不锈钢的腐蚀汇总
不锈钢的耐腐蚀元素
不锈钢的耐腐蚀元素
不锈钢是一种用于制造耐腐蚀的合金材料。
它含有一定比例的耐腐蚀元素,具体包括:
1. 铬(Cr):铬是不锈钢中最重要的耐腐蚀元素之一,通常含量在10.5%以上。
它能与氧气形成一层稳定的氧化膜,阻止进
一步的金属腐蚀。
高铬不锈钢具有较强的耐腐蚀性能。
2. 镍(Ni):镍能提高不锈钢的耐腐蚀性能,尤其是在含有氯离子的环境中。
镍能够增加不锈钢的抗腐蚀性能和屈服强度。
3. 钼(Mo):钼可提高不锈钢的抗点蚀和耐腐蚀性能。
在氯
化物介质中,含有钼的不锈钢耐腐蚀性能明显优于普通不锈钢。
4. 铜(Cu):铜是一种辅助的耐腐蚀元素,经常与铬一起使用。
铜能提高不锈钢的耐蚀、耐磨和耐高温性能。
5. 钛(Ti)和铌(Nb):钛和铌可以与碳元素结合,形成稳
定的钛碳化物和铌碳化物,阻止晶界腐蚀和一些高温腐蚀。
除了以上主要的耐腐蚀元素外,不锈钢中还可包含其他少量的元素,如锰、硅、氮等,用于进一步调节不锈钢的力学性能和耐腐蚀性能。
不锈钢材料的腐蚀方法
不锈钢材料的腐蚀方法不锈钢是一种合金材料,由铁、铬、镍和其他元素组成,具有良好的耐蚀性能。
然而,在特定条件下,不锈钢仍然可能发生腐蚀。
本文将介绍常见的不锈钢腐蚀方法及其防治措施。
1.点蚀腐蚀:点蚀是不锈钢材料中腐蚀最常见的一种形式。
它通常出现在不锈钢表面的小凹陷处,如焊接点、划痕或磨损处。
点蚀腐蚀的主要原因是不锈钢表面的镀层破损或化学成分不均匀,导致局部区域的钝化能力较差。
防止点蚀腐蚀的措施包括:选择合适的不锈钢材料、合理设计和施工、禁止使用含氯酸洗涤剂等。
2.缝隙腐蚀:缝隙腐蚀是在不锈钢材料缝隙之间形成的腐蚀。
这种腐蚀一般发生在不锈钢焊缝、接头、螺纹等处。
缝隙腐蚀的主要原因是缝隙内的氧气不足,导致不锈钢表面的钝化能力下降。
防止缝隙腐蚀的方法包括:优化焊接工艺、采用合适的填充材料、使用不锈钢螺纹和接头等。
3.应力腐蚀开裂:应力腐蚀开裂是由于不锈钢材料内部受到了应力的作用而引起的腐蚀。
高温、高应力和腐蚀性环境是引起应力腐蚀开裂的主要因素。
防止应力腐蚀开裂的措施包括:选择具有较高耐腐蚀性能的不锈钢材料、避免过高的应力集中、合理设计和施工等。
4.去质量腐蚀:去质量腐蚀是由于不锈钢材料内部发生化学反应而引起的腐蚀。
这种腐蚀一般发生在高温、高湿度和含有气体或液体污染物的环境中。
防止去质量腐蚀的方法包括:控制环境中的湿度和温度、禁止使用含有污染物的介质、定期清洁和保养等。
总的来说,要防止不锈钢材料的腐蚀,需要选择合适的不锈钢材料、合理设计和施工,控制使用环境的湿度、温度和化学成分,定期进行清洁和保养,以及采取有效的防腐措施。
这些措施能够保护不锈钢材料的表面和内部,延长其使用寿命,并确保其性能和外观不受腐蚀的影响。
不锈钢的腐蚀汇总
不锈钢的腐蚀汇总不锈钢是一种具有抗腐蚀性能的金属材料,但并不意味着它永远不会受到腐蚀。
不锈钢的腐蚀主要分为表面腐蚀和晶间腐蚀两种类型。
下面将对不锈钢的腐蚀进行汇总。
1.表面腐蚀:表面腐蚀是指不锈钢表面出现的腐蚀现象,主要包括以下几种形式:(1)点蚀腐蚀:在不锈钢表面出现点状或局部蚀坑,造成表面粗糙或凹凸不平。
(2)划痕腐蚀:在不锈钢表面被金属或硬物划伤后,形成划痕,并容易导致腐蚀。
(3)斑点腐蚀:不锈钢表面产生颜色斑点,造成局部腐蚀。
(4)锈斑:不锈钢表面出现红褐色污渍,这是由于钢材表面被污染或长期接触含酸性物质而引起的。
(5)晕渍:不锈钢表面出现黄褐色晕渍,主要由于长时间暴露在含铁、含锰或含硅物质中引起。
2.晶间腐蚀:晶间腐蚀是指不锈钢在特定条件下,沿晶界产生的腐蚀现象,主要包括以下几种形式:(1)焊缝腐蚀:在焊接不锈钢时,由于热影响区结构的变化,易发生晶间腐蚀。
(2)沉淀物腐蚀:不锈钢在低温高温交替作用下,沉淀物会析出并导致晶间腐蚀。
(3)碳化物腐蚀:不锈钢在高温下,碳元素容易与铬结合形成铬碳化物,导致晶间腐蚀加剧。
(4)硝化物腐蚀:不锈钢在含有硝酸盐的环境中易引起晶间腐蚀。
为了预防不锈钢的腐蚀,可以采取以下措施:(1)定期清洗:定期清洗不锈钢表面,防止污染物长时间附着在表面。
(2)防止划伤:避免使用金属或硬物直接刮伤不锈钢表面,以免导致腐蚀。
(3)控制环境:避免长时间暴露在含酸性、含碱性或含盐性物质的环境中。
(4)注意焊接:焊接不锈钢时,应选择合适的焊接方法和材料,防止产生焊缝腐蚀。
(5)注意使用温度:避免不锈钢长时间处于高温或低温环境中,以免加剧晶间腐蚀。
总之,虽然不锈钢具有抗腐蚀性能,但在特定条件下仍然可能发生腐蚀,因此在使用和维护过程中需要注意预防腐蚀的措施。
不锈钢腐蚀及清洗
4
一只大白羊
一只大白羊
一只大白羊
二、不锈钢常见的表面缺陷
③焊接缺陷,对机械性能及局部耐腐蚀性有影响。
④粗糙的表面
不均匀的焊缝及过重的磨削、喷砂会导致粗糙的表面,而粗糙的表面容易堆积沉积物,从而增加腐蚀 和产品污染的风险,过重的磨削,还会导致较高的拉伸应力,从而增加应力腐蚀的风险。
⑤有机物污染
油脂、油、油漆、足迹、胶水残留物、污垢等有机污染物会在侵蚀性环境中导致缝隙腐蚀,可能会导 致经过酸洗后的产品抗腐蚀性降低,产生间隙腐蚀。
2
一只大白羊
一只大白羊
一只大白羊
二、不锈钢常见的表面缺陷
①由热处理或焊接后高温引起高温氧化,产生的氧化层,在氧化层下的金属中的铬消耗尽。
在450℃到650℃之间回火,会使在结晶格间隙内之碳原子扩散析出与铬形成网状之碳化铬 造成临近区域铬元素之消耗使铬成份降低,无法形成保护膜,而丧失耐蚀性(贫铬区)
电偶腐蚀:两种不同电位金属接触,从而引起电位低的金属发生腐蚀的一种金属接触腐蚀,
两种不同的金属构成宏电池,产生电偶电流,使电位较低的金属(阳极)溶解速度增加,电位较高的金 属(阴极)溶解速度减小,所以,阴极是受到阳极保护的。
不锈钢中含有镍铬等金属元素电位高于碳钢,因ቤተ መጻሕፍቲ ባይዱ做阴极。
不锈钢与碳钢接触,前期碳钢腐蚀速度快,但当碳钢表面形成的腐蚀产物增加到一定多时,碳钢反而起 到一定性的保护作用,从而减缓了碳钢的腐蚀速率。 但不锈钢随着时间的推移,材料表面的钝化层被破坏,且前期不锈钢腐蚀产物少,起到的保护作用小, 引起随着时间的推移,不锈钢的腐蚀反而会比碳钢腐蚀更严重。
不锈钢的不同温度时的回火色: 淡麦黄色:290℃(2-3); 麦 黄 色:340℃(3); 淡红棕色:390℃(3-4); 淡 红 色:450℃(4); 淡 蓝 色:530℃(4-5); 深 蓝 色:600℃(5-6)。
不锈钢的腐蚀方式与腐蚀性能
不锈钢的腐蚀方式与腐蚀性能⑴不锈钢的腐蚀方式简介在众多的工业用途中,不锈钢能提供令人满意的耐蚀性能。
根据使用的经验来看,除机械失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂,点腐蚀,晶间腐蚀,腐蚀疲劳以及缝隙腐蚀)。
①应力腐蚀开裂(SCC)应力腐蚀开裂是指承受应力的合金在腐蚀性环境中由于裂纹的扩展而产生失效的一种形式。
应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。
发生应力腐蚀开裂的必要条件是要有拉应力(不论是参与应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。
裂纹的形成和扩展大致与拉应力方向垂直。
这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。
在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩展的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至一定的深度时(此处,承受荷载的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。
因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与显微缺陷的聚合想联系的“韧窝”区域。
通常是应力腐蚀开裂的基本条件是:弱的腐蚀介质,一定的拉应力和特定的金属材料构成的特定腐蚀系统。
下面将详细介绍这方面的内容。
a 仅当弱的腐蚀在金属表面形成不稳定的保护膜时,才可能发生应力腐蚀开裂。
实验结果表明:pH值降低将减弱奥氏体不锈钢的应力腐蚀开裂敏感性。
一般的结构用钢在中性pH 值和高pH值介质中,将发生不同机制的应力腐蚀开裂。
b 在一定的拉应力的应变条件下易产生腐蚀。
对Cr-Ni不锈钢的应力腐蚀开裂,应力(σ)和开裂时间(t s)关系一般认为符合1gt s=a+bσ方程,式中a,b为常数。
这表明所受应力越大,不锈钢产生应力腐蚀开裂的时间越短。
对不锈钢应力腐蚀开裂研究表明,存在产生应力腐蚀的临界应力值,常用σSCC表示。
不锈钢的腐蚀汇总
第三部分不锈钢的腐蚀一、概述1、不锈钢的定义不锈钢是一系列在空气,水,盐的水溶液,酸以及其它腐蚀介质中具有高度化学稳定性的钢种;在空气中耐腐蚀的钢称为“不锈钢”,在各种腐蚀性较强的介质中耐腐蚀的钢种称为“耐酸钢”;通常,我们把不锈钢与耐酸钢统称为不锈耐酸钢,或简称为不锈钢;根据习惯用法,不锈钢一词常包括耐酸钢在内;现有的不锈钢从化学成分来看,都是高铬钢;由于在大气中,当钢中的铬含量超过大约12%时,就基本上不会生锈;钢的这种不锈性一般认为与钢在氧化性介质中的钝化现象有关;2、不锈钢的分类不锈钢分类主要有以下几种方式:1按化学成分分有----铬钢及铬钼钢,铬镍钢,铬锰钢或铬锰氮钢,铬锰镍钢等;2按显微组织分有----奥氏体钢,铁素体钢,马氏体钢,奥氏体+铁素体双相钢,铁素体+马氏体双相钢奥氏体钢等3按用途分有----耐海水不锈钢,耐点蚀不锈钢统一在某一钢种上,耐应力腐蚀破裂不锈钢,耐浓硝酸腐蚀不锈钢,耐硫酸腐蚀不锈钢,深冲用不锈钢,高强度不锈钢,易切削不锈钢,耐热不锈钢等;二、不锈钢的点蚀1、点蚀现象和识别点蚀是在不锈钢表面上局部形成的具有一定深度的小孔或锈斑;由于点蚀常常被锈层,腐蚀产物等覆盖,因而难以发现;在金相显微镜下观察点蚀,其断面有多种形貌;点蚀一般系在特定腐蚀介质中,特别是在含有Clˉ包括Brˉ,Iˉ离子的介质中产生;使不锈钢产生点蚀的常见介质有:大气,水介质及水蒸气,海水,漂白液,各种有机和无机氯化物等;点蚀可在室温下出现并随腐蚀介质温度升高而更易产生并更趋严重;点蚀不仅可导致设备,管线等穿孔而破坏,而且常常诱发晶间腐蚀,应力腐蚀和疲劳腐蚀;虽然,不锈钢的点蚀事故仅占化工,石油等系统腐蚀破坏的~20%,但在大气中使用的不锈钢,却有近80%是由于点蚀和锈斑而损坏;见图1a、b;2、机理一般认为,不锈钢的点蚀是在金属表面非金属夹杂物,析出相,晶界,位错露头等缺陷处,由于钝化膜较脆弱,在特定腐蚀介质作用下,钝化膜修复能力差而造二氧化碳引起的点蚀a Cr13不锈钢的局部腐蚀b图1成的破坏;点蚀的出现包括成核和扩展二个阶段;现以钢的表面上存在硫化锰夹杂为例简述如下:点蚀的成核:在溶液中有Clˉ存在时,金属表面有硫化锰夹杂的部位,由于难以钝化,再钝化而产生优先溶解并形成小孔坑;硫化物溶解产生H+或H2S,对不锈钢的新鲜表面产生活化作用,防止小孔坑的再钝化而形成孔蚀源;点蚀的扩展:孔蚀源形成后,溶解下来的金属离子会产生水解而生成H+并使局部溶液的pH值下降,进而又加速金属的溶解,使孔坑进一步扩大,加深;随着蚀孔加深并由于腐蚀产物覆盖了蚀坑口,从而使蚀孔内物质迁移困难,导致蚀孔内pH值的进一步降低;同时,Clˉ在蚀孔内富集,使蚀孔进一步加速扩大并加深,最后形成点蚀;研究表明,在特定介质中,只要不锈钢的腐蚀电位超过点蚀电位,就能产生点蚀;3、材料选择提高不锈钢的纯度并降低不锈钢的不均匀性,选择钝化和再钝化能力强的材料是防止不锈钢点蚀的有力措施;提高不锈钢的纯度,可通过炉外精炼手段,降低钢中的气体和非金属夹杂物的含量;研究表明,钢中的氧化物,特别是Al2O3;钢中的硫化物,特别是MnS;钢中氮化物,特别是TiN,由于它们本身的物理,化学性质,在介质作用下,常常作为敏感位置而诱发点蚀;研究还表明,对于常用的18-8型Cr-Ni钢和18-12-2型Cr-Ni-Mo钢,在降低钢中S量的同时降低Mn量也有利于耐点蚀性能的提高;降低不锈钢的不均匀性,特别是要防止M23C6等碳化物和金属间相的析出;因为它们周围Cr,Mo等耐点蚀元素的贫化,使它们极易成为点蚀的敏感位置;由于Cr,Mo,N等元素对提高不锈钢的耐点蚀性非常有效,为了提高不锈钢的钝化和再钝化能力,就要选用高Cr,Mo含量的奥氏体,奥氏体+铁素体双相钢和铁素体不锈钢;选用高Cr,Mo且含N的奥氏体和奥氏体+铁素体双相不锈钢;如果把常用的不锈钢按其耐点蚀能力由小到大排列起来,大致可以得到下列顺序:铁素体不锈钢:注:顺表中箭头方向耐点蚀能力提高二、缝隙腐蚀1、现象和识别不锈钢表面上若存在金属和非金属夹杂物,例如金属微粒,砂粒,灰尘,脏物,海生物,或者由于结构上的原因,例如铆接,螺栓联接,垫片圈,管与管板胀接,与非金属接触等,均可形成缝隙;在腐蚀介质作用下,缝隙内出现腐蚀,就是缝隙腐蚀;缝隙腐蚀一般根据缝隙形状不同而具有一定的外形;轻微时,可以是缝隙内的一般全面腐蚀,严重时,多为成片的点蚀状或溃疡状;研究表明,几乎所有的腐蚀介质均可引起不锈钢的缝隙腐蚀,而没有特定介质的选择;但是在含Clˉ环境中的缝隙腐蚀则最为常见;缝隙腐蚀对缝隙尺寸有一定的要求,既要使缝隙内,外溶液之间的物质迁移发生困难,还要能允许溶液进入缝隙内,不锈钢产生缝隙腐蚀的缝隙宽度一般在~范围内;2、机理:缝隙腐蚀可分为孔蚀型缝隙腐蚀和活化型缝隙腐蚀二种;前者是以孔蚀为起源的缝隙腐蚀,主要是由于缝隙内钝化膜的氧化性破坏而引起的;后者的形成机理简述如下:由于缝隙的存在,缝隙内溶液组成物质迁移产生困难;例如,腐蚀溶液中能使不锈钢钝化的氧进入缝隙,只能通过扩散,因而过程缓慢;为了维持不锈钢钝态,缝隙内氧迅速耗掉而又的不到及时补充,致使不锈钢表面钝化膜开始还原性溶解;这种溶解的结果使腐蚀产物金属盐逐渐浓缩,通过水解,缝隙内溶液的pH值急剧下降;当pH值降低到不锈钢在溶液中的去钝化pH值时,缝隙内不锈钢表面的钝化膜便产生还原性破坏而形成缝隙腐蚀;3、材料选择不锈钢的缝隙腐蚀主要是因为缝隙内的溶液酸化,缺氧而引起表面钝化膜破坏;因而,提高不锈钢钝化膜的稳定性和钝化,再钝化能力同样是提高不锈钢耐缝隙腐蚀能力的重要措施;因此,选用耐点蚀材料的一些措施同样适用于耐缝隙腐蚀材料的选择;三、腐蚀疲劳现象和识别在介质与交变应力共同作用下所引起的不锈钢的破坏称为腐蚀疲劳;由于不锈钢多在腐蚀环境中使用,因此在交变应力作用下,所产生的不锈钢的破坏多为腐蚀疲劳;与一般机械疲劳相比,不锈钢的腐蚀疲劳表面上常见明显的腐蚀和点蚀;腐蚀疲劳既可以是仅有一条裂纹,也可以有多条裂纹并存,这与不锈钢的腐蚀疲劳既可以在一点又可以在多处生核并扩展有关;不锈钢腐蚀疲劳裂纹宏观常见切向何正向扩展并多呈锯齿状和台阶状;微观上裂纹一般没有分支且裂纹尖端较钝;除腐蚀和裂纹外,不锈钢腐蚀疲劳最重要的特点是断口上有一般机械疲劳的各种特征;例如,宏观断口较平整,呈瓷状或贝壳状,有疲劳弧线,疲劳台阶,疲劳源等;微观断口则有疲劳条纹等;不锈钢在任何腐蚀介质中均可产生腐蚀疲劳,而没有介质的选择;为了验证是否是腐蚀疲劳,还可根据提高钢的强度和耐蚀性或排除腐蚀介质的作用后,是否仍出现破坏来断定;如果由于钢强度提高,不锈钢疲劳断裂消失或寿命延长,则可断定原断裂为机械疲劳;如果提高了钢的耐蚀性或排除了腐蚀介质的作用后,不锈钢疲劳断裂消失或寿命延长,则可断定原断裂为腐蚀疲劳;根据断口特征可以准确的把应力腐蚀与腐蚀疲劳区别开来;2、机理目前,不锈钢腐蚀疲劳的机理主要有以下几种模型;1点蚀应力集中模型:认为不锈钢点蚀坑底部的应力集中是引起裂纹成核的主要原因;2形变金属优先溶解模型:认为形变金属为阳极,未变形金属为阴极,从而导致形变部分的优先溶解;3表面膜破裂模型:认为在交变应力作用下,金属滑移带穿透表面膜,形成无保护膜的台阶,从而使其处于活化态而溶解,引起裂纹成核;滑移-溶解反复作用而形成腐蚀疲劳;4吸附模型:认为腐蚀介质中的活化物质吸附到金属表面上,使表面能降低,改变了材料的力学性能,从而使不锈钢表面滑移带的产生和裂纹的扩展更易进行;3、材料选择选择耐蚀性更好的不锈钢和具有复相结构的双相不锈钢,是解决不锈钢腐蚀疲劳的主要措施;由于不锈钢的腐蚀疲劳多以点蚀为起源,因此,为了防止腐蚀疲劳可选择耐点蚀好的各种不锈钢;例如,含Cr,Mo较高的马氏体不锈钢,Cr-Ni奥氏体不锈钢和铁素体不锈钢等;由于一些双相不锈钢不仅Cr,Mo较高,且多含有N,因此耐点蚀性能好,同时,由于其组织具有复相结构,不仅显着提高钢的腐蚀疲劳强度,而且疲劳裂纹的扩展也较单相组织结构困难,所以,选用双相不锈钢是解决不锈钢腐蚀疲劳破坏的重要途径;四、刀状腐蚀1、现象和识别:在含Ti,Nb的Cr-Ni奥氏体不锈钢焊缝与母材之交界处的很窄区域内产生严重腐蚀,而母材和焊缝本身则腐蚀轻微,甚至未见腐蚀,金相显微镜下观察可见敏化态晶间腐蚀的特徽;研究表明,含Ti的Cr-Ni不锈钢,无论是在氧化性介质,还是在还原性介质中,均可产生刀状腐蚀;2、机理:冶炼厂在生产含TiNb的Cr-Ni奥氏体不锈钢时例如1Cr18Ni9Ti,0Cr18Ni9Ti,0Cr18Ni11Ti,0Cr18Ni11Nb等,经冶炼,浇注,锻,轧等成材后,出厂前一般经过920~1150°C加热,随后急冷的固溶处理;此时钢中的Ti或Nb大都应以TiCNbC 的形式存在;但经焊接后,与焊缝相邻的高温>=1150°C狭窄区域内TiCNbC就会分解,钢中碳便会溶于奥氏体基体中;在随后的冷却过程中,当此高温区通过450~850°C,即敏化温度范围时,又会有大量富铬的M23C6Cr23C6沿晶界析出,从而导致晶界铬的贫化,在介质作用下便会出现刀状腐蚀;因此,刀状腐蚀系含TiNb的Cr-Ni奥氏体不锈钢在焊缝熔合线上出现的一种晶间腐蚀,是钢中TiCNbC分解,Ti和C溶解,随后富铬的M23C6析出,形成贫铬区的结果;本质上与敏化态晶间腐蚀没有区别;3、材料选择从根本上讲,刀状腐蚀仍然是因含TiNb的Cr-Ni奥氏体不锈钢中常常含有比较高的C量而引起的;因此,在选择材料时首先考虑选用低碳~%和超低碳<=%Cr-Ni奥氏体不锈钢以代替含TiNb的不锈钢;当必须选用含TiNb的Cr-Ni奥氏体不锈钢时,也须将钢中的碳量控制在允许的范围内并尽量低;五、晶间腐蚀不锈钢的晶间腐蚀是沿不锈钢晶粒间界产生的一种优先破坏.它曾经是人们20世纪30~50年代最为关注,最为常见的腐蚀破坏形式;虽然不锈钢敏化态晶间腐蚀的事故已大大减少,但非敏化态晶间腐蚀的研究和解决尚需人们继续努力;一铬镍奥氏体不锈钢的敏化态晶间腐蚀1、现象和识别敏化态晶间腐蚀出现在焊接构件的焊缝热影响区或构件经过450~850°C加热的部件,在介质作用下导致这些部位的泄漏或破损;产生敏化态晶间腐蚀的设备,部件等,其尺寸,外形几乎没有变化且无任何塑性变形;除受腐蚀的区域外,其它部位没有任何腐蚀的迹象,仍具有明显的金属光泽;局部取样检查,受腐蚀部位的强度,塑性已严重丧失,冷弯时不仅出现裂纹,严重时常常出现脆断和晶粒脱落且落地无金属声;在金相显微镜和扫描电镜下可以明显看到钢的晶界由于受腐蚀而变宽,多呈网状,严重时还有晶粒脱落现象;2、机理常见的敏化态晶间腐蚀应用贫铬理论可得到圆满的解释;Cr-Ni奥氏体不锈钢在使用前或冶炼厂出厂交货状态多为固溶处理状态;即将不锈钢加热到高温1000~1150°C左右,随钢种而异,保温后快冷一般为水冷;此时,当Cr-Ni奥氏体不锈钢中含碳量在~%以上时随钢中的含Ni量而异,碳在钢中便处于过饱和状态;随后,在不锈钢的加工及设备,构件的制造和使用过程中,若要经过450~850°C的敏化温度加热例如焊接或在此温度范围内使用,则钢中过饱和的碳就会向晶界扩散,析出并与其附近的铬形成铬的碳合物;在常用的Cr-Ni奥氏体不锈钢中,这种碳化物一般为Cr23C6M23C6;由于这种碳化物含有较高的Cr,所以铬碳化物沿晶界沉淀就导致了碳化物周围钢的基体中Cr浓度的降低,形成所谓“贫铬区”;当铬碳化物沿晶界沉淀呈网状时,贫铬区亦呈网状,不锈钢耐腐蚀是因为在介质作用下,钢中含有足以使钢在此介质中钝化的铬量;而贫铬区铬量不足,使钝化能力降低,甚至消失,而奥氏体晶粒本身仍具有足够钝化耐蚀能力,因此,在腐蚀介质作用下晶界附近连成网状的贫铬区便优先溶解而产生晶间腐蚀;3、常见介质容易使Cr-Ni奥氏体不锈钢产生晶间腐蚀的常见介质种类很多,下表仅列出其中的一部分供参考;表1 使Cr-Ni奥氏体不锈钢产生晶间腐蚀的常见介质4、材料选择长期以来,人们选用含稳定化元素Ti,Nb的Cr-Ni奥氏体不锈钢,例如1Cr18Ni9Ti, 0Cr18Ni11Ti, 1Cr18Ni12Mo2Ti, 1Cr18Ni12Mo3Ti, 1Cr18Ni11Nb, 0Cr18Ni11Nb等以防止敏化态晶间腐蚀并取得了满意的结果;Ti,Nb的作用主要是与钢中过饱和的碳形成稳定的TiC,NbC等碳化物而防止或减少铬碳化物Cr23C6的形成;但是含稳定化元素Ti,Nb,特别是含Ti的不锈钢有许多缺点;在不锈钢冶炼工艺日新月异的今天;有些缺点已严重阻碍了不锈钢冶炼生产的科技进步并给使用带来了不必要的损失和危害;例如,Ti的加入,使钢的粘度增加,流动性降低,给不锈钢的连续浇注工艺带来了困难;Ti的加入,使钢锭,钢坯表面质量变坏,不仅大大增加冶金厂的修磨量,而且显着降低钢的成材率,从而提高了不锈钢的成本;Ti的加入,由于TiN等非金属夹杂物的形成,降低了钢的纯洁度,不仅使钢的抛光性能变差,而且由于TiN等夹杂常常成为点蚀源而使钢的耐蚀性下降;含Ti的不锈钢焊后在介质作用下,沿焊缝熔合线易出现“刀状腐蚀”,同样引起焊接结构设备的腐蚀破坏;由于含Ti不锈钢的上述缺点,在不锈钢产量最大的日本,美国含Ti的18-8Cr-Ni 不锈钢的产量仅占Cr-Ni不锈钢产量的1~2%,而我国仍占Cr-Ni不锈钢产量的90%以上;这既反映了我国不锈钢生产和钢种使用上的不合理,也说明我国在不锈钢生产和使用中,钢种结构上的落后状况;建议选用超低碳Cr-Ni奥氏体不锈钢;由于超低碳C<=~%Cr-Ni奥氏体不锈钢的强度较用Ti,Nb稳定化的不锈钢为低,当强度嫌不足时,可选用控氮~%和氮合金化N>=%的超低碳Cr-Ni奥氏体不锈钢,它们不仅强度高且耐晶间腐蚀,耐点蚀等性能也均较含Ti,Nb的不锈钢为佳;建议含Ti,Nb的Cr-Ni奥氏体不锈钢仅用于低碳,超低碳不锈钢无法替代的条件下,例如作为耐热钢使用和在连多硫酸等用途中使用;二铬镍奥氏体不锈钢的非敏化态固溶态晶间腐蚀铬镍奥氏体不锈钢的非敏化态晶间腐蚀,1949年才被人们发现,虽然也开展了一些研究工作,但截止目前为止,从理论到实践还没有获得满意的解释和解决;1、现象和识别非敏化态固溶态晶间腐蚀系指Cr-Ni奥氏体不锈钢在经过高温1000~1150°C加热,保温后迅速冷却后的固溶状态,不需要再经过敏化焊接或450~850°C敏化温度加热处理,在一些腐蚀介质中同样出现的晶间腐蚀;产生非敏化态晶间腐蚀的Cr-Ni奥氏体不锈钢既包括普通不锈钢,也包括耐敏化态晶间腐蚀的超低碳不锈钢和含稳定化元素Ti,Nb的不锈钢;非敏化态晶间腐蚀主要出现在含Cr6+的HNO3中;除65%的HNO3外,在浓HNO3,特别是在发烟硝酸中最易出现;此外,国内在二氧化碳汽提法生产尿素的条件下,在高温,高压尿素甲铵液中,在液相,汽液相交界处,在汽相中均发现了尿素级和非尿素级的00Cr17Ni14Mo2和00Cr25Ni22Mo2N以及Fe-Ni基耐蚀合金00Cr20Ni35Mo2Cu3NbCarpenter 20cd-3的非敏化态晶间腐蚀;非敏化态晶间腐蚀一般出现在远离焊缝的母材上;对它的识别基本上与敏化态晶间腐蚀相同;但是,在金相显微镜和扫描电镜下观察,在尿素生产装置中所出现的Cr-Ni 奥氏体不锈钢的非敏化态晶间腐蚀形态,发现与前述敏化态晶间腐蚀有很大的不同;主要表现在晶间腐蚀裂纹较宽但常常延伸较浅且常伴随有晶粒脱落,但晶界并未见析出物;2、机理研究表明,应用溶质杂质偏聚理论能够较满意地解释固溶态非敏化态晶间腐蚀产生的原因;在含Cr6+的硝酸介质中,选择高纯的Cr-Ni不锈钢Cr14Ni14和1Cr18Ni11Ti,研究了C,P,Si,B等对非敏化态晶间腐蚀的影响,当C<%时无明显影响,P>=%,显着有害;Si 量在Cr-Ni不锈钢正常含量~%范围附近时,其非敏化态晶间腐蚀敏感性最大,高于或低于此含量,晶间腐蚀敏感性下降;B量>=%,对非敏化态晶间腐蚀便有害;对含Si,P极低的高纯Cr-Ni奥氏体钢的进一步研究表明,这些不锈钢在非敏化态均无晶间腐蚀倾向;采用透射电镜和俄歇谱仪进行晶界分析结果已证实晶界P,Si,B等元素的偏聚并优先溶解是导致非敏化态晶界腐蚀的主要原因;但是,P,Si,B等杂质元素沿晶界偏聚导致非敏化态晶间腐蚀仅仅是由于晶界和晶内形成化学浓差而引起的单纯电化学腐蚀过程,或者是由于偏聚引起晶界耐蚀性下降,还是有其它因素的影响,尚有待于进一步探讨;3、材料选择从理论上讲,发展P<=%,Si<=%,B<=%的高纯Cr-Ni奥氏体不锈钢是解决非敏化态晶间腐蚀最根本的措施;目前,为解决硝酸用途中的非敏化态晶间腐蚀,主要是选用高硅Si ~4%不锈钢0Cr18Ni11Si4AlTi,00Cr20Ni24Si4Ti,00Cr14Ni14Si4,00Cr17Ni15Si4Nb等;为解决二氧化碳汽提法尿素生产中四大高压设备,即尿素合成塔,高压冷凝器,高压洗涤器,二氧化碳汽提塔用Cr-Ni奥氏体不锈钢的非敏化态晶间腐蚀,目前仍需选用已有大量成熟使用经验的尿素级00Cr17Ni14Mo2和00Cr25Ni22Mo2N;但需尽量控制钢中C,P,Si量,特别是P含量应尽量低;三铁素体不锈钢的晶间腐蚀1、现象和识别铁素体不锈钢的晶间腐蚀与前述Cr-Ni奥氏体不同:它一般出现在高于900~950°C加热后或焊后,甚至在水等急冷条件下也无法避免;而经过750~850°C短时间加热处理,铁素体不锈钢的晶间腐蚀敏感性可减轻,甚至消除;铁素体不锈钢的晶间腐蚀系产生在紧靠焊缝熔合线附近区域,而不是在Cr-Ni奥氏体不锈钢的热影响区内;除出现部位上的差异外,对铁素体不锈钢晶间腐蚀的识别基本上与Cr-Ni奥氏体不锈钢的敏化态晶间腐蚀相同;铁素体不锈钢的晶间腐蚀不仅在强腐蚀性介质中产生,而且在弱介质中,例如在自来水中亦可出现;2、机理大量研究表明,应用贫铬理论同样可满意地解释铁素体不锈钢的晶间腐蚀现象;高铬铁素体不锈钢在900~950°C以上加热时,钢中C,N固溶于钢的基体中;由于钢中Cr在铁素体内的扩散速度约为奥氏体中的100倍,而C,N在铁素体内不仅扩散速度快在600°C,C在铁素体中的扩散速度约为奥氏体中的600倍,而且溶解度也低在含Cr26%的铁素体钢中,1093°C时,C的溶解度为%,而在927°C仅为%,温度再低,还要降至%以下;N的溶解度在927°C以上为%,而在593°C仅为%;因而高温加热后,在随后的冷却过程中,即使快冷也常常难以防止高铬的碳,氮化物沿晶界析出和贫铬区的形成;而在750~870°C 处理,可降低,消除铁素体不锈钢的晶间腐蚀倾向;但是,在500~700°C范围内,钢中铬的扩散速度减小,短期内无法使贫铬区消失,故先经高温加热,而在冷却过程中又通过500~700°C温度区的铁素体不锈钢,由于晶界有贫铬区的存在,在腐蚀介质作用下就会产生晶间腐蚀现象;研究表明,含Cr20%的铁素体不锈钢,其贫铬区的Cr量可<5%,甚至可为0%,贫铬区的宽度为~μm;3、材料选择为了防止铁素体不锈钢的晶间腐蚀,主要选用含Ti,Nb等稳定化元素的铁素体不锈钢;六、应力腐蚀1、现象和识别:不锈钢的应力腐蚀是在静拉伸应力与特定的工作介质共同作用下而发生的一种破坏;它是不锈钢局部腐蚀破坏中最常见,危害最大的一种;工程事故的分析经验表明,不锈钢制设备和部件,包括未经使用的设备和部件,一旦发生突然性的泄漏或损坏,而泄漏或损坏部位又未见明显的塑性变形,常常是由应力腐蚀而造成的;识别应力腐蚀的主要依据是裂纹特征和断口形貌;见图片;1裂纹特征应力腐蚀的宏观裂纹均起自于不锈钢表面且分布具有明显的局部性;裂纹的走向与所受应力,特别是与残余应力有密切关系;裂纹常呈龟裂和风干木材状,裂纹附近未见塑性变形;除裂纹部位外,其它部位腐蚀轻微,且常有金属光泽;应力腐蚀裂纹的微观形貌多为穿晶型,但也多见沿晶型和穿晶+沿晶混合型;裂纹的宽度较小,而扩展较深,裂纹的纵深常较其宽度大几个数量级;裂纹既有主干也有分支,典型裂纹多貌似落叶后的树干和树枝,裂纹尖端较锐利;2断口形貌应力腐蚀的宏观断口多呈脆性断裂;断口的微观形貌,穿晶型多为准解理断裂,并常见河流,扇形,鱼骨,羽毛等花样;而沿晶型则多为冰糖块状花样;2、常见介质:导致各类不锈钢应力腐蚀的最常见介质是含有Clˉ和氧的大气和工业水,海水等;由于Cr-Ni奥氏体不锈钢用量最大,应力腐蚀事故也最多;下面列出了使Cr-Ni奥氏体不锈钢产生应力腐蚀和晶间沿晶型应力腐蚀的常见介质;3、机理:由于应力腐蚀的影响因素多,过程比较复杂,因此,截至目前为止,对不锈钢应力腐蚀的尚未取得统一的认识;对于高强度不锈钢,例如马氏体和马氏体沉淀硬化不锈钢的应力腐蚀,许多人认为氢脆起主导作用;但也有人认为,在中性水溶液中,对13%Cr马氏体不锈钢的应力腐蚀起主导作用的不是氢脆,而是阳极溶解;对于Cr-Ni奥氏体不锈钢,许多研究工作者也曾提出氢脆是它们产生应力腐蚀的主要机制;主要依据是在沸腾的Mg,Li,Ca等的氯化物溶液中,在高温水和蒸汽中,在室温H2SO4+NaCl混合介质中,由于氢的吸附,钢的塑性显著降低;在腐蚀电位和阴极极化下,有氢析出的可能性;在应力作用下,奥氏体形变可在局部产生马氏体,同时,钢中氢量增加,可促进这种马氏体转变;断裂后,通过断口观察,认为属于氢脆断裂;但是,对于大量使用的Cr-Ni奥氏体不锈钢,从裂纹尖端产生阳极溶解而引起应力腐蚀,目前倾向于用滑移-溶解-断裂模型来加以解释;在介质作用下,Cr-Ni奥氏体不锈钢表面上存在着籍以耐腐蚀的保护膜钝化膜;在拉伸应力作用下,位错沿着滑移面运动至金属表面,在表面产生滑移台阶,使表面膜产生局部破裂并暴露出没有保护膜的裸金属;有膜与无膜金属间形成微电池;在介质作用下,作为阳极的裸金属产生阳极溶解;此时,保护膜的作用不仅为腐蚀过程提供了阴极,而且又使阳极溶解集中在局部区域;显然,保护膜破裂后,若所暴露的裸金属一直处于活化腐蚀状态,则腐蚀必然会同时向横向发展;于是,裂纹尖端的曲率半径增大,应力集中程度随之减小,进而导致裂纹向纵深发展的速度变慢直至最后终止;但是,在实验室内和应力腐蚀工程事故分析中均可看到,不锈钢应力腐蚀裂纹尖端非常微细;因此,一般认为,在裸金属受到腐蚀的同时,还存在着一个能阻止腐蚀向横向发展的过程,才能使裂纹沿纵向扩展;此过程就是不锈钢的再钝化;因此,滑移-溶解-断裂模型至少包括表面膜的形成;在应力作用下金属产生滑移引起表面膜的破裂;裸金属的阳极溶解和裸金属的再钝化等四个过程;这些过程的反复进行,导致不锈钢的应力腐蚀断裂;。
不锈钢腐蚀反应
不锈钢的腐蚀反应通常包括以下几种:
1. 应力腐蚀开裂(SCC):这是一种由金属材料内部拉应力和腐蚀介质共同作
用导致的腐蚀形式。
在某些情况下,如使用含有氯化物的介质,不锈钢的耐蚀性可能会受到影响,导致SCC的发生。
2. 孔蚀:孔蚀是一种局部腐蚀形式,通常发生在金属表面的缺陷处。
在氯化物或其他腐蚀介质的存在下,不锈钢的表面可能会形成蚀孔。
3. 缝隙腐蚀:这种腐蚀形式通常发生在金属材料存在缝隙或夹杂物的地方。
在某些腐蚀介质中,不锈钢的缝隙腐蚀可能会加速。
4. 均匀腐蚀:这种腐蚀形式发生在整个金属表面,通常是由于不锈钢表面存在
划痕、凹坑或其他缺陷造成的。
在某些情况下,均匀腐蚀可能会加速金属材料的破坏。
不锈钢的腐蚀反应可能会受到多种因素的影响,包括材料成分、表面状态、环境条件(如温度、湿度、压力、介质类型和浓度等),以及应力作用等。
为了减缓不锈钢的腐蚀反应,可以采取一些防护措施,如选择合适的材料和表面处理方法、改善环境条件、降低应力作用等。
不锈钢的主要腐蚀形式
不锈钢的主要腐蚀形式
不锈钢的主要腐蚀形式包括以下几种:
1. 强酸腐蚀:强酸(如浓硫酸、浓盐酸等)对不锈钢具有强烈的腐蚀作用,会导致不锈钢表面出现腐蚀坑、大量氢气释放等现象。
2. 高温氧化腐蚀:在高温下,不锈钢会与氧气发生反应,形成氧化层。
但当温度过高或气氛中存在有害物质(如硫化物、氯化物等)时,氧化层可能被破坏,导致不锈钢表面产生腐蚀。
3. 氧化性酸性氯化腐蚀:氧化性酸性氯化物(如氯离子、次氯酸等)是不锈钢的一种显著腐蚀介质,会在不锈钢表面形成点蚀、晶间腐蚀等。
4. 碱性腐蚀:强碱(如氢氧化钠、氢氧化钾等)能引起不锈钢表面出现腐蚀斑点,使其失去抗腐蚀性能。
5. 氯化物介质腐蚀:氯化物是不锈钢的腐蚀介质之一,当不锈钢表面存在氯化物离子(如氯离子、氯化钠等)并在一定环境条件下,容易发生腐蚀。
6. 微生物腐蚀:当不锈钢暴露在特定微生物介质中时,一些微生物会产生氧化物、酸性物质等,从而引发不锈钢的微生物腐蚀。
不锈钢腐蚀的种类和定义
不锈钢腐蚀的种类和定义不锈钢是一种具有良好抗腐蚀性能的合金材料,但长期使用或在特定环境中,仍然会发生腐蚀。
不锈钢腐蚀主要分为以下几种类型:1.广义腐蚀广义腐蚀是不锈钢表面发生的一般性腐蚀,最常见的是均匀腐蚀。
均匀腐蚀即表面各处承受相同的腐蚀破坏,使金属表面出现均匀的腐蚀痕迹。
2.点蚀腐蚀点蚀腐蚀是不锈钢表面发生的一种局部腐蚀,通常在扉门结构、焊接缝等处形成几个点状或斑点状的腐蚀坑。
点蚀腐蚀往往是由于金属表面的局部缺陷引发的。
3.缝隙腐蚀缝隙腐蚀是在不锈钢的缝隙、接触面等有氧的部位发生的局部腐蚀。
这种腐蚀主要由于缝隙处的氧气耗尽或蓄积了腐蚀介质而引起的。
4.应力腐蚀开裂应力腐蚀开裂是不锈钢在特定介质中受到应力作用而引起的开裂现象。
该腐蚀类型通常发生在高应力或高应变的工况下,会造成材料的开裂甚至断裂。
5.粒界腐蚀粒界腐蚀也称为晶间腐蚀,是指不锈钢晶粒边界处发生的腐蚀。
这种腐蚀通常发生在铸造或焊接等工艺中,晶界处的合金元素溶解得更多,使得晶界处失去了原本的耐腐蚀性。
6.穿孔腐蚀穿孔腐蚀是一种局部腐蚀现象,通常发生在不锈钢的嵌件、焊接部位等处,引起金属表面出现直径很小的小孔。
7.受控腐蚀受控腐蚀是指在特定条件下,通过特定管理措施来控制腐蚀过程。
通过防腐涂层、防腐处理等方法,可以有效减缓或阻止不锈钢的腐蚀过程。
以上是几种常见的不锈钢腐蚀类型,每种腐蚀类型都有各自的定义和产生原因。
了解和分析腐蚀类型对于制定腐蚀控制和防护措施至关重要,以延长不锈钢材料的使用寿命。
不锈钢生锈腐蚀断裂的原因
不锈钢生锈腐蚀断裂的原因
不锈钢生锈、腐蚀和断裂的原因可能有以下几个方面:
1. 化学腐蚀:不锈钢主要是由铁、铬、镍等合金元素组成,其中铬的含量较高。
铬会与氧气结合形成一层致密的氧化铬膜,起到防止钢材进一步腐蚀的作用。
然而,当遭受一些强酸、强碱等化学物质的侵蚀时,氧化铬膜可能会被破坏,导致不锈钢发生腐蚀。
2. 空气中存在的污染物:不锈钢在潮湿的环境中,易受到空气中的氧气、水分和含有硫、氯等污染物的侵蚀。
尤其是在工业污染较为严重的地区,不锈钢的腐蚀速度可能更快。
3. 电化学腐蚀:如果不锈钢表面存在微小的缺陷,例如划痕、裂纹等,这些缺陷可能导致不锈钢在电化学条件下发生腐蚀。
例如,在存在电解质溶液中,不锈钢可能会发生电化学腐蚀。
4. 力学因素:不锈钢的断裂可能与力学因素有关,如应力过大、外力冲击等。
当不锈钢受到超过其承载能力的应力时,可能会发生断裂。
为了避免不锈钢的生锈、腐蚀和断裂问题,我们可以采取以下措施:
1. 注意环境:尽量避免将不锈钢暴露在潮湿、有酸碱性或含有污染物的环境中。
2. 定期清洁:定期清洁不锈钢表面,确保其表面干净,并使用适当的清洁剂。
3. 防护涂层:在一些特殊环境下,可以考虑给不锈钢表面添加一层防护涂层,增加其抗腐蚀性能。
4. 注意使用条件:在使用不锈钢制品时,要注意避免过大的应力和外力冲击,以防止不锈钢发生断裂。
总之,不锈钢的生锈、腐蚀和断裂问题是一个综合因素的结果,需要注意环境因素、化学因素、力学因素等,以保证不锈钢的使用寿命和安全性。
不锈钢的腐蚀
PRE值
点腐蚀
应力腐蚀破裂SCC
定义:指金属材料在固定拉应力和特定 介质的共同作用下所引起的破裂.
特征:1.纯金属SCC敏感性小于合金. 2.硬度高容易产生SCC. 3.拉应力才能产生SCC. 4.有主裂纹,有分支裂纹,主裂纹
垂直于拉应力方向. 5.断裂形式:沿晶、穿晶、混合
形 6.温度高,SCC发生几率高. 60℃以下几乎不发生SCC 7.腐蚀环境有选择性:304 Cl离
电位
Ⅰ
Ⅱ
Ⅲ Ⅳ 时间
18-8钢在沸腾的42%
MgCl2溶液中的电位-时间 曲线
应力腐蚀破裂SCC
SCC机理目前,没有定论 1.几种观点 A.电化学腐蚀为主的观点 B.吸附理论 C.氢脆理论 D.断裂力学理论 2.机理电化学腐蚀为主的观点 1材料表面总会存在电化学的不均匀性钝化膜不连续、缺陷等 2表面缺陷是形成裂纹源的活性点,表面的划伤、小孔、缝隙就是现成的
子溶液, 氯脆,NaOH、H2S在高温高浓 度下也 能导致SCC,碳钢 碱脆,黄铜氨 脆.
应力腐蚀破裂SCC
SCC历程:
第Ⅰ阶段:表面产生钝化膜. 孕育期
第Ⅱ阶段:试样在应力作用下 产生滑移,使表面保护膜破裂. 裂纹成核期、形成裂纹源
第Ⅲ阶段:钝化,膜破裂交互 进行.裂纹形成期
第Ⅳ阶段:裂纹超出断裂的临 界尺寸断裂.失稳、扩展
缝隙腐蚀
机理1Cr13 1.开始时,只有微小的阴极电流从缝内流出,但整个金
属表面包括缝隙内、外仍处于等电位状态,即仍处 于钝态. 2.经一段时间,缝内、外氧浓差增加,缝内金属的电位 变负,使缝内阳极溶解速度增加,结果引起Fe离子、 Cr离子的浓度增加,Cl离子往缝内迁移. 3.氯化物水解,缝内pH值下降,电池的腐蚀电流亦不 断增加. 4.缝内金属致钝电位由于pH值下降而上升时,腐蚀进 入发展阶段.大阴极-小阳极形成,产生严重腐蚀.
不锈钢的腐蚀汇总()
第三部分不锈钢的腐蚀一、概述1、不锈钢的定义不锈钢是一系列在空气,水,盐的水溶液,酸以及其它腐蚀介质中具有高度化学稳定性的钢种。
在空气中耐腐蚀的钢称为“不锈钢”,在各种腐蚀性较强的介质中耐腐蚀的钢种称为“耐酸钢”。
通常,我们把不锈钢与耐酸钢统称为不锈耐酸钢,或简称为不锈钢。
根据习惯用法,不锈钢一词常包括耐酸钢在内。
现有的不锈钢从化学成分来看,都是高铬钢。
由于在大气中,当钢中的铬含量超过大约12%时,就基本上不会生锈。
钢的这种不锈性一般认为与钢在氧化性介质中的钝化现象有关。
2、不锈钢的分类不锈钢分类主要有以下几种方式:1)按化学成分分有----铬钢(及铬钼钢),铬镍钢,铬锰钢(或铬锰氮钢),铬锰镍钢等。
2)按显微组织分有----奥氏体钢,铁素体钢,马氏体钢,奥氏体+铁素体双相钢,铁素体+马氏体双相钢奥氏体钢等3)按用途分有----耐海水不锈钢,耐点蚀不锈钢(统一在某一钢种上),耐应力腐蚀破裂不锈钢,耐浓硝酸腐蚀不锈钢,耐硫酸腐蚀不锈钢,深冲用不锈钢,高强度不锈钢,易切削不锈钢,耐热不锈钢等。
二、不锈钢的点蚀1、点蚀现象和识别点蚀是在不锈钢表面上局部形成的具有一定深度的小孔或锈斑。
由于点蚀常常被锈层,腐蚀产物等覆盖,因而难以发现。
在金相显微镜下观察点蚀,其断面有多种形貌。
点蚀一般系在特定腐蚀介质中,特别是在含有Clˉ(包括Brˉ,Iˉ)离子的介质中产生。
使不锈钢产生点蚀的常见介质有:大气,水介质及水蒸气,海水,漂白液,各种有机和无机氯化物等。
点蚀可在室温下出现并随腐蚀介质温度升高而更易产生并更趋严重。
点蚀不仅可导致设备,管线等穿孔而破坏,而且常常诱发晶间腐蚀,应力腐蚀和疲劳腐蚀。
虽然,不锈钢的点蚀事故仅占化工,石油等系统腐蚀破坏的~20%,但在大气中使用的不锈钢,却有近80%是由于点蚀和锈斑而损坏。
见图1(a)、(b)。
2、机理一般认为,不锈钢的点蚀是在金属表面非金属夹杂物,析出相,晶界,位错露头等缺陷处,由于钝化膜较脆弱,在特定腐蚀介质作用下,钝化膜修复能力差而造二氧化碳引起的点蚀(a)Cr13不锈钢的局部腐蚀(b)图1成的破坏。
不锈钢腐蚀手册
不锈钢腐蚀手册导言:不锈钢是一种具有良好耐蚀性的金属材料,其主要成分为铁、铬、镍等元素。
不锈钢因其抗腐蚀性能优秀、外观美观等特点而广泛应用于工业、建筑、医疗、家居等领域。
然而,尽管不锈钢能抵御大部分腐蚀和氧化,但它仍然可能遭受到某些环境因素或操作方式的影响。
一、不锈钢的腐蚀原因:1.介质中的异物:如空气中的含有酸、碱等化学物质、含有盐、各种有机溶液等。
2.腐蚀电流(电化学腐蚀):由于铁的电化学性质,不锈钢在介质中处于腐蚀环境中时,会发生电流作用。
3.不锈钢表面敷覆物:部分不锈钢表面被敷覆了一层保护膜,这层膜如果被破坏,会导致腐蚀。
二、不锈钢的腐蚀类型:1.点蚀(点腐蚀):不锈钢表面出现局部性的腐蚀点,呈圆形或卵圆形。
2.缝隙腐蚀:发生在不锈钢的缝隙和沟槽处,由于流体在这些区域停滞流动,并积累了能引起腐蚀的化学物质。
3.应力腐蚀开裂:发生在应力施加于不锈钢时,由于化学物质的作用引起的裂纹。
4.粒腐蚀(晶间腐蚀):发生在晶界处的腐蚀。
三、预防不锈钢腐蚀的方法:1.使用正确的材料:根据环境和介质的特性选择合适的不锈钢材料,避免不锈钢遭受与其耐蚀性不匹配的条件。
2.避免穿孔:避免在不锈钢材料上出现钻孔、打孔等破坏表面保护膜的现象。
3.防水泥污染:不锈钢材料与水泥接触时容易发生腐蚀,因此要注意保护或避免不锈钢与水泥接触。
4.控制温度和湿度:在不锈钢使用环境中,控制温度和湿度,避免因高温、高湿度环境引起腐蚀。
5.定期清洁和保养:保持不锈钢材料的清洁,并定期进行保养和检查,及时处理表面的潜在问题。
6.防止碰撞和物理损伤:不锈钢遭受碰撞和物理损伤时,表面保护膜容易被破坏,容易发生腐蚀。
7.防止异物积累:避免异物积累在不锈钢表面,及时清理并保持干燥。
8.善用化学物品:利用化学物品来保护和维持不锈钢材料的良好状态,如使用防腐剂、抗氧化剂等。
结语:不锈钢腐蚀是一种复杂的过程,受到多种因素的影响。
要避免不锈钢腐蚀,需要综合考虑环境、介质和操作等因素,并采取相应的预防措施。
(最新整理)不锈钢的腐蚀
(完整)不锈钢的腐蚀编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)不锈钢的腐蚀)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)不锈钢的腐蚀的全部内容。
不锈钢的腐蚀一、不锈钢的腐蚀发生原因不锈钢的不锈特性是由于钢板表面特殊的钝化保护膜,首先简单介绍一下不锈钢的耐蚀机理,即钝化膜理论。
所谓钝化膜就是在不锈钢表面有一层以Cr(铬)与氧结合的Cr2O3 (三氧化二铬)为主的薄膜它是在金属表面形成厚度约100万分之数mm的不动态皮膜。
由于这个薄膜的存在使不锈钢基体在各种介质中腐蚀受阻,这种现象称为钝化。
这种钝化膜的形成有两种情况,一种是不锈钢本身就有自钝化的能力,这种自钝化能力随铬含量的提高而加快.另一种较广泛的形成条件是不锈钢在各种水溶液(电解质)中,在被腐蚀的过程中形成钝化膜而使腐蚀受阻。
不锈钢对比炭钢或铝耐蚀性突出优秀。
但不是象金或者铂金那样绝对不生锈的金属。
但受到其他什么原因不动态皮膜受到破坏不能再生的话不锈钢也会生锈,就是腐蚀。
一般不锈钢的腐蚀类型分为两类:均匀腐蚀、局部腐蚀,随着不锈钢在人们生活中的普及,派生出了新的腐蚀类型—-“锈蚀".有防止浮动体皮膜再生作用的物质有氯离子(Cl)(铅分,漂白剂,聚氯烧毁时的煤烟,盐酸),硫磺氧化剂(汽车,工厂等的燃烧排气Gas,温泉蒸汽,火山烟,火山灰)等.煤烟,粉尘等附着到不锈表面,可促进氯离子等的附着力或防碍对于表面的氧化供应.还有铁粉等的异种金属附着到表面,可使金属本身变成锈,也使不锈钢自身也生锈。
二、腐蚀原因物质及作用三、腐蚀的种类及对策Microbialogically Influenced CorrosionPittingIntergranular Corrosion Galvanic Corrosion Stress Corrosion Cracking Stress Fatigue CrackingHydrogen Embrittlement Cracking Wet CorrosionCrevice Corrosion缝隙腐蚀孔蚀(Pitting Corrosion)1、均匀腐蚀均匀腐蚀是指裸露在腐蚀环境的金属表面全部发生电化学或化学反应,均匀受到腐蚀。
不锈钢的腐蚀与耐腐蚀的基本原理
不锈钢的腐蚀与耐腐蚀的基本原理不锈钢是一种具有良好耐腐蚀性能且外观美观的合金材料,它通过添加耐蚀元素来提高钢材的抗腐蚀能力。
下面将详细介绍不锈钢的腐蚀特性以及其耐腐蚀的基本原理。
1.不锈钢的腐蚀特性不锈钢可以避免由于氧化而引起的生锈现象,这主要是因为其中含有不易被氧化的铬元素,通过与氧气形成的铬氧化物膜来保护钢材。
这种膜可以防止进一步的氧化反应,从而起到抗腐蚀的作用。
此外,不锈钢还具有一定的耐化学腐蚀性能,可以在酸、碱、盐环境中保持较好的稳定性。
2.不锈钢的耐腐蚀机理2.1.铬氧化物膜不锈钢中含有至少10.5%的铬元素,当与氧气接触时,钢表面的铬会与氧气反应生成一层致密的、不透水的铬氧化物膜。
这种氧化膜具有良好的附着性和致密性,能够阻止氧、水和其他腐蚀介质的渗透,有效保护钢材不被腐蚀。
2.2.自修复能力不锈钢材料在受到轻微划伤或局部氧化的情况下,铬元素会与氧气反应生成氧化铬,这种氧化铬可以自愈合刮伤表面的膜,形成新的保护层,从而有效抵御腐蚀性介质的进一步侵蚀。
2.3.钝化作用不锈钢在一定条件下可以形成一层均匀、孔隙度较低的钝化膜,这种膜可以降低钢材的电化学反应速率,从而有效抵御酸、碱等腐蚀性物质的侵蚀。
3.不锈钢的抗腐蚀影响因素3.1.合金成分不锈钢的抗腐蚀性能与其合金成分有密切关系,其中含有较高比例的铬元素和一定含量的镍、钼等元素可以明显提高不锈钢的抗腐蚀能力。
3.2.环境因素不锈钢的耐腐蚀性能会受到环境因素的影响,例如温度、氧气浓度、湿度等。
一般来说,低温和低氧环境有利于不锈钢的耐腐蚀性能,而高温、高氧环境会减弱不锈钢的抗腐蚀能力。
3.3.表面处理不锈钢的表面处理可以进一步提高其耐腐蚀性能。
常见的表面处理包括机械抛光、电化学抛光、电镀、喷涂等,这些方法可以去除不锈钢表面的杂质,增加表面光洁度,减少局部腐蚀的可能性。
综上所述,不锈钢的腐蚀与耐腐蚀的基本原理是通过合金中的铬元素与氧气形成的氧化铬膜来保护钢材不受腐蚀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三部分不锈钢的腐蚀一、概述1、不锈钢的定义不锈钢是一系列在空气,水,盐的水溶液,酸以及其它腐蚀介质中具有高度化学稳定性的钢种。
在空气中耐腐蚀的钢称为“不锈钢”,在各种腐蚀性较强的介质中耐腐蚀的钢种称为“耐酸钢”。
通常,我们把不锈钢与耐酸钢统称为不锈耐酸钢,或简称为不锈钢。
根据习惯用法,不锈钢一词常包括耐酸钢在内。
现有的不锈钢从化学成分来看,都是高铬钢。
由于在大气中,当钢中的铬含量超过大约12%时,就基本上不会生锈。
钢的这种不锈性一般认为与钢在氧化性介质中的钝化现象有关。
2、不锈钢的分类不锈钢分类主要有以下几种方式:1)按化学成分分有----铬钢(及铬钼钢),铬镍钢,铬锰钢(或铬锰氮钢),铬锰镍钢等。
2)按显微组织分有----奥氏体钢,铁素体钢,马氏体钢,奥氏体+铁素体双相钢,铁素体+马氏体双相钢奥氏体钢等3)按用途分有----耐海水不锈钢,耐点蚀不锈钢(统一在某一钢种上),耐应力腐蚀破裂不锈钢,耐浓硝酸腐蚀不锈钢,耐硫酸腐蚀不锈钢,深冲用不锈钢,高强度不锈钢,易切削不锈钢,耐热不锈钢等。
二、不锈钢的点蚀1、点蚀现象和识别点蚀是在不锈钢表面上局部形成的具有一定深度的小孔或锈斑。
由于点蚀常常被锈层,腐蚀产物等覆盖,因而难以发现。
在金相显微镜下观察点蚀,其断面有多种形貌。
点蚀一般系在特定腐蚀介质中,特别是在含有Clˉ(包括Brˉ,Iˉ)离子的介质中产生。
使不锈钢产生点蚀的常见介质有:大气,水介质及水蒸气,海水,漂白液,各种有机和无机氯化物等。
点蚀可在室温下出现并随腐蚀介质温度升高而更易产生并更趋严重。
点蚀不仅可导致设备,管线等穿孔而破坏,而且常常诱发晶间腐蚀,应力腐蚀和疲劳腐蚀。
虽然,不锈钢的点蚀事故仅占化工,石油等系统腐蚀破坏的~20%,但在大气中使用的不锈钢,却有近80%是由于点蚀和锈斑而损坏。
见图1(a)、(b)。
2、机理一般认为,不锈钢的点蚀是在金属表面非金属夹杂物,析出相,晶界,位错露头等缺陷处,由于钝化膜较脆弱,在特定腐蚀介质作用下,钝化膜修复能力差而造二氧化碳引起的点蚀(a)Cr13不锈钢的局部腐蚀(b)图1成的破坏。
点蚀的出现包括成核和扩展二个阶段。
现以钢的表面上存在硫化锰夹杂为例简述如下:点蚀的成核:在溶液中有Clˉ存在时,金属表面有硫化锰夹杂的部位,由于难以钝化,再钝化而产生优先溶解并形成小孔坑。
硫化物溶解产生H+(或H2S),对不锈钢的新鲜表面产生活化作用,防止小孔坑的再钝化而形成孔蚀源。
点蚀的扩展:孔蚀源形成后,溶解下来的金属离子会产生水解而生成H+并使局部溶液的pH值下降,进而又加速金属的溶解,使孔坑进一步扩大,加深。
随着蚀孔加深并由于腐蚀产物覆盖了蚀坑口,从而使蚀孔内物质迁移困难,导致蚀孔内pH值的进一步降低。
同时,Clˉ在蚀孔内富集,使蚀孔进一步加速扩大并加深,最后形成点蚀。
研究表明,在特定介质中,只要不锈钢的腐蚀电位超过点蚀电位,就能产生点蚀。
3、材料选择提高不锈钢的纯度并降低不锈钢的不均匀性,选择钝化和再钝化能力强的材料是防止不锈钢点蚀的有力措施。
提高不锈钢的纯度,可通过炉外精炼手段,降低钢中的气体和非金属夹杂物的含量。
研究表明,钢中的氧化物,特别是Al2O3;钢中的硫化物,特别是MnS;钢中氮化物,特别是TiN,由于它们本身的物理,化学性质,在介质作用下,常常作为敏感位置而诱发点蚀。
研究还表明,对于常用的18-8型Cr-Ni钢和18-12-2型Cr-Ni-Mo钢,在降低钢中S量的同时降低Mn量也有利于耐点蚀性能的提高。
降低不锈钢的不均匀性,特别是要防止M23C6等碳化物和金属间相的析出。
因为它们周围Cr,Mo 等耐点蚀元素的贫化,使它们极易成为点蚀的敏感位置。
由于Cr,Mo,N等元素对提高不锈钢的耐点蚀性非常有效,为了提高不锈钢的钝化和再钝化能力,就要选用高Cr,Mo含量的奥氏体,奥氏体+铁素体双相钢和铁素体不锈钢;选用高Cr,Mo且含N的奥氏体和奥氏体+铁素体双相不锈钢。
如果把常用的不锈钢按其耐点蚀能力由小到大排列起来,大致可以得到下列顺序:奥氏体不锈钢:奥氏体+铁素体双相不锈钢:注:顺表中箭头方向耐点蚀能力提高二、缝隙腐蚀1、现象和识别不锈钢表面上若存在金属和非金属夹杂物,例如金属微粒,砂粒,灰尘,脏物,海生物,或者由于结构上的原因,例如铆接,螺栓联接,垫片(圈),管与管板胀接,与非金属接触等,均可形成缝隙。
在腐蚀介质作用下,缝隙内出现腐蚀,就是缝隙腐蚀。
缝隙腐蚀一般根据缝隙形状不同而具有一定的外形。
轻微时,可以是缝隙内的一般(全面)腐蚀,严重时,多为成片的点蚀状或溃疡状。
研究表明,几乎所有的腐蚀介质均可引起不锈钢的缝隙腐蚀,而没有特定介质的选择。
但是在含Clˉ环境中的缝隙腐蚀则最为常见;缝隙腐蚀对缝隙尺寸有一定的要求,既要使缝隙内,外溶液之间的物质迁移发生困难,还要能允许溶液进入缝隙内,不锈钢产生缝隙腐蚀的缝隙宽度一般在0.025~0.1mm范围内。
2、机理:缝隙腐蚀可分为孔蚀型缝隙腐蚀和活化型缝隙腐蚀二种。
前者是以孔蚀为起源的缝隙腐蚀,主要是由于缝隙内钝化膜的氧化性破坏而引起的;后者的形成机理简述如下:由于缝隙的存在,缝隙内溶液组成物质迁移产生困难。
例如,腐蚀溶液中能使不锈钢钝化的氧进入缝隙,只能通过扩散,因而过程缓慢。
为了维持不锈钢钝态,缝隙内氧迅速耗掉而又的不到及时补充,致使不锈钢表面钝化膜开始还原性溶解。
这种溶解的结果使腐蚀产物金属盐逐渐浓缩,通过水解,缝隙内溶液的pH值急剧下降。
当pH值降低到不锈钢在溶液中的去钝化pH值*时,缝隙内不锈钢表面的钝化膜便产生还原性破坏而形成缝隙腐蚀。
3、材料选择不锈钢的缝隙腐蚀主要是因为缝隙内的溶液酸化,缺氧而引起表面钝化膜破坏。
因而,提高不锈钢钝化膜的稳定性和钝化,再钝化能力同样是提高不锈钢耐缝隙腐蚀能力的重要措施。
因此,选用耐点蚀材料的一些措施同样适用于耐缝隙腐蚀材料的选择。
三、腐蚀疲劳现象和识别在介质与交变应力共同作用下所引起的不锈钢的破坏称为腐蚀疲劳。
由于不锈钢多在腐蚀环境中使用,因此在交变应力作用下,所产生的不锈钢的破坏多为腐蚀疲劳。
与一般机械疲劳相比,不锈钢的腐蚀疲劳表面上常见明显的腐蚀和点蚀。
腐蚀疲劳既可以是仅有一条裂纹,也可以有多条裂纹并存,这与不锈钢的腐蚀疲劳既可以在一点又可以在多处生核并扩展有关。
不锈钢腐蚀疲劳裂纹宏观常见切向何正向扩展并多呈锯齿状和台阶状;微观上裂纹一般没有分支且裂纹尖端较钝。
除腐蚀和裂纹外,不锈钢腐蚀疲劳最重要的特点是断口上有一般机械疲劳的各种特征。
例如,宏观断口较平整,呈瓷状或贝壳状,有疲劳弧线,疲劳台阶,疲劳源等;微观断口则有疲劳条纹等。
不锈钢在任何腐蚀介质中均可产生腐蚀疲劳,而没有介质的选择。
为了验证是否是腐蚀疲劳,还可根据提高钢的强度和耐蚀性或排除腐蚀介质的作用后,是否仍出现破坏来断定。
如果由于钢强度提高,不锈钢疲劳断裂消失或寿命延长,则可断定原断裂为机械疲劳;如果提高了钢的耐蚀性或排除了腐蚀介质的作用后,不锈钢疲劳断裂消失或寿命延长,则可断定原断裂为腐蚀疲劳。
根据断口特征可以准确的把应力腐蚀与腐蚀疲劳区别开来。
2、机理目前,不锈钢腐蚀疲劳的机理主要有以下几种模型。
(1)点蚀应力集中模型:认为不锈钢点蚀坑底部的应力集中是引起裂纹成核的主要原因;(2)形变金属优先溶解模型:认为形变金属为阳极,未变形金属为阴极,从而导致形变部分的优先溶解;(3)表面膜破裂模型:认为在交变应力作用下,金属滑移带穿透表面膜,形成无保护膜的台阶,从而使其处于活化态而溶解,引起裂纹成核。
滑移-溶解反复作用而形成腐蚀疲劳;(4)吸附模型:认为腐蚀介质中的活化物质吸附到金属表面上,使表面能降低,改变了材料的力学性能,从而使不锈钢表面滑移带的产生和裂纹的扩展更易进行。
3、材料选择选择耐蚀性更好的不锈钢和具有复相结构的双相不锈钢,是解决不锈钢腐蚀疲劳的主要措施。
由于不锈钢的腐蚀疲劳多以点蚀为起源,因此,为了防止腐蚀疲劳可选择耐点蚀好的各种不锈钢。
例如,含Cr,Mo较高的马氏体不锈钢,Cr-Ni奥氏体不锈钢和铁素体不锈钢等。
由于一些双相不锈钢不仅Cr,Mo较高,且多含有N,因此耐点蚀性能好,同时,由于其组织具有复相结构,不仅显着提高钢的腐蚀疲劳强度,而且疲劳裂纹的扩展也较单相组织结构困难,所以,选用双相不锈钢是解决不锈钢腐蚀疲劳破坏的重要途径。
四、刀状腐蚀1、现象和识别:在含Ti,Nb的Cr-Ni奥氏体不锈钢焊缝与母材之交界处的很窄区域内产生严重腐蚀,而母材和焊缝本身则腐蚀轻微,甚至未见腐蚀,金相显微镜下观察可见敏化态晶间腐蚀的特徽。
研究表明,含Ti的Cr-Ni不锈钢,无论是在氧化性介质,还是在还原性介质中,均可产生刀状腐蚀。
2、机理:冶炼厂在生产含Ti(Nb)的Cr-Ni奥氏体不锈钢时(例如1Cr18Ni9Ti,0Cr18Ni9Ti,0Cr18Ni11Ti,0Cr18Ni11Nb等),经冶炼,浇注,锻,轧等成材后,出厂前一般经过920~1150°C加热,随后急冷的固溶处理。
此时钢中的Ti(或Nb)大都应以TiC(NbC)的形式存在。
但经焊接后,与焊缝相邻的高温(>=1150°C)狭窄区域内TiC(NbC)就会分解,钢中碳便会溶于奥氏体基体中。
在随后的冷却过程中,当此高温区通过450~850°C,即敏化温度范围时,又会有大量富铬的M23C6(Cr23C6)沿晶界析出,从而导致晶界铬的贫化,在介质作用下便会出现刀状腐蚀。
因此,刀状腐蚀系含Ti(Nb)的Cr-Ni奥氏体不锈钢在焊缝熔合线上出现的一种晶间腐蚀,是钢中TiC(NbC)分解,Ti和C溶解,随后富铬的M23C6析出,形成贫铬区的结果。
本质上与敏化态晶间腐蚀没有区别。
3、材料选择从根本上讲,刀状腐蚀仍然是因含Ti(Nb)的Cr-Ni奥氏体不锈钢中常常含有比较高的C量而引起的。
因此,在选择材料时首先考虑选用低碳(0.04~0.06%)和超低碳(<=0.03%)Cr-Ni奥氏体不锈钢以代替含Ti(Nb)的不锈钢;当必须选用含Ti(Nb)的Cr-Ni 奥氏体不锈钢时,也须将钢中的碳量控制在允许的范围内并尽量低。
五、晶间腐蚀不锈钢的晶间腐蚀是沿不锈钢晶粒间界产生的一种优先破坏.它曾经是人们20世纪30~50年代最为关注,最为常见的腐蚀破坏形式。
虽然不锈钢敏化态晶间腐蚀的事故已大大减少,但非敏化态晶间腐蚀的研究和解决尚需人们继续努力。
(一)铬镍奥氏体不锈钢的敏化态晶间腐蚀1、现象和识别敏化态晶间腐蚀出现在焊接构件的焊缝热影响区或构件经过450~850°C加热的部件,在介质作用下导致这些部位的泄漏或破损;产生敏化态晶间腐蚀的设备,部件等,其尺寸,外形几乎没有变化且无任何塑性变形;除受腐蚀的区域外,其它部位没有任何腐蚀的迹象,仍具有明显的金属光泽;局部取样检查,受腐蚀部位的强度,塑性已严重丧失,冷弯时不仅出现裂纹,严重时常常出现脆断和晶粒脱落且落地无金属声。