
三极管引脚的命名-概述说明以及解释1.引言1.1 概述概述三极管是一种常用的半导体器件,它在电子电路中起到放大、开关等重要作用。
在电子元件中,引脚的命名是非常重要的,因为正确的引脚连接是确保器件正常工作的基础。
本文将重点介绍三极管引脚的命名方法,探讨其规则和应用。
三极管引脚的命名方法涉及到三个引脚:发射极、基极和集电极。
这三个引脚承担着不同的功能,并按照特定的规则命名,以便于正确地连接和使用三极管。
引脚的命名方法以字母和数字组合的形式表示。
一般而言,大写字母代表英文单词的首字母,而数字则表示引脚的序号。
例如,E表示发射极,B表示基极,C表示集电极。
而数字1、2、3则代表对应引脚的序号。
在实际应用中,我们可以根据引脚的命名方法来正确地连接三极管。
通过准确地连接三极管的引脚,我们可以确保电子电路的正常工作,提高电路的可靠性和性能。
除了正确的连接三极管的引脚,了解三极管引脚的命名方法还能帮助我们更好地理解和应用三极管。
通过对引脚命名规则的研究,我们可以更深入地了解三极管的工作原理,以及如何在电子电路中灵活应用三极管。
在本文的后续部分,我们将详细介绍三极管引脚的命名规则和方法,并探讨其重要性和应用。
通过阅读本文,读者将能够全面了解三极管引脚的命名方法,并在实际应用中灵活运用。
让我们一起深入研究三极管引脚的命名,提升电子电路设计和工程实践的水平。
1.2文章结构文章结构的主要目的是给读者提供一个清晰的指南,帮助他们理解文中的内容和组织起来。
通过给予读者逻辑的组织和层次,文章的结构可以帮助读者更好地理解和消化所阐述的概念和信息。
本文的结构主要包括以下几个部分:1. 引言:在这一部分,将对三极管引脚的命名的重要性进行概述,引入本文的目的和意义。
2. 正文:在这一部分,首先会介绍三极管的基本概念和工作原理,以确保读者对三极管的基础知识有所了解。
然后将详细讨论三极管引脚的命名方法,包括常用的引脚标识符和符号,以及不同类型三极管的引脚编号规则。
3极管和mos管
3极管和mos管3极管和MOS管是电子行业里使用最普遍的器件类别,它们都是表示晶体管的一种类型,广泛应用于电子设备及元器件的数字和模拟电路中。
本文将重点介绍3极管和MOS管的概念、功能特性、应用领域以及发展状况。
首先,3极管是一种特殊的晶体管类型,是由三个接口(基、集、放)组成的半导体器件。
三极管可以分为NPN和PNP两种类型,区别在于放电极(放电口)的极性是不一样的。
三极管具有较高的电阻上升、放大和抑制电子信号的作用,可以用于电子电路中的放大、模拟和数字电路中。
MOS管也叫做场效应管,是一种特殊的晶体管,以及其相关的场效应及其器件。
MOS管主要由基极、集极、源极和控制极组成。
它可以更便捷地控制半导体内部的流体,可以有效地控制信号和电流,从而在电路中实现高速放大和控制。
MOS管最常见的应用有电路保护、开关和放大电路等。
三极管和MOS管都有其独特的功能特性和优势,它们的应用领域也不同。
三极管主要用于功率电路,如控制大功率设备的接口和实现电路的放大作用;MOS管主要用于控制小功率的设备,如电子驱动器、通信芯片、显示器等。
随着电子产品的创新和发展,3极管和MOS管在电子行业中的广泛应用也受到了一定程度的改进和发展。
在三极管方面,经过不断改良,它的稳定性、对电压的反应灵敏度、电路控制和抗冲击等性能都得到不断提高;而在MOS管方面,受到半导体发展的推动,它的发展从普通的MOS管向MOSFET、CMOS等方向发展,可以更有效地控制电路,提高放大性能。
总之,三极管和MOS管都是电子行业中非常重要的器件,它们的发展极大地推动了电子设备的创新和发展,也提供给其他行业了更多的应用机会。
未来,3极管和MOS管都将继续受到重视,并有望开发出更先进的产品,为电子行业带来更多的创新技术和发展。
什么是三极管
什么是三极管三极管,又被称为晶体管,是一种常见的电子元件。
它是一种半导体器件,能够用来放大电流、开关电路或作为电流稳定源。
三极管的结构和工作原理决定了它在电子电路中的重要性和广泛应用。
本文将详细介绍三极管的定义、结构、工作原理以及应用领域。
一、定义三极管是一种包含三个电极的半导体器件,通常由两种不同类型的半导体材料组成。
它的三个电极分别为基极、发射极和集电极。
三极管可用于控制电流流动,并在电子电路中实现信号放大功能。
二、结构三极管的结构由两种类型的半导体材料构成:P型半导体和N型半导体。
这两种材料的结合形成了两个 P-N 结,分别被称为基结和发射结。
其中,发射结夹在基结中间,集电极连接到基结,而发射极连接到发射结。
三、工作原理三极管的工作原理是通过调节基极电流控制集电极电流的大小。
当基极电流很小或者没有流过时,三极管处于截止状态,完全不导电。
当基极电流逐渐增大时,三极管进入放大区。
此时,三极管的集电极电流将正比于基极电流,且比基极电流大很多倍。
当基极电流进一步增大时,三极管会饱和,此时集电极电流不再随基极电流的增大而增大,达到饱和电流后保持不变。
四、应用领域由于三极管具有信号放大和电流控制的特点,因此在电子领域有广泛的应用。
以下是几个常见的三极管应用领域:1. 放大器: 三极管可以作为放大电路的关键元件,用于放大音频、视频等信号。
通过调节输入信号的电流,可以实现不同增益的放大效果。
2. 开关电路: 三极管可以用作开关电路的控制器。
在开关状态下,三极管可以让电流通过或者阻断,从而实现开关的功能。
3. 正反馈电路: 三极管可以用于正反馈电路的构建,从而实现自激振荡。
在振荡器、发射机等电子设备中都有广泛应用。
4. 电流稳定源: 三极管可以作为电流稳定源,提供一个稳定且可控的电流。
这在一些需要精确电流控制的电路中特别有用。
结论通过了解三极管的定义、结构、工作原理和应用领域,我们可以看到三极管在电子电路中的重要性和多功能性。
晶体三极管详细说明
晶体三极管晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
目录[隐藏]∙ 1 工作原理∙ 2 主要作用∙ 3 主要参数∙ 4 特性曲线∙ 5 产品检测∙ 6 工作状态∙7 产品分类∙8 主要类别∙9 基极判别∙10 判断口诀∙11 基本放大电路∙12 判断好坏∙13 主要特点∙14 判断故障∙15 注意事项∙16 产品展示∙17 相关词条18 参考资料晶体三极管-工作原理晶体三极管晶体三极管(以下简称三极管)按材料分有两种:储管和硅管。
而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
NPN管它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN 结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β=△Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管共射极
三极管共射极一、引言三极管是一种重要的电子元器件,具有广泛的应用。
本文将对三极管的共射极配置进行探讨,包括其原理、特点、应用等。
我们将从基础知识讲起,逐步深入分析,并结合实际案例进行说明。
二、三极管概述三极管是一种半导体器件,由三个区别于普通二极管的区域组成,分别为发射区、基区和集电区。
根据不同的连接方式,三极管可以分为共射极、共基极和共集电极三种配置。
三、共射极的原理共射极是一种常用的三极管配置,其工作原理如下: 1. 输入信号加到基极,当基极电流变化时,会导致发射极电流的变化。
2. 发射极电流的变化会导致集电极电流的变化。
3. 输出信号从集电极输出,与输入信号具有180度的相位差。
四、共射极的特点共射极配置具有以下特点: 1. 增益高:共射极配置的电流放大倍数较高,通常介于几十到几百之间。
2. 输入输出电阻相对较高:由于基极电流为输入电流,故输入电阻相对较高,而集电极电流为输出电流,故输出电阻也较高。
3. 非反相:输出信号与输入信号之间没有相位差。
五、共射极的应用共射极配置由于其特点的限制,常用于以下场景: 1. 电压放大:由于增益高,共射极配置适合用于电压放大电路,如音频放大器。
2. 电流驱动:共射极配置的输出电流较大,可以驱动较高负载电流的设备。
3. 声明器:共射极配置可以将微弱的音频信号放大,并驱动扬声器发出声音。
4. 开关电路:共射极配置同时可用作开关电路的驱动器,将小信号开关控制较大负载。
六、共射极配置示例分析下面我们结合一个共射极配置的具体案例来进行分析:示例电路图+9V|R1|||--------+-------- C1| || Q1| || RL E------- 0V| |Vin B参数设置•+9V:电源电压为9V。
•R1:电阻1的阻值为4.7KΩ。
•C1:电容1的容值为10μF。
•Q1:三极管型号为2N3904。
•RL:负载电阻的阻值为1KΩ。
•Vin:输入信号的幅度为0.1V。
三级管
三级管晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。
晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关(如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快,在实验室中的切换速度可达100GHz以上。
半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
输入级和输出级都采用晶体管的逻辑电路,叫做晶体管-晶体管逻辑电路,书刊和实用中都简称为TTL电路,它属于半导体集成电路的一种,其中用得最普遍的是TTL与非门。
TTL与非门是将若干个晶体管和电阻元件组成的电路系统集中制造在一块很小的硅片上,封装成一个独立的元件。
半导体三极管应用最广泛的器件之一,在电路中用"V"或"VT"(旧文字符号为"Q"、"GB"等)表示。
半导体三极管主要分为两大类:双极性晶体管(BJT)和场效应晶体管(FET)。
晶体管有三个极;双极性晶体管的三个极,分别由N型跟P型组成发射极(Emitter)、基极(Base)和集电极(Collector);场效应晶体管的三个极,分别是源极(Source)、栅极(Gate)和漏极(Drain)。
晶体管因为有三种极性,所以也有三种的使用方式,分别是发射极接地(又称共射放大、CE组态)、基极接地(又称共基放大、CB组态)和集电极接地(又称共集放大、CC组态、发射极随隅器)。
在双极性晶体管中,发射极到基极的很小的电流,会使得发射极到集电极之间,产生大电流;在场效应晶体管中,在栅极施加小电压,来控制源极和漏极之间的电流。
在模拟电路中,晶体管用于放大器、音频放大器、射频放大器、稳压电路;在计算机电源中,主要用于开关电源。
极管、三极管、电阻等
极管、三极管、电阻等
极管、三极管和电阻是电子元件中常见的三种器件,它们在电
路中扮演着不同的角色和功能。
首先,让我们来谈谈极管。
极管是一种半导体器件,也被称为
二极管。
它具有两个引脚,即阳极和阴极。
极管的主要作用是只允
许电流在一个方向上流动,因此它常被用作整流器,将交流电转换
为直流电。
极管还可以用作电压稳压器、光电二极管等。
接下来是三极管,也称为晶体三极管或晶体管。
三极管是一种
半导体器件,具有三个引脚,分别是发射极、基极和集电极。
它的
主要作用是放大电流和控制电路。
在电子设备中,三极管常用于放
大信号、作为开关以及构建逻辑门电路等。
最后是电阻,电阻是一种 passiv器件,用于限制电流的流动。
电阻的作用是通过阻碍电流的流动来调节电路中的电压和电流。
它
通常用于分压、限流、消耗功率、稳定电压和电流等。
电阻的阻值
可以根据实际需要选择,常见的有固定电阻和可变电阻两种。
总的来说,极管、三极管和电阻都是电子元件中常见的器件,
它们在电路中扮演着不同的角色和功能。
极管用于整流和光电转换,三极管用于放大和控制电路,电阻用于调节电路中的电压和电流。
它们共同构成了电子设备中复杂的电路系统,发挥着重要的作用。
三极管详细介绍
三极管百科名片三极管三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件.其作用是把微弱信号放大成辐值较大的电信号, 也用作无触点开关。
什么是三极管三极管(也称晶体管)在中文含义里面只是对三个引脚的放大器件的统称,我们常说的三极管,可能是如图所示的几种器件,可以看到,虽然都叫三极管,其实在英文里面的说法是千差万别的,三极管这个词汇其实也是中文特有的一个象形意义上的的词汇电子三极管Triode 这个是英汉字典里面“三极管”这个词汇的唯一英文翻译,这是和电子三极管最早出现有关系的,所以先入为主,也是真正意义上的三极管这个词最初所指的物品。
其余的那些被中文里叫做三极管的东西,实际翻译的时候是绝对不可以翻译成Triode的,否则就麻烦大咯,严谨的说,在英文里面根本就没有三个脚的管子这样一个词汇!!!电子三极管Triode (俗称电子管的一种)双极型晶体管BJT (Bipolar Junction Transistor)J型场效应管Junction gate FET(Field Effect Transistor)金属氧化物半导体场效应晶体管MOS FET ( Metal Oxide Semi-Conductor Field Effect Transistor)英文全称V型槽场效应管VMOS (Vertical Metal Oxide Semiconductor )注:这三者看上去都是场效应管,其实结构千差万别J型场效应管金属氧化物半导体场效应晶体管V沟道场效应管是单极(Unipolar)结构的,是和双极(Bipolar)是对应的,所以也可以统称为单极晶体管(Unipolar Junction Transistor)其中J型场效应管是非绝缘型场效应管,MOS FET 和VMOS都是绝缘型的场效应管VMOS是在MOS的基础上改进的一种大电流,高放大倍数(跨道)新型功率晶体管,区别就是使用了V型槽,使MOS管的放大系数和工作电流大幅提升,但是同时也大幅增加了MOS的输入电容,是MOS管的一种大功率改经型产品,但是结构上已经与传统的MOS发生了巨大的差异。
F三极管各种类与识别
三极管的主要参数
1、共发射极直流放大倍数HFE 共发射极直流放大倍数HFE是指在没有交流信号输入时,共发射极电路输出的集电极直 流电流与基极输入的直电流之比。这是衡量晶体三极管有无放大作用的主要参数,正常三 极管的HFE应为几十至几百倍。常用的三极管的外壳上标有不同颜色点,以表明不同的放 大倍数。 放大倍数:-15-25-40-55-80-120-180-270-400色标点: 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 例如:色点为黄色的三极管的放大倍数是40~55倍之间,色点是灰色的三极管的放大倍数 为180~270倍之间等等。 2、共发射极交流放大倍数β 共发射极电路中,集电极电流和基极输入电流的变化量之比称为共发射极交流放大倍数 β。当三极管工作在放大区小信号运用时,HFE=β,三极管的放大倍数β一般在10~200倍之 间。β太小,表明三极管的放大能力越差,但β越大的管子的往往工作稳定性太差。 3、特征频率 三极管的放大倍数β会随着工作信号频率的升高而下降,频率越高,β下降越严重。特征 频率就是β下降到1时的频率。也就是说,当工作信号的频率升高到特征频率时,
三极管的检测
晶体三极管的检测 在晶体三极管装入电路之前或检修家用电器时经常需要用简易的方法判别它的好坏。下 面介绍用万用表测量晶体三极管的几种方法。 1、判断晶体三极管的管脚 三极管的三个管脚的作用是不同的,工作时不能相互代替。用万用表判断的方法是:将 万用表置于电阻R×1KΩ档,用万用表的黑表笔接晶体管的某一管脚(假设它是基极), 用红表笔分别接另外的两个电极。如果表针指示的两个阻值都很小,那么黑表笔所接的那 一个脚便是NPN型管的基极;如果表针指示的两个阻值都很大,那么黑表笔所接的那一个 脚便是PNP型管的基极。如果表针指示的阻值一个很大,一个很小,那么黑表笔所接的管 脚肯定不是三极管的基极,要换另一个管脚再检测。 2、判断硅管和锗管 利用硅管PN结与锗管PN结正、反向电阻的差异,可以判断不知型号的三极管是硅管还是 锗管。用万用表的R×1KΩ档,测发射极与基极间和集电极与基极间的正向电阻,硅管大 约在3~10KΩ之间,锗管大约在500~1KΩ之间,上述极间的反向电阻,硅管一般大于500K, 锗管一般大于1000KΩ左右。 3、测量三极管的直流放大倍数 将万用表的功能选择开关调到HFE处,一般还需调零,把三极管的三个电极正确的放到万 用表的面板上的四个小孔中PNP(P)或NPN(N)的e、b、c处,这时万用表的指针会向右 偏转,在表头内部的刻盘上有HFE的指示数,即是测量三极管的直流放大倍数。
三极管基本知识及电子电路图详解
三极管基本知识及电子电路图详解
"晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件" 在电子元件家族中,三极管属于半导体主动元件中的分立元件。
广义上,三极管有多种,常见如下图所示。
狭义上,三极管指双极型三极管,是最基础最通用的三极管。
本文所述的是狭义三极管,它有很多别称:
三极管的发明
晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。
真空电子管存在笨重、耗能、反应慢等缺点。
二战时,军事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战结束后获得。
早期,由于锗晶体较易获得,主要研制应用的是锗晶体三极管。
硅晶体出现后,由于硅管生产工艺很高效,锗管逐渐被淘汰。
经半个世纪的发展,三极管种类繁多,形貌各异。
小功率三极管一般为塑料包封;
大功率三极管一般为金属铁壳包封。
三极管核心结构
核心是“PN”结
是两个背对背的PN结
可以是NPN组合,也或以是PNP组合
由于硅NPN型是当下三极管的主流,以下内容主要以硅NPN型三极管为例!
NPN型三极管结构示意图
硅NPN型三极管的制造流程
管芯结构切面图。
三极管知识及极性判别方法
三极管知识及极性判别方法三极管知识及极性判别方法晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
电子元器件基本知识-三极管
电子元器件的基本知识——三极管晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
三极管基础知识
三极管基础知识一、三极管的基本结构与原理1.1 三极管的构成三极管是由三个区域(P-N-P或者N-P-N型)的半导体材料制成,其中夹在中间的一块称为基区,两侧分别是发射区和集电区。
1.2 三极管的工作原理三极管根据基区控制电流的大小和方向来调节集电区电流的大小。
当基区的电流为零时,三极管处于截止状态;而当基区的电流为正时,三极管处于放大状态。
三极管的工作原理是基于本征型晶体管理论的基础上发展起来的。
二、三极管的分类与参数2.1 三极管的分类根据不同的工作方式和结构形式,三极管可以分为NPN型和PNP型两种。
NPN型三极管是以N型半导体为基础,P型半导体作为二极管,再以N型半导体作为封装;而PNP型三极管则相反。
2.2 三极管的参数三极管的常见参数包括最大集电极电流(IC)、最大发射极电流(IE)、最大反向电压(VCEO)等。
这些参数决定了三极管的工作范围和性能。
三、三极管的应用领域3.1 放大器电路三极管可以用作放大器电路的关键元件,通过控制输入信号的电流变化,实现对输出信号的放大。
3.2 开关电路三极管的开关特性使其在电路中经常被用作开关元件。
通过控制基极电流的通断,实现对电路的开关控制。
3.3 震荡电路三极管在震荡电路中可以产生正弦波、方波等信号,广泛应用于射频信号发生器、计算机时钟发生器等领域。
3.4 温度传感器三极管的温度特性可以用于温度测量和控制,如温度传感器。
四、三极管的基本特性与参数测量方法4.1 静态特性静态特性包括输入输出特性、直流放大特性等。
通过在不同的输入输出条件下测量电流、电压等参数,可以了解三极管的静态工作状态。
4.2 动态特性动态特性包括频率响应、输入阻抗、输出阻抗等。
通过在不同频率下测量电流和电压的关系,可以了解三极管的动态响应能力。
4.3 参数测量方法常见的参数测量方法包括基极电流测量、集电极电流测量、电压放大倍数测量等。
根据不同的测量需求,选择合适的测量方法来获取所需的三极管参数数据。
三极管基础知识
三极管基础知识三极管的工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E 的电流叫做集电极电流Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
三极管工作原理及详解
三极管工作原理及详解三极管是一种电子元器件,也被称为晶体管,是现代电子技术中广泛应用的一种重要器件。
它是由半导体材料制成的,通常由一个n-型材料和两个p-型材料组成,形成了一个n-p-n结构。
三极管的基本结构由一个基极(B,用于控制电流流动)、一个发射极(E,用于输入电流)和一个集电极(C,用于输出电流)组成。
其工作原理可分为以下几个方面进行详解:1.PN结反偏扩散:当三极管的发射结(BE结)处于反偏状态时,即使输入电压很小,也会有导电电子和空穴被扩散进入发射结。
这会导致发射结区域的电荷强度减小,使其变得非常薄。
基极结(BC结)也被反偏,因此极少有电子和空穴从基极端扩散进入。
2.动态增益:由于发射结非常薄,即使很小的输入电流(基电流)也能穿过发射结流入发射区。
这些电流在发射结区域中的散射使得电流进一步扩大,从而形成了由基电流控制的大电流放大器。
3.输出由输入控制:三极管的工作特点是,当输入信号施加在基极上时,这将导致在发射结和基结之间发生器件动作,如三极管的增益。
因此,输入电流的小变化就会导致输出电流的相应变化。
4.级联放大:三极管的输出可以直接连接到下一个三极管的输入,以实现级联放大,从而进一步增大信号的幅度。
这是因为三极管具有很高的放大倍数,通常在100以上。
5.工作模式:三极管的工作可以分为三种模式:放大模式、截止模式和饱和模式。
放大模式是三极管最常见的工作模式,此时三极管的输入电压足够大以驱动输出电流。
截止模式是指输入电压不足以驱动输出电流,此时三极管处于关闭状态。
饱和模式是指输入电压非常高,以至于电流饱和,此时三极管处于完全开启状态。
6.用途广泛:三极管作为一种重要的电子元件,在电子电路中应用广泛。
它可以用作放大器、开关、振荡器等。
例如,在放大器电路中,通过适当地设置电路参数,可以使输入信号的微小变化引起输出电流的大幅度变化,从而实现信号放大功能。
在开关电路中,三极管可以通过控制输入电流的开关行为,打开或关闭电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先就说说三极管,实际上只要你了解了三极管的特性对你使用单片机就顺手很多了。
大家其实也都知道三极管具有放大作用,但如何去真正理解它却是你以后会不会使用大部分电子电路和1C的关键。
我们一般所说的普通三极管是具有电流放大作用的器件。
其它的三极管也都是在这个原理基础上功能延伸。
三极管的符号如下图左边,我们就以NPN型三极管为例来说说它的工作原理。
由于三极管是由二极管演化而来的,所以大家记住PN结永远都是P 指向N的,这样PNP还是XPN—下就很清楚了.
它就是一个以b(基极)电流lb来驱动流过CE的电流Ic的器件,它的工作原理很像一个可控制的阀门。
左边细管子里藍色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水
流通过这个阀门。
当蓝色水流越大,也就使大管中红色的水流更大。
如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。
三极管的原理也跟这个一样,放大倍数为100时,当lb(基极电流)为1M时,就允许100mA 的电流通过Ice。
我这么说大家能理解吗?
这个原理大家可能也都知道,但是把它用在电路里的状况能理解,那单片机的运用就少了一大障碍了。
最常用的连接如下图。
我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。
基极电流就是10V+10K=lmA,集电极电流就应该是100mA。
根据欧姆定律,这样Rc上的电压就是0.1AX50〇=5V。
那么剩下的5V就吃在了三极管的C、E极上了。
好!现在我们假如让Rb为1K,那么基极电流就是10V+lK=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA也就是1A了呢?假如真的为1安,那么Rc上的电压为1AX50Q=50V。
啊?50V!都超过电源电压了,三极管都成发电机了吗?其实不是这样的。
见下图:
我们还是用水管内流水来比喻电流,当这个控制电流为10mA时使主水管上的阀开大到能流过1A的电流,但是不是就能有1A的电流流过呢?不是的,因为上面还有个电阻,它就相当于是个固定开度的阀门,它串在这个主水管的上面,当下面那个可控制的阀开度到大于上面那个固定电阻的开度时,水流就不会再增大而是等于通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。
因此我们可以计算出那个固定电阻的最大电流10V+50Q=0.2A也就是200mA。
就是说在电路中三极管基极电流增大集电极的电流也增大,当基极电流lb增大到2mA时,集电极电流就增大到了200mA。
当基极电流再增大时,集电极电流己不会再增大,就在200mA不动了。
此时上面那个电阻也就是起限流作用了。
共发射极电路NPN管,ib变大时,实质上是给基区注入空穴,如果是这样的话,注入的空穴将会中和更多发射极过来的电子,理论上ic便会变得更小才对啊,为什么ic还会以相应倍数P放大呢?
图中所画的是三极管内部电流流向【NPN型管,箭头指向代表电流方向】,现在基极电流增大到2,说明在基区有更多的电子被基区空穴所复合,按理来说,集电极电流应
该减少啊【因为有更多的电子在基区被复合,流到集电区的电子就少了】,但是现实情况却是集电极电流被放大到了6。
显而易见,我在增大基极电流的同时,发射极电流也在增大,并且基极电流增大一倍,发射极电流也增大一倍,这是为什么?
换句话说,我增大基极电流一倍,则从发射区到达基区的电子将会被多出一倍的空穴所复合,但是,又是什么原因使得此时此刻发射极发射出了比原来多出一倍的电子,比如右图比原来【左图】多出了1个单位的电子被基区空穴复合,但同时,发射区却多射出了4个单位的电子。
我人为的增加了1个单位的基极电流,而发射极却多射出了4个单位的电子,增加了4单位的电流,why?
不要用公式ie=ib-ic=(1+3)ib说明,请从三极管内部载流子的微观运动情况加以分析说明,
答案
1发射区向基区发射电子
由于发射结处于正向偏置,多说载流子的扩散运动加强,发射区的多说载流子(电子)向基区扩散(称为发射),同样基区的多数载流子(空穴)也向发射区扩散,但由于发射区的电子浓度远远高于基区的空穴浓度,两者比较可忽略基区空穴向发射区的扩
散。
由于两个电源Eb和Ec的负极接在发射极,所以发射区向基区发射区向基区的电子都可以从电源得到补充,这样就形成了发射极电流le.
2电子在基区的扩散与复合
从发射区发射到基区的电子到达基区后,由于靠近发射结附近的电子浓度高于靠近集电结附近的电子浓度,所以这些电子会向集电结附近继续扩散。
在扩散的过程中,有小部分电子会与基区的空穴复合,由于电源Eb的正极与基极相连,这些复合掉的空穴均可由Eb补充,因而形成了基极电流lb。
因基区做的很薄,电子在扩散过程中通过基区的时间很短,加上基区的空穴浓度很低,所以从发射区发射到基区的电子在基区继续向集电结附近扩散的过程中,与基区空穴复合的机会很少,因而基电极的电流很小,大部分电子都能通过基区而到达集电结附近,所以集电极电流很大。