北京大学数学分析讲义

合集下载

北京大学2008数学分析试题及解答

北京大学2008数学分析试题及解答

9.
∫设1函数
f (x)
在区间
[0,
1∫]
上有一阶连续导函数,
1

f (0)
=
f (1),
g(x)
是周期为
1
的连续函数,
并且满足
g(x) dx = 0. 记 an = f (x)g(nx) dx, 证明 lim nan = 0.
0
0
n→∞
10. 若 f (x∑ )n在∫区b间i [0, 1] 上 Riemann∫可1积, 并且对 [0, 1] 中任意有限个两两不相交的闭区间 [ai, bi], 1 ⩽ i ⩽ n,
∃ξ ∈ (ξ2, ξ1), 使得 f ′′(ξ) > 0. 因此若 f ′′(x) 在 R 上不变号, 则 f ′′(x) > 0, ∀x ∈ R.
若 ∃y0 ∈ R, 使得 f ′(y0) > 1, 则 f (x) > f ′(y0)(x − y0)f (y0), 这将与 lim (f (x) − x) = 0 矛盾. 从而 x→+∞
9.
∫1
∫1
∫ nx
n f (x)g(nx) dx = f (x) dx g(t) dt
0
(0
∫ nx 0
) 1 ∫ 1 (∫ nx
)
= f (x) g(t) dt −
g(t) dt f ′(x) dx
∫ 1 (∫0 nx
)0
0
0
=−
g(t) dt f ′(x) dx.
∫x 令 G(x) = g(t) dt, 则
∫ 1 (∫ nx
)
lim nan = lim −
n→∞
n→∞
0

数学与应用数学专业(师范类)

数学与应用数学专业(师范类)

数学与应用数学专业(师范类)培养方案学科门类: 理学专业代码: 070101一、培养目标本专业培养适应社会主义现代化建设需要、德智体全面发展、掌握数学科学的基本理论、基础知识与基本方法, 能够运用数学知识和使用计算机解决若干实际数学问题, 具备在科技、经济部门从事研究以及在高等和中等学校进行数学教学的教师、教学研究人员及其他教育工作者。

二、培养要求本专业学生主要学习数学和应用数学的基本理论和方法, 受到严格的数学思维训练, 掌握计算机的基本原理和运用手段, 并通过教育理论课程和教学实践环节, 形成良好的教师素养, 培养从事数学教学的基本能力和数学教育研究、数学科学研究、数学实际应用等基本能力。

毕业生应获得以下几方面的知识和能力:1.具有扎实的数学基础, 初步掌握数学科学的基本思想方法, 其中包括数学建模、数学计算、解决实际问题等基本能力。

2.有良好的使用计算机的能力, 能够进行简单的程序编写, 掌握数学软件和计算机多媒体技术, 能够对教学软件进行简单的二次开发。

3.具备良好的教师职业素养和从事数学教学的基本能力。

熟悉教育法规, 掌握并初步运用教育学、心理学基本理论以及数学教学理论。

4.了解近代数学的发展概貌及其在社会发展中的作用, 了解数学科学的若干最新发展, 数学教学领域的一些最新研究成果和教学方法, 了解相近专业的一般原理和知识;学习文理渗透的课程, 获得广泛的人文和科学修养。

5.较强的语言表达能力和班级管理能力。

6.掌握资料查询、文献检索及运用现代信息技术获得相关信息的基本方法, 并有一定的科研能力。

7.具有一定的体育基本知识, 掌握科学锻炼身体的基本技能, 达到国家规定的大学生体育锻炼合格标准, 具有健康的体魄。

8.具有良好的心理素质,具有坚强的意志力,具有很好的心理自我调节能力。

9.能够比较熟练地掌握一门外语,初步具有听、说、读、写、译的能力。

三、学制和学分1.学制: 四年。

2.学分:166。

北京大学2019年数学分析试题及解答

北京大学2019年数学分析试题及解答
n→+∞
=
l, lim xn n→+∞
=
L,

{xn}
中有无穷项小于等于
l+c 2
,
有无穷项
大于
c.
从而
|xn+1 − xn|
有无穷多项大于等于
c−l 2
,
矛盾.
类似地,
存在
n2
> n1
使得
xn1 +c 2
< xn2
⩽ c.

此类推可取一个子列
{xnk }
,|xnk

c|

c−l 2k
,
此时
{xnk }
nπ 4
+
sin
nπ 4
)np
,
∑ +∞
sin
nπ 4
np
在 p > 1 时绝对收敛, 在 0 < p ⩽ 1 时条件收敛.
n=1
sin2
nπ 4
(np
+
sin
nπ 4
)np

sin2
nπ 4
n2p
=
1
− cos n2p
nπ 2
,
(n

+∞),
∑ +∞
sin2
nπ 4
因此 n=1
(np +sin
nπ 4
∫ +∞
这与
f ′(x) dx 有意义的 Cauchy 收敛原理矛盾.
1
注 裴礼文的《数学分析中的典型问题与方法》第二版第 249 页例 3.3.11 与本题几乎完全相同, 那里有另外一
种证明方法. 我写的这个解法是源于一个很经典的题目, 可以见《数学分析习题课讲义》上册第 396 页命题

数学专业参考材料书汇总整编推荐

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。

也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。

当大四考研复习再看时会感觉轻松许多。

数学系的数学分析讲三个学期共计15学分270学时。

将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。

记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。

4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路以上几点请在学其他课程时参考。

数学分析书:初学从中选一本教材,一本参考书就基本够了。

我强烈推荐11,推荐1,2,7,8。

另外建议看一下当不了教材的16,20。

中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。

我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。

网络上可以找到课后习题的参考答案,不过建议自己做。

不少经济类工科类学校也用这一本书。

里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。

不过仍然不失为一本好书。

能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。

北京大学基础数学-701数学基础考试1(数学分析)串讲讲义-资料-真题-大纲-考研淘宝.doc

北京大学基础数学-701数学基础考试1(数学分析)串讲讲义-资料-真题-大纲-考研淘宝.doc

北京大学基础数学专业-701数学基础考试 1 (数学分析)串讲讲义-资料-真题-大纲-考研淘宝报考北京大学基础数学专业考研专业课资料的重要性根据考研淘宝的统计,87. 3%以上报考北京大学基础数学专业考研成功的考生,尤其是那些跨学校的考研人,他们大多祁在第一时间获取了北京大7基础数汐专业考研专业课指定的教材和非指定的北京大学基础数学专业内部权威复习资料,精准确定专业课考核范围和考点重点,才确保了白己的专业课高分,进而才才最后考研成功的。

如果咱们仔细的研究下问题的木质,不难发现因为非统考专业课的真题均是市北京大学基础数学专业自主命题和阅卷,对于跨校考研同学而言,初试和复试命题的重点、考点、范用、趋势、规律和阅卷的方式等关键信息都是很难获取的。

所以第一时间获取了北京大学基础数学专业考研专业课指定的教材和非指定的北京大学基础数学专业内部权威复习资料的考生,就占-得了专业课复习的先机。

专业课得高分便不难理解。

那么怎么样才能顺利的考入北京大学基础数学专业呢?为了有把握的的取得专业课的高分,确保考研专业课真正意义上的成功,考研专业课复习的首要工作便是全面搜集北京大学基础数学专业的内部权威专业课资料和考研信息,建议大家做到以下两点:1、快速消除跨学校考研的信息方面的劣势。

这要求大家杳询好考研的招生信息,给大家推荐一个考研淘宝,有详细的考研招生信息。

2、确定最合适的考研专业课复习资料,明确专业课的复习方法策略,并且制定详细的复习计划,并且将复习计划较好的贯彻执行。

北京大学701数学基础考试1 (数学分析)冲刺点题串讲班讲义:北京大学基础数学学专业考研冲刺阶段唯一内部冲刺辅导讲义,把2012年考研的考点范围进行了圈定,并且重点讲解,能够涵盖所有的考试重点考点范围。

北京大学基础数学专业权威导师亲白授课并制作讲义,根据考研淘宝和北京人学基础数学专业老师签订的合作协议,可以命屮至少80% 以上的考点。

根据往年命题经验和2012年考研命题考点信息讲授重点范围,规范答题步骤, 重点预测大题,题型解法讲解到位,属于考前重点范用圈定的内部辅导资料。

数学系本科生课程设置与简介

数学系本科生课程设置与简介

数学系本科生课程设置与简介01101011 数学分析(1) mathematical analysis课程性质:专业基础课课内学时:112 学分:7简介:“数学分析”是数学专业最重要的一门专业课。

第一学期主要内容是分析基础。

第一章函数、第二章极限、第三章连续函数、第四章实数的连续性、第五章导数与微分、第六章微分基本定理及其应用、第七章不定积分、第八章定积分。

先修课要求:无教材及参考书:《数学分析讲义》刘玉琏傅沛仁编高等教育出版社适用专业:数学与应用数学开课学期:秋01101021 数学分析(2) mathematical analysis课程性质:专业基础课课内学时:144 学分:8简介:本学期将在此基础上继续学习级数和多元函数微分学。

级数是数学分析的重要组成部分,它分为数值级数和函数级数。

数值级数是函数级数的特殊情况,也是函数级数的基础;函数级数是表示非初等函数的一个重要的数学工具,它在自然科学、工程技术和数学本身都有广泛的应用。

多元函数微分学是一元函数微分学的推广,隐函数、反常积分与含参变量的积分、重积分和曲线积分与曲面积分。

并且对某些概念和定理作了进一步的发展。

先修课要求:数学分析(1)教材及参考书:《数学分析讲义》刘玉琏傅沛仁编高等教育出版社适用专业:数学与应用数学开课学期:春01101031 数学分析(3) mathematical analysis课程性质:专业基础课课内学时:40 学分:2简介:本学期将在此基础上继续学习级数和多元函数积分学。

多元函数积分学是一元函数积分学的推广,隐函数、反常积分与含参变量的积分、重积分和曲线积分与曲面积分。

并且对某些概念和定理作了进一步的发展。

先修课要求:数学分析(1) 、数学分析(2)教材及参考书:《数学分析讲义》刘玉琏傅沛仁编高等教育出版社适用专业:数学与应用数学开课学期:秋01101041 数学分析选讲 Selected Topics of Analysis课程性质:专业选修课课内学时:48 学分:2简介:数学分析教材自身科学规律概述、数学分析的思想方法与表达方式浅析、数学分析解题方法概述、关于数学分析中何种类型习题宜于用反证法证明的问题、形式逻辑与辩证逻辑方面易出现的错误及其分析、函数、数列极限、函数极限、函数的连续性、导数、中值定理与导数的应用、实数的基本定理、不定积分、定积分、数项级数、函数列与函数项级数、含参量正常积分、黎曼积分概念与性质,重积分的计算、曲线积分、曲面积分、各类积分间的联系、非正常积分、含参量非正常积分。

数学书籍推荐—数学分析篇

数学书籍推荐—数学分析篇

引言早就有一种想法:把一些非常好的数学书籍尽量全面地推荐给广大数学爱好者和吧友们。

这是由于以下 原因:一是在我们高等数学吧不断有吧友发贴询问推荐一些(高等)数学方面比较好的书籍,可能其中有部 分是初学者,因而急需一些有经验的学长推荐些好书,以便不走弯路。

二来恰好笔者也有类似经历,初接触 高等数学方面的书籍时,也不知有啥好坏或者稂莠之别,后来在一些这些书的内容中了解到、在网上一些学长的贴子中看到很多“经典”和比较“好”的教材、参考书、课外书籍等,于是在广泛查阅、拜读之后,把 我所看过的和所知道的一些很好的书目记录下来,提供朋友们参考。

希望能给大家有所帮助。

实际上所谓的“好书”和经典书,并不限于数学方面,其他学科方面的有,相信大家也看过不少,这里只说数学方面的。

以下结合本人经验和一些学长的见解,共写有二十一个专题,每个专题都有该学科的简介或者是小结;相应的介绍书籍则是按【教材】、【习题集】、【辅导书】、【提高】四个方面来写,而且每本书后有简评供参考。

最后附录介绍几个常用数学软件。

============注:1)打引号或书名号的课程名词被认为是指书籍或课程名,否则是指这一数学学科类(领域)。

2)以下推荐的书籍一般不标注版本,因为随时有新版出版的可能,并且不一定新版就比旧版的好一些,有时还不如旧版的。

最好多结合几个版本来看(有三个以上版本的不要看第一版,结合看最新版和倒数几个旧版),这样能学到更多。

这是笔者的经验。

如果书后标有版本号的,一般是指比较好的版本。

3)关于出版社的问题,这个不必要过多追究,因为大部分书不会用一个以上的出版社出版,况且不同出版社出版同一本书,只是版式和符号的样式不同而已,内容不会有别。

4)书比较多,不可能每本(或者选取大多数自己喜欢的)都买,除非你非常有钱,或者是个数学书籍收藏家。

要知道,大学及其以上的教材、教参等都很贵,动辄每本二三十以上,四五十的也不少。

因此,“少而精”地买到正版的就行,其余的可以到大学图书馆借阅(大部分我都是借阅的,我可买不起^-^)。

数学分析考研复习讲义5实数的完备性

数学分析考研复习讲义5实数的完备性


实数基本定理
1 基本定理
定理 1(Dedekind 确界定理)任何非空数集 E ,若它有上界,则必有上确界;若有下界, 则必有下确界. 定理 2(单调有界定理)单调有界数列必收敛. 当 m, n > N 定理 3 (Cauchy 收敛准则) 数列 {x n } 收敛的充要条件是:∀ε > 0 ,∃N > 0 , 时,有 x m − x n < ε . 定理 4(Bolzano-Weierstrass 致密性定理)有界数列必有收敛子列. 定理 5(Weierstrass 聚点定理)有界无穷点集至少有一个聚点. 定理 6(Cantor 区间套定理)任何闭区间套必有唯一的公共点. 定理 7(Heine-Borel 有限覆盖定理)闭区间上的任一开覆盖,必存在有限子覆盖. 说明: 定理 1~6 属于同一类型, 它们都指出: 在一定条件下, 便有某一种 “点” 的存在. 这 种点分别是:确界(点) 、极限点、某子列收敛点、聚点、公共点.定理 7 属于另一类型,它 是前六个定理的逆否形式,不论用前 6 个定理来分别证明定理 7,还是用定理 7 分别证明前 6 个定理,都可用反证法来证明,而前 6 个定理都可以直接推出.
有且仅有一个成立; (2)传递性:若 x < y , y < z ,则 x < z ; (3)与“+”相容性:若 x < y ,则 ∀z ∈ R ,有 x + z < y + z ; (4)与“· ”相容性:若 x < y , z > 0 ,则 x ⋅ z < y ⋅ z . 公理 3(阿基米德(Archimedes)公理) ∀x > 0 , y > 0 , ∃n ∈ N ,使得 nx ≥ y . 公理 4(完备性公理)有上界非空数集必有上确界. 由此可定义: 定义 3 实数空间是这样的集合 R ,在其上定义了“+” 、 “· ”运算,以及序关系“<” ,满 足上述四组公理, R 中的元素称为实数.

北京大学数学科学学院【数学分析 I】课程习题集(参考 谢惠民 数学分析习题课讲义)

北京大学数学科学学院【数学分析 I】课程习题集(参考 谢惠民 数学分析习题课讲义)

或任意 n ≥ N 有 则仍有矛盾. 从而 c = 1.
1 ∈ (c − ϵ, c + ϵ) .
an
解. 取 M > 1 使得
[
]
1
a1, a2 ∈
,M M
.
则归纳易知任意
n

an

[
1 M
,
M ],
从而
α = lim sup an, β = lim inf an
n→∞
n→∞
均为正数, 且 α ≥ β. 又从两个方向分别导出不等式, 可得出 αβ = 1. 取 {ank }∞ k=1 收敛于 α, 易证
4
证明. 只须证 α < c < β 的情形. 找 p1 < q1 < p2 < q2 < · · · 使得
xpl > c > xqm (l = 1, 2, . . . ; m = 1, 2, . . .). 又存在 pj ≤ rj < qj (j = 1, 2, . . .) 使得
此时
xrj ≥ c ≥ xrj+1.
lim
k→∞
ank −1
=
lim
k→∞
ank −2
=
β.
而 2
ank−3 = ank−1 − ank−2 (nk > 3).
左式关于 k 的上极限不大于 α, 但右式关于 k 的极限为 2α − β > α, 矛盾.
问题 4 (08 上期中). 设 {an}∞ n=1 为单调递增的正整数列. 证明: 数列
cn = max(bn+1, bn) (n = 1, 2, . . .).
则 {cn}∞ n=1 不增且有下界, 故其下确界 c 为其极限值 (显然 c ≥ 1), 从而任 意 ϵ > 0, 存在 N 使得任意 n ≥ N 有

高等教育出版社样书目录(数学类)

高等教育出版社样书目录(数学类)

同济大学 10.1 2001 年 2 版
重温微积分
齐民生 39.6 2004 年 1 版
第 2 版 微积分(上)
同济大学 24.9 2003 年 2 版
第 2 版 微积分(下)
同济大学 23.1 2003 年 2 版
微积分学习辅导与习题选解
同济大学 28.4 2004 年 1 版
第 2 版 微积分学简明教程(上)
余家荣 17.9
出版时间 2001 年 3 版 2001 年 3 版 2004 年 1 版 2003 年 1 版 2003 年 1 版 2003 年 4 版 2003 年 4 版 2003 年 2 版 2003 年 2 版 2004 年 1 版 2004 年 2 版 2004 年 2 版 2003 年 1 版 2004 年 1 版 2004 年 1 版 2003 年 3 版 1999 年 4 版 2002 年 2 版 2003 年 2 版 2004 年 1 版 2000 年 1 版 2000 年 1 版 2004 年 1 版 2004 年 2 版 2004 年 2 版 2003 年 2 版 2004 年 1 版 2003 年 3 版
高等教育出版社样书目录(数学类)
版别
教材名 称
编著者 单价 出版时间
第4版 第3版
概率论与数理统计教程 概率论与数理统计教程学习辅导与习题 选解
概率论与数理统计
沈恒范 沈恒范 盛骤
20.6 2003 年 4 版 17.6 2003 年 1 版 19.3 2001 年 3 版
概率论与数理统计习题全解指南
第 2 版 数学史概论
李文林 21.0 2002 年 2 版
大学文科高等数学(第一册)
姚孟臣 11.9 1997 年 1 版

《数学分析方法选讲》讲义

《数学分析方法选讲》讲义

[ 求极限 lim
π 2
n→∞
π sin π sin 2n sin π n + + ··· + . (北京大学, 1999) 1 1 n+1 n+ 2 n+ n
]
答案提示: = 思考 1.4
2 n 1 + ··· + 2 ; = 2 2 n→∞ (n + n + 1 n +n+2 n +) n+n 2 1 1 1 (2) 求极限 lim √ −√ − ··· − √ ; = −1 2 2 2 n→∞ n −1 n −2 n −n (1) 求极限 lim +
第II页
数 学 分 析 方 法 选 讲 (李 松 华 )
湖南理工学院
第一章 极 限
第一章 极 限
§1.1 数列极限
一、内容提要
1. 与数列极限有关的定义(共8个)
n→∞ n→∞ n→∞ n→∞ n→∞ n→∞ n→∞ n→∞
lim xn = a ⇔ ∀ε > 0,∃N ∈ N,∀n > N ,有|xn − a| < ε成立. lim xn ̸= a ⇔ ∃ε0 > 0,∀N ∈ N,∃n0 > N ,有|xn0 − a| ≥ ε0 成立. lim xn = ∞ ⇔ ∀K > 0,∃N ∈ N,∀n > N ,有|xn | > K 成立. lim xn = +∞ ⇔ ∀K > 0,∃N ∈ N,∀n > N ,有xn > K 成立. lim xn = −∞ ⇔ ∀K > 0,∃N ∈ N,∀n > N ,有xn < −K 成立. lim xn ̸= ∞ ⇔ ∃K0 > 0,∀N ∈ N,∃n0 > N ,有|xn0 | ≤ K0 成立. lim xn ̸= +∞ ⇔ ∃K0 > 0,∀N ∈ N,∃n0 > N ,有xn0 ≤ K0 成立. lim xn ̸= −∞ ⇔ ∃K0 > 0,∀N ∈ N,∃n0 > N ,有xn0 ≥ −K0 成立.

北京大学2010年数学分析试题及解答

北京大学2010年数学分析试题及解答

|Pn(x) − Pm(x)| < ε.
因为 I 为无穷区间, 因此当 n > m ⩾ Nε 时, |Pn(x) − Pm(x)| 为常数. 设
|PNε (x) − Pn(x)| = cn, n > N,
于是 {cn} 为有界数列, 必有收敛子列 {cnk }∞ k=1, 设
结合 |PNε (x) − Pnk (x)| = cnk , 令 k → ∞ 得

∫1
3 + |t − t0| η0
∫1
0
xt0+θ(t−t0)(ln x)2
η0
xa(ln x)2 · f (x) dx
· f (x) dx
η0
θ ∈ (0, 1)
因此存在正数 δ <
ε
{∫ 1 , 其中 M = max
3M
η0
xa(ln x)2 · f (x)
} dx, 1 . 当 |t − t0| < δ 时, 就有
ε
{∫ A0 , 其中 M = max
3M
0
xb(ln x)2 · f (x)
} dx, 1 . 当 |t − t0| < δ 时, 就有
|J2(t) − J2(t0)| < ε.
这说明 J2(t) 在 [a, b] 上连续, 由 [a, b] 的任意性知 J2(t) 在 (−1, 1) 上连续. 因此 J(t) = J1(t) + J2(t) 在 (−1, 1) 上连续.
ε <,
∀t ∈ [a, b].
A
3
于是 ∀t, t0 ∈ [a, b]
∫ +∞
∫ +∞
|J2(t) − J2(t0)| =

2015北京大学考研专业课历年考研真题与参考答案

2015北京大学考研专业课历年考研真题与参考答案

温馨提示:点击蓝色字体访问原文||【Ctrl+H】搜索所需科目◇资料构成本专业课考试科目的全套资料主要包括:1.历年真题本全套资料提供大学1996—2001、2005—2010年数学分析考研真题,供参考。

·大学2010年数学分析考研真题·大学2009年数学分析考研真题·大学2008年数学分析考研真题·大学2007年数学分析考研真题·大学2006年数学分析考研真题·大学2005年数学分析考研真题(含答案)·大学1996—2001年数学分析考研真题注:考研真题或答案如有补充,会第一时间予以上传,并在详情中予以标注,请学员留意。

2.指定教材配套资料大学702数学基础近年不指定参考书目,但根据往年指定教材情况,建议参考书目为:①《数学分析新讲》(筑生,大学);②《数学分析》(一、二、三册)(方企勤等,大学)。

·教材:方企勤《数学分析(第一册)》(PDF版)·教材:方企勤《数学分析(第三册)》(PDF版)·《数学分析习题集》(林源渠方企勤等著)·教材:筑生《数学分析新讲》(第一、二、三册)(PDF版)3.大学老师授课讲义(含指定教材高校老师授课讲义)本全套资料提供大学老师的授课资源,及建议参考书目的相关课件。

具体包括:·大学彭立中老师《数学分析》教学资源汇总(含电子教案、例题习题等,仅提供免费浏览)·《数学分析》教学课件(上册)4.兄弟院校考研真题详解本全套资料提供的兄弟院校历年考研真题(含详解)部分,提供其他同等高校历年考研真题详解,以便学员复习备考。

所列的高校考研真题非常具有参考性!这部分容包括:·大学数学分析与高等代数考研真题:2011 2010 2009 2008 2006 2005 2004 2003·华东师大学数学分析与高等代数考研真题:2005 2004·华东师大学数学分析考研真题:2010 2009 2008(含答案) 2007(含答案) 2006 2005(含答案) 2004 2003(含答案) 2002 2001(含答案) 2000(含答案) 1999 1998 1997·华东师大学高等代数考研真题:2008(含答案) 2007 2006 2005 2004 2003 2002 2001 2000 ·师大学数学分析与高等代数考研真题:2007 2006·师大学数学分析与高等代数考研真题:2011 2006 2005 20045.其他相关精品资料·数学分析同步辅导及习题全解(华东师大第三版)(上、下册)(PDF版,586页)附注:全套资料尤其是真题会不断更新完善,待更新完善后会及时上传并予以说明标注,学员可下载学习!温馨提示:点击蓝色字体访问原文||【Ctrl+H】搜索所需科目◇资料构成说明:大学664行政学原理中664是2013年的学科代码,2012年之前的几年学科代码为659。

北京大学601数学基础考试1 (数学分析)考研参考书、历年真题、复试分数线

北京大学601数学基础考试1 (数学分析)考研参考书、历年真题、复试分数线

北京大学601数学基础考试1(数学分析)考研参考书、历年真题、复试分数线一、课程介绍又称高级微积分,分析学中最古老、最基本的分支。

一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。

它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。

这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。

微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。

后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。

二、北京大学601数学基础考试1(数学分析)考研复试分数线根据教育部有关制订分数线的要求,我校按照统考生、联考生等不同类型分别确定复试基本分数线。

考生能否进入复试以各院系所规定的各项单科成绩和总成绩确定的复试名单为准。

我校将按照德、智、体全面衡量,择优录取,保证质量,宁缺毋滥的精神和公开、公正、公平的原则进行复试与录取工作。

《数学分析选讲》考研很有用的参考资料(共15章)第9章

《数学分析选讲》考研很有用的参考资料(共15章)第9章

第六章 级数理论§1 数项级数I 基本概念一 数项级数及其敛散性定义1 给定一个数列{,对它的各项依次用“+”号连结起来的表达式}n u ""++++n u u u 21 (1)称为数项级数或无穷级数,简称级数,记为,其中称为数项(1)的通项. ∑∞=1n nun u 数项级数(1)的前项之和,记为,称之为(1)的前项部分和,简称为部分和.n ∑==nk kn uS 1n 定义2 若级数(1)的部分和数列{}n S 收敛于(即S S S n n =∞→lim ),则称级数(1)收敛,并称为(1)的和,记为.若S ∑∞==1n nuS {}n S 是发散数列,则称级数(1)发散.二 收敛级数的基本性质1 收敛级数的柯西收敛准则级数(1)收敛的充要条件是:0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<++++++p n n n u u u "21.2 级数收敛的必要条件:若级数∑收敛,则∞=1n na0lim =∞→n n a .3 去掉、增加或改变级数的有限项并不改变级数的敛散性.4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数亦如此),即收敛级数满足结合律.5 若级数适当加括号后发散,则原级数发散.6 在级数中,若不改变级数中各项的位置,只把符号相同的项加括号组成一新级数,则两级数具有相同的敛散性.7 线性运算性质若级数与都收敛,是常数,则收敛,且∑∞=1n nu∑∞=1n nvd c ,(∑∞=+1n n ndv cu)()∑∑∑∞=∞=∞=±=±111n n n n n n nv d u c dv cu.三 正项级数收敛性判别法1 正项级数收敛的充要条件是部分和数列∑∞=1n nu{}n S 有界.2 比较判别法 设与是两个正项级数,若存在正整数,当时,都有,则∑∞=1n nu∑∞=1n nvN N n >n n v u ≤(1)若收敛,则∑收敛;∑∞=1n nv∞=1n nu(2)若发散,则∑发散.∑∞=1n nu∞=1n nv3 比较原则的极限形式 设和是两个正项级数,且∑∞=1n n u ∑∞=1n n v l v u nnn =∞→lim,则(1)当+∞<<l 0时,和∑具有相同的敛散性;∑∞=1n nu∞=1n nv(2)当时,若∑收敛,则收敛;0=l ∞=1n nv∑∞=1n nu(3)当时,若发散,则发散.+∞=l ∑∞=1n nv∑∞=1n nu4 设∑和是两个正项级数,且∞=1n n a ∑∞=1n n b 0>∃N ,N n >∀,有nn n n b b a a 11++≤,则 (1)若收敛,则∑收敛;∑∞=1n nb∞=1n na(2)若发散,则发散.∑∞=1n na∑∞=1n nb5 比式判别法(达朗贝尔判别法) 设是正项级数,若及常数,有∑∞=1n nu00>∃N 0>q(1)当时,0N n >11<≤+q a a n n ,则级数收敛;∑∞=1n n u (2)当时,0N n >11≥+n n a a ,则发散.∑∞=1n n u 6 比式判别法极限形式 设为正项级数,且∑∞=1n n u q u u nn n =+∞→1lim,则(1)当时,收敛;1<q ∑∞=1n nu(2)当若时,∑发散;1>q +∞=q ∞=1n nu(3)当时失效.1=q 当比式极限不存在时,我们有 设为正项级数.∑∞=1n nu(1)若1lim1<=+∞→q u u n n n ,则级数收敛;(2)若1lim1>=+∞→q u u nn n ,则级数发散.7 根式判别法(柯西判别法) 设为正项级数,且存在某正整数及正常数l ,∑∞=1n nu0N (1)若对一切,成立不等式0N n >1<≤l u nn ,则级数收敛;∑∞=1n n u (2)若对一切,成立不等式0N n >1≥n n u ,则级数∑发散.∞=1n nu8 根式判别法极限形式 设为正项级数,且∑∞=1n nul u n n n =∞→lim ,则(1)当时级数收敛; 1<l (2)当时级数发散. 1>l 9 柯西积分判别法设为[上非负递减函数,那么正项级数与反常积分同时收f )∞+,1()∑∞=1n n f ()∫∞+1dx x f敛或同时发散.10 拉贝判别法 设为正项级数,且存在某正整数及常数∑∞=1n nu0N r ,(1)若对一切,成立不等式0N n >111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n ,则级数∑收敛;∞=1n n u (2)若对一切,成立不等式0N n >111≤⎟⎟⎠⎞⎜⎜⎝⎛−+n n u u n ,则级数发散.∑∞=1n n u 注 拉贝判别法中(1)111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n 可转化为nru u n n −≤+11,1>r 收敛; (2)r u u n n n ≤⎟⎟⎠⎞⎜⎜⎝⎛−+11可转化为nru u n n −≥+11,1≤r 发散. 11 拉贝判别法极限形式若r u u n n n n =⎟⎟⎠⎞⎜⎜⎝⎛−+∞→11lim ,则有 (1)当1>r 时,收敛;∑∞=1n nu(2)当1<r 时,发散.∑∞=1n nu四 一般项级数1 莱布尼兹判别法 若交错级数,,满足下列两个条件:()∑∞=−−111n n n u 0>n u (1)数列{单减; }n u (2),0lim =∞→n n u 则收敛.∑∞=1n nu注 若交错级数满足莱布尼兹判别法,则其余项满足()∑∞=−−111n n n u ()x R n ()1+≤n n u x R .2 绝对收敛级数及其性质 定义 对于级数,若∑∞=1n nu∑∞=1n nu收敛,则称绝对收敛;若收敛,而∑∞=1n nu∑∞=1n nu∑∞=1n nu发散,则称是条件收敛的.∑∞=1n nu显然,若绝对收敛,则一定收敛,反之不真.∑∞=1n nu∑∞=1n nu绝对收敛级数的性质: (1)重排性:若∑绝对收敛,其和为,则任意重排后所得级数亦绝对收敛,且有相同的和数.∞=1n nuS 此说明:绝对收敛级数满足交换律.对于条件收敛级数适当重排后,可得到发散级数,或收敛于任何事先指定的数(Riemann ).(2)级数的乘积 若和都绝对收敛,其和分别为∑∞=1n nu∑∞=1n nvA 和B ,则其乘积按任意方式排列所得的级数也绝对收敛,且其和为∑∞=1n n u ∑∞=⋅1n nvAB (柯西定理).乘积的排列方式通常有两种:正方形和对角线法.3 一般级数收敛判别法一般级数除应用前面正项级数方法判定其绝对收敛以外,莱布尼兹判别法和下面的狄利克雷判别法和阿贝尔判别法则是判定其可能条件收敛的主要方法.(1)狄利克雷判别法 若数列{单减收敛于零,的部分和数列有界,则级数收敛.}n a ∑∞=1n nbnn n ba ∑∞=1注 莱布尼兹判别法是狄利克雷判别法的特例,Abel 判别法亦可由狄利克雷判别法推证.(2)阿贝尔判别法:若数列{单调有界,∑收敛,则级数收敛.}n a ∞=1n nbnn n ba ∑∞=1五、常用于比较判别法的已知级数(1)几何级数∑,∞=1n nq1<q 收敛,1≥q 发散;(2)级数−p ∑∞=11n p n ,时收敛,1>p 1≤p 发散; (3)()∑∞=2ln 1n pn n ,时收敛,1>p 1≤p 发散.II 例题选解一 级数敛散性判别例1 讨论下列级数的敛散性. (1)∑∞=+111n nx,; 0>x (2)∑∞=1sinn nx,. R x ∈解(1)10<<x ,,0→n x 0111≠→+nx,发散; 1=x 时,02111≠→+nx,发散; 1>x 时,nn x x ⎟⎠⎞⎜⎝⎛<+111,∑∞=11n n x 收敛,故∑∞=+111n nx 收敛. (2)当时收敛,当时,发散. 0=x 0≠x 例2 已知∑收敛.∞=12n na(1)判定()∑∞=+−1211n n n n a 的敛散性;(2)证明:∑∞=2ln n n nn a 收敛.(武汉大学)解(1)()222221112111n a n a n a n nn+≤⎟⎠⎞⎜⎝⎛++≤+⋅−,与∑∞=12n n a ∑∞=121n n 均收敛,从而原级数收敛(绝对收敛).(2)仿(1),由五(3)知其收敛. 例3 判断下列级数的敛散性. (1)∑∞=+−1)]11ln(1[n n n ;(东北师大)(2)∑++++−)]!1!21!111([n e ";(东北师大) (3)∑∞=142sin3n n n ; (4)∑∞=⎟⎠⎞⎜⎝⎛−1cos 1n pn π,() 0>p (5)∑∞=1!n n n nn a ();e a a ≠>,0(6)()∑∞=−−+11312n n n ;(7)∑∞=−>−+111)0()2(n nna aa;(8)∑∫∞=+104411n n dxx ;(9)∑∞=⎟⎠⎞⎜⎝⎛−−−21111n n n n ; (10)()()∑∞=+2ln ln 1n n nn n ;(11)∑∞=3ln n pnn(); 0>p (12)()()∑∞=++11ln 11n pn n ();(0>p 1=p 为大连理工) (13)()∑∞=+++1!2!!2!1n n n "; (14)()∑∞=⎦⎤⎢⎣⎡−+111ln n p n n (); 0>p (15)()()∑∞=⋅−11!!2!!12n n n n ;(16)()∑∞=1ln ln 1n nn ; (17)∑∞=⎟⎠⎞⎜⎝⎛−2ln 1n nn n p (); 0>p(18)()()()∑∞=+++12111n nnx x x x "0≥x (); (19)()∑∞=+−⋅−+211ln1n pn n nn (); 0>p (20)()∑∞=⎟⎠⎞⎜⎝⎛++−110310021n nnn n ;(21)()()∑∞=−+−211n n n n ; (22)∑∞=1cos n pn nx(π<<x 0); (23)"+−−−+−−+−+2222222222; (24)()[]∑∞=−11n n n;(25)()()∑∞=2ln ln ln 1n qp n n n ;(大连理工1998) (26)∑∞=+−11n nn n;(中科院2002)(27)∑−nnnarctan )1((北京大学1999).解(1)由于)(1ln ln 1)1ln(1)]11ln(1[111∞→→++−=+−=+−=∑∑∑===n c n n n k n k k k S nk n k nk n ,其中c 为欧拉常数,所以级数收敛.(2)由于""++++=++++−<)!2(1)!1(1)!1!21!111(e 0n n n ))3)(2)(1(1)2)(1(111(!1"+++++++++=n n n n n n n 22)!1(2))3)(2(1)2)(1(111(!1nn n n n n n n <+=++++++++<", 由比较原则知其收敛.(3)24342sin 3→⎟⎠⎞⎜⎝⎛nnn⇒ 收敛;(4)21021~cos 12≤<⇒⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛−p n n pp ππ发散,21>p 收敛; (5)()()e a n n a n n a n n a nn n n n →⎟⎠⎞⎜⎝⎛+⋅=⋅++⋅++1!1!111e a <<⇒0收敛,发散; e a >(6)()131312<→−+n n n⇒收敛;或()()∑∑∑∞=−∞=∞=−−+=−+111113131232n n n n n n n n ,收敛;或()1131312−−≤−+n nn ,收敛;(此乃正项级数)(7)220222121211)ln 2((lim )21()(lim )21()2(lim a x a a na a n a a x x x nnn nnn =−=−=−+−+→−∞→−∞→⇒收敛; 注:利用的Maclaurin 展开式估计分子的阶. x a (8)204421110nxdxdxx a n n n =≤+=<∫∫⇒ 收敛; (9)()nn n nn n n n n n −=−−=−−−111111=n n −231⇒收敛; 或⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛+++=⎟⎠⎞⎜⎝⎛−=−−n o n n n n n n 11111111111⎟⎠⎞⎜⎝⎛+++=23231111n o n n n ⇒⎟⎠⎞⎜⎝⎛+=−−−=2323111111n o n n n n a n (∞→n )收敛;∑∞=⇒1n n a (10)()()()()nenn n n nn n nn nnnln ln 1ln 11ln ln ln ln +⋅=+=+,而()01ln ln →+⋅nn n ,从而上式极限为零,⇒收敛;(11)当10≤<p 时,nn n p 1ln ≥()发散; 3>n ⇒ 当时,1>p ()()21211ln 1ln −−+⋅=p p p nnn n n ,当充分大时, n ()1ln 21<−p n n ⇒ ()2111ln −+≤p p nn n ⇒收敛.或当时,1>p 0ln 1ln 1ln 121<−=⋅−⋅=′⎟⎠⎞⎜⎝⎛+−p p p pp x x p x xpx x x x x (),即单减.由柯西积分判别法知原级数收敛.3>x (12)()()()pn n n u 1ln 11++=单减,故可用柯西积分判别法,令()()()1ln 11++=x x x f p ,,易知当1≥x 1=p 时,发散,时亦发散,而时收敛.()∫∞+1dx x f 10<<p 1>p (13)()()()2121!2!!2!!2!1+≤⋅≤+++n n n n n n "()收敛; 3≥n ⇒(14)由泰勒公式(皮亚诺余项形式)得:()()()⎟⎠⎞⎜⎝⎛+⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+p p n p n p n n o n n n 221121111ln ()⎟⎠⎞⎜⎝⎛+⋅−−=p p p nn o n n 2211211,当绝对收敛,1>p 121≤<p 条件收敛,210≤<p 发散. 注 能否利用()()p np n n n 1~11ln −⎟⎟⎠⎞⎜⎜⎝⎛−+⇒()∑∞=⎟⎟⎠⎞⎜⎜⎝⎛−+111ln n p n n 收敛?(此法仅用于正项级数).(15)()()()()⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛+−=+⋅++=⋅−+⋅++=+1112211122121!!2!!1211!!22!!121n n n n n n nn n n n n a a n n()⎟⎠⎞⎜⎝⎛+++−=+++−=11123112112312n o n n n 由拉贝判别法知其收敛.(16)+∞→n ln ,则当较大时,,n 2ln e n >()()2ln 2ln 11ln 1n en n n =<⇒收敛; (17)根式判别法失效.先估计它的阶,⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=n n p n nn e n n p u ln 1ln ln 1,n npn n p ln ~ln 1ln −⎟⎠⎞⎜⎝⎛−(), ∞→n 从而可以估计,于是可讨论pn nu −~n p p nu n nu =的极限,为此()⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−+=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=∞→∞→∞→n n p n n p n n p n u n n np n n pn ln 1ln ln lim ln 1ln lim ln lim ⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛++−=−∞→n n p n p n n n 1ln 1ln 1ln 11lim1()[]x px x px xx ln ln 1ln 1lim0−+=→ ()0ln 1ln ln lim 220=++−=→xpx x x x x p x 故,,所以当时收敛,当1lim =∞→n pn u n p n n u −~1>p 1≤p 时发散.(18)当时级数显然收敛; 0=x 当时,,故收敛;10<<x n n x u <当时,1=x nn u ⎟⎠⎞⎜⎝⎛=21,收敛;当时,1>x ()()()112111111−−<+<+++=n n n nn x x x x x x u ",收敛.(19)()()())(12121~1112∞→⋅=++=−+n nn nn nn p p ppp, )(2~12~121ln 11ln∞→−+−⎟⎠⎞⎜⎝⎛+−+=+−n n n n n n , 所以,211121~p p n n a +−⋅−)(∞→n ,由此易得:时收敛,0>p 0≤p 时发散. 注 等价无穷小替换法仅适用于同号级数.(20)()132103100210310021<→++=⎟⎠⎞⎜⎝⎛++−n n n n n nn,绝对收敛. (21)()()()()()111111111−+−−=−−−−=−+−=n n n n n n u nnnnn n , ()()()0121112112221<−−−=−−−⋅=′⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−x x x x x x xx x () 1>x 由莱布尼兹判别法,()∑∞=−−211n nn n 收敛,而∑∞=−111n n 发散,故原级数发散. (22)当,发散,,绝对收敛,当0≤p 1>p 10≤<p 时,由狄利克雷判别法知其收敛.事实上,212sin 21sin cos 3cos 2cos cos −⎟⎠⎞⎜⎝⎛+=++++x xn nx x x x ",()π,0∈x ,有界.(23)法一:212sin24sin24cos22πππ====a ,322sin 24cos 1222ππ=⎟⎠⎞⎜⎝⎛−=−=a ,4332sin 22cos 224cos 122222πππ=−=⎟⎠⎞⎜⎝⎛+−=−−=a ,……12sin2+=n n a π,……于是原级数可表为∑∞=+=⎟⎠⎞⎜⎝⎛++++21322sin 22sin 2sin 2sin 2n n n ππππ"",收敛.法二:记21=A ,222+=A ,2223++=A ,……则,于是2→n A 121222lim 222lim 222lim lim 22111<=−+−=−+−=−+−=→→−−∞→+∞→x x x x A A a a x x n n n nn n ,收敛.(24)将级数中相邻且符号相同的项合并为一项,得一新级数()()∑∞=⎭⎬⎫⎩⎨⎧−++++−12221111111n nn n n " 注意到通项中共有项,其中前项之和和后12+n n 1+n 项之和分别夹在11+n 与n1之间, n n n n n n n n n n n n n 11111122222=<−+++<−+<+=" ()nn n n n n n n n n n n n n 11211211122222=++<++++<+<+=+" 因此()nn n n n 211111112222<−+++++<+" 由此得其单减,从而为收敛级数,而原级数的部分和总是夹在新级数某相邻的二部分和之间,所以原级数也收敛.(25)当时,则当时收敛,1=p 1>q 1≤q 时发散,此时级数的敛散性等同于无穷积分()∫∞+2ln ln ln qx x x dx的敛散性.由无穷积分立得 ()∫∞+2ln ln ln q x x x dx ()∫+∞→=A q A x x x dx2ln ln ln lim ()⎪⎪⎩⎪⎪⎨⎧<∞+>−=+∞==−+∞→+∞→1,1,ln ln 11lim 1,ln ln ln lim 212q q x q q x A qAA A 收敛, 当时发散,时收敛,事实上,1<p 1>p 当时,1<p ()()()()n n n n n n n n n q pqp ln 1ln ln ln ln 1ln ln ln ln 11>⋅=−(n 充分大) 当时,1>p ()()()()()()()2121211ln 1ln ln ln 1ln 1ln ln ln ln 1+−−+<⋅=p q p p q p n n n n n n n n n . (26)由 及发散知级数发散.∑−1n(27)由于{单调有界,}n arctan ∑−nn)1(收敛,由阿贝尔判别法知其收敛.思考题1 判别下列级数的敛散性: (1)∑∞=+−−++122)11(1n n n n n n ;(复旦大学1997) (2)∑∞=123ln n nn;(复旦大学1998) (3)∑∞=122sinn nn π;(复旦大学1999)(4)∑∞=−122sin)53(n n n n π;(复旦大学1999)(5))0()1()2ln(1>++∑∞=a n a n n n;武汉理工大学2004) (6)∑∞=−11sin 1(n n n α.(南京理工2004) 提示:(1)分子有理化,发散; (2)收敛;(3)仿上例(3),收敛;(4)当为偶数时,通项为0,去掉这些为0的项以后所得级数为交错级数,收敛,n从而原级数收敛(考察它们部分和数列之间的关系).(5)由级数收敛的必要条件知当1≤a 时发散;当由比式判别法知其收敛; 1>a (6)利用的Taylor 公式讨论. x sin 例4 讨论级数∑∞=11n pn的敛散性.分析:,柯西准则,发散;1=p 1>p ,柯西积分判别法,收敛; 1<p ,比较判别法,发散.例5 证明 (1)若级数收敛,则∑∞=12n n a ∑∞=1n nn a 收敛;(淮北煤师院2004) (2)若,则发散,而∑收敛;(南开大学2001)0lim ≠=a na n n∑∞=1n na∞=12n na(3)若是收敛的正项级数,则当∑∞=1n n a 21>p 时,级数∑∞=1n p n na 收敛(中科院2002). 分析:(1)⎟⎠⎞⎜⎝⎛+≤22121n a n a n n ; (2)01≠→=a na na n n ,发散,而∑收敛; ∑∞=1n n a ∞=12n na (3)同(1).或:由Cauchy 不等式211221111⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛≤∑∑∑===nk p nk k nk pk k a k a ; 知其部分和有界,从而收敛.例6(兰州大学2000)设是单调递减数列,试证明: 0>n u (1)若0lim ≠=∞→c u n n ,则∑∞=+−11)1(n nn u u 收敛; (2)若0lim =∞→n n u ,则∑∞=+−11)1(n nn u u 发散. 证(1)由单调有界定理知,再由极限的柯西收敛准则知:0>≥c u n 0,0>∃>∀N ε,当,有+∈∀>Z p N n ,εc u u p n n <−+,又单调递减,所以,当时,有n u +∈∀>Z p N n ,ε<−≤−++−+−+−+++++np n n p n p n n n n n u u u u u u u u u )1()1()1(1121",由级数的柯西收敛准则知其收敛.(2)由于1)1()1()1(1121−=−≥−++−+−+++−+++++pn n p n p n n p n p n n n n n u uu u u u u u u u u ",令得上式右端的极限为,由柯西准则知∞→p ∞+∑∞=+−11)1(n nn u u 发散. 例7(华东师大1997)设级数∑∞=1n nn a收敛.试就∑n a 为正项级数和一般项级数两种情形分别证明:级数n n an n+∑∞=1也收敛.证 当为正项级数时,∑na1lim=+∞→nn a n a n n n ,由比较判别法知n n an n+∑∞=1收敛.当∑∞=1n n n a 为一般项级数时,nn a n n a n n n n 1111+=+∑∑∞=∞=,由阿贝尔判别法知它是收敛的.思考题2(华东师大1998)已知为发散的一般项级数,试证明∑∞=1n n a ∑∞=+1)11(n n n a 也是发散级数.提示:用反证法.假设∑∞=+1)11(n n n a 收敛,则∑∑∞=∞=++=11)1)(11(n n n n n n n a a ,由阿贝尔判别法知收敛,矛盾.∑∞=1n na例8(北京工业大学2000)设和正项数列{}n a 单调减少,且级数发散.令n n na ∑∞=−1)1(nn a a a u ++⋅+=11111121",.,2,1"=n试问级数∑是否收敛,并说明理由.∞=1n nu证 级数收敛.这是因为:由级数发散和正项数列单调减少知,且由单调有界定理知,于是∑∞=1n nun n na ∑∞=−1)1({}n a 0lim >=∞→a a n n a a n ≥nn n n aa a a a u )11()1(111111121+=+≤++⋅+=", 由比较原则知收敛.∑∞=1n nu例9(北方交通大学1999)已知.,2,1,,01"=≤>+n a a a n n n 讨论级数"""++++na a a a a a 21211111 的敛散性.解 由单调性假设知存在极限0lim ≥=∞→a a n n ,则a a a a n n n =∞→"21lim ,由柯西根式判别法知,当时收敛,当时发散,当1>a 1<a 1=a 时,例10(中国矿大北研部)设,0>n a n n a a a S +++="21,级数.试证:∞=∑∞=1n na(1)∑∞=1n nnS a 发散;(武汉大学) (2)∑∞=12n nnS a 收敛.(东北师大) 证 (1),,于是0>n a ↑n S pn n p n pn n k kpn n k k k S S S a S a ++++=++=−=≥∑∑111. 而,故,从而当充分大时,∞=∑∞=1n n a +∞=++∞→p n p S lim p 21<+pn n S S , 211≥∑++=pn n k kk S a .由柯西收敛准则知其发散.(2)11211211122121111a S S S S a S S a a S a n nk k k n k k k k nk kk ≤−=⎟⎟⎠⎞⎜⎜⎝⎛−+=+≤∑∑∑=−=−=,部分和有界,故收敛.例11(华中科技大学) 若0lim 1=+∞→n n a ,()0lim 21=+++∞→n n n a a ,…,()0lim 21=++++++∞→p n n n n a a a ",…,试问是否一定收敛?为什么?∑∞=1n n a 解 不一定.如级数∑∞=11n n,有 )(01121110∞→→+<++++++<n n p p n n n "; 但∑∞=11n n 发散.例12(上海交大) 若 1lim 1sin 2=⎟⎟⎠⎞⎜⎜⎝⎛⋅∞→n nn n a n ,则级数是否收敛?试证之.∑∞=1n n a 解 由于11sin2→−nn n na (∞→n ),而()432sin 21sin2110−⋅−−≤=<−−nnn n n nn (n 充分大),由比较判别法知∑∞=−11sin2n nn n收敛,再由比较判别法知收敛.∑∞=1n na例13 设且单减,试证与同时敛散.0>n a ∑∞=1n na∑∞=122n nn a 证 因为对正项级数任意加括号不改变敛散性,因此由∑∞=1n na()()()""++++++++++=1587654321a a a a a a a a a∑∞==++++≤02232221222232n n n a a a a a "和∑∞=1n na()()()"""++++++++++=169854321a a a a a a a a∑∞=+=+++++≥02116842122121842n nn a a a a a a a "知两级数具有相同的敛散性.例14 若正项级数收敛,且(∑∞=1n nan n nb a n a e a e++=",2,1=n ).证明 (1)∑收敛;(华东师大)∞=1n nb(2)∑∞=1n nna b 收敛.(北京理工大学2003)证 解出得:n b ()0ln lim >−=∞→n a n n a eb n,而收敛,故当n 充分大时,∑∞=1n n a nnn a b b <,从而(2)收敛立得(1)收敛.由收敛的必要条件得)(0∞→→n a n .又因为()⎟⎟⎠⎞⎜⎜⎝⎛−++++=−n nn n n a a a a a a e n"!3!21ln ln 32()n n n a o a a =++"32!3121~, 即 0lim=∞→nn n a b ,由级数收敛得∑∞=1n n a ∑∞=1n nn a b收敛. 例15 研究级数∑∞=121n nx 的敛散性,这里是方程n x x x tan =的正根,并且按递增的顺序编号.解 解方程得:()⎟⎠⎞⎜⎝⎛+−+∈ππππn n x n 2,12,()22111−<n x n ,,收敛. 1>n 例16 设,,11=u 22=u 21−−+=n n n u u u ().问收敛吗?3≥n ∑∞=−11n nu解 由于03323233211211111<−=−=−=−+−−+−+++n n n n n n n n n n n u u u u u u u u u u u (); 3>n 所以 321111≤=+−−+n n n n u u u u (由的前若干项预测);由比式判别法知其收敛. n u 例17 设,证明级数 0>n a ()()()∑∞=+++121111n nna a a a " 收敛. 解 由于()()()()()()()()n n n a a a a a a a a a a a a a S +++++++++++++=<111111111021321321211""()()()()()()()"""++++++++−=+++++=321321212121111111111a a a a a a a a a a a a()()()()()()n n a a a a a a a ++++++++−=1111111121321"" ()()()1111121<+++−=n na a a a "即部分和有界,所以收敛.例18(上海师大)证明:级数:"+⎟⎠⎞⎜⎝⎛+++−⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛+−4131211713121151211311是收敛的.解 这是交错级数,且()()⎟⎠⎞⎜⎝⎛++++−+=⎟⎠⎞⎜⎝⎛+++−=n n n n n n a n 12111212121211121""111121112112111221121+=⎟⎠⎞⎜⎝⎛++++++>⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛−++=n a n n n n n n "", ()()0ln 1211211121→++−=⎟⎠⎞⎜⎝⎛+++−=n n n c n n n a ε". 由莱布尼兹判别法知收敛.∑∞=1n na例19(合肥工大2001)已知正项级数∑na 和∑nb 都发散,问下列级数收敛性如何?(1)∑; (2)),min(nnb a ∑),max(nnb a .解(1)可能收敛,也可能发散,例如,取,则1−==n b a n n ∑),min(nn b a 发散;若取,,则n n a )1(1−+=1)1(1+−+=n n b 0),min(≡n n b a ,∑),min(nn b a 收敛.(2)一定发散,这是因为. n n n a b a ≥),max(思考题3(复旦大学1997)证明:如果任意项级数∑nu和∑nv都收敛,且成立.1,≥≤≤n v w u n n n则收敛.∑nw提示:利用柯西收敛准则.思考题4(上海交大2004)设.,2,1,1,11212"+==∫+−n dx x x n x n nn n 证明收敛.∑∞=−−11)1(n nn x 提示:12212111−+=<<+=n n n x n x n x ,应用Leibniz 判别法即可.例20(华东师大2000)设收敛,∑∞=1n na0lim =∞→n n na .证明:.∑∑∞=∞=+=−111)(n n n n na a an 证 记级数的前n 项和为,则∑∞=−−11)(n n na an n S 12113221)()(2)(++−+++=−++−+−=n n n n n na a a a a a n a a a a S "",而0])1(1[lim lim 11=+⋅+=+∞→+∞→n n n n a n n nna ,所以∑∑∞=∞=+=−111)(n n n n na a an .思考题5(合肥工大2000)设数列{}n a 单调,且级数收敛于A .证明:级数收敛,并求其和.∑∞=1n na∑∞=+−11)(n n na an 思考题6(北京工业大学2001)设数列{}n na 收敛,00=a ,级数收敛,证明:级数收敛.∑∞=−−11)(n n na an ∑∞=1n na思考题7(安徽大学2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−+1212)(n n n a a证明:收敛.∑∞=1n na思考题8(华东师大2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−−1212)(n n n a a证明:收敛.∑∞=1n na例21(吉林大学)证明级数"+−++−++−+611119141715121311发散到正无穷.证 记.,2,1,141241341"=−−−+−=n n n n a n 则nnna n 1)331(3142−=−>,而∑n1发散到正无穷,所以,+∞=∞→n n S 3lim .又因为,故.n n n S S S 31323>>+++∞=∞→n n S lim 注(1)若要证明级数发散,则只需证明+∞=∞→n n S 3lim 即可.(2)在证明{收敛或发散时,有时通过求其子列的敛散性而使问题变得简单. }n S 思考题9(武汉大学1999)级数""+−−+++−+−nn 21)12(1514131211222 是否收敛?为什么?提示:考察. n S 2例22 证明:级数收敛的充分必要条件是:对于任意的正整数序列{和正整数数任意子序列{,都有∑∞=1n na}k p }k n .0)(lim 11=++++++∞→k k k k p n n n k a a a "证 必要性.设级数收敛,则由柯西收敛准则得:∑∞=1n na,0,0>∃>∀N ε当时,,都有N n >+∈∀Z p ε<++++++p n n n a a a "21,从而当时,,于是对于任意的正整数序列N k >N n k >{}k p ,有ε<++++++k k k k p n n n a a a "11,即 .0)(lim 11=++++++∞→k k k k p n n n k a a a "充分性.反证法.若发散,则,使得∑∞=1n na+∈∃>∃>∀>∃Z p N n N ,,0,00ε021ε≥++++++p n n n a a a ",特别地,分别取,,1,1111+∈∃>∃=Z p n N 使得 0211111ε≥++++++p n n n a a a ",{}+∈∃>∃>Z p N n n N 22212,,,2max ,使得 0212222ε≥++++++p n n n a a a ",如此下去,得一正整数子序列{和正整数序列}k n {}k p ,恒有011ε≥++++++k k k k p n n n a a a ",这与已知条件矛盾.二 绝对收敛与条件收敛例23 判别下列级数是条件收敛,还是绝对收敛: (1)()∑∞=+−−1111n np n n(南京师大2002,1=p 为武汉大学1995);(2)∑∞=−1sin)1(n nnx(内蒙古大学); (3))0()23()1(12>−+−∑∞=x n n n xn(复旦大学1997). 解(1)当时,不趋于0,发散; 0≤p n u 当时,原级数绝对收敛; 1>p 当时,10≤<p ()∑∞=−−1111n p n n收敛,nn 11单调有界,由阿贝尔判别发知其收敛,但 ()1111→−−+−p np n n n(∞→n );故原级数条件收敛.(2)当时绝对收敛,当0=x 0≠x 时,不妨设,则0>x 0>∃N ,当时,有N n >20π<<x ,且nxsin关于单减趋于0,由莱布尼兹判别法知其收敛. n 又因为)(1sin)1(∞→→−n nx n xn ,而∑∞=1n n x发散,故原级数条件收敛.(3)当时,数列0>x ⎭⎬⎫⎩⎨⎧−+x n n )23(12单减趋于0,由莱布尼兹判别法知其收敛.又因为 ,所以222423n n n n <−+<xx n x x nn n n 2221)23()1(41≤−+−<,从而,当21>x 时,绝对收敛,当21≤x 时,条件收敛. 思考题10(武汉大学2005)判别级数∑∞=2sin ln ln ln n n nn是否绝对收敛或条件收敛. 思考题11(南京大学2001)设1,0,1,111≥>>++=+n x k x x k x nnn .(1)证明:级数绝对收敛;∑∞=+−01)(n n n x x(2)求级数之和.∑∞=+−11)(n n n x x例24(北京大学1999,中国矿大1999,安徽大学2000,2001)设()x f 在的某邻域内有二阶连续导数,且0=x ()0lim 0=→x x f x .证明:级数∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛.证 由()0lim=→xx f x 得,()00=f ()00=′f ,()x f 在0=x 某邻域内的二阶泰勒展式为()()()()()22212100x x f x x f x f f x f θθ′′=′′+′+=,10<<θ 由连续知,,有()x f ′′0>∃M ()M x f ≤′′,从而有2121nM n f ⋅≤⎟⎠⎞⎜⎝⎛ 故∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛. 思考题12 证明:(1)(华南理工大学2005)设是偶函数,在)(x f 0=x 的某个领域中有连续的二阶导数, 则级数.2)0(,1)0(=′′=f f ∑∞=−1)11((n n f 绝对收敛.(2)(浙江大学2004)设函数在区间)(x f )1,1(−内具有直到三阶的连续导数,且,0)0(=f .0)(lim 0=′→x x f x 则∑∞=2)1(n n nf 绝对收敛.例25 设()单调,且级数0>n a ",2,1=n ∑∞=11n n a 收敛,讨论级数()∑∞=++−111n nn a a n"是条件收敛还是绝对收敛.解 由于且单调,故0>n a 01→na ↑⇒n a ()()()()⎪⎪⎩⎪⎪⎨⎧<++<++++⋅−=<+++⋅−++,2112121,22211221122212n n n n nn n n a a n n a a a n a na n a a a n "" 由已知条件,∑∞=12n na 收敛,故原级数绝对收敛. 例26 (哈尔滨工大2000)证明:若级数∑收敛,且级数绝对收敛,则级数收敛.∞=1n nb(∑∞=−−11n n na a)∑∞=1n nn ba 证 设n nb b b S +++="21,则1−−=n n n S S b ,于是由收敛知:,∑∞=1n nb0>∃M M S n ≤,.由收敛知:",2,1=n (∑∞=−−11n n n a a )0>∀ε,01>∃N ,1,N m n >∀,有ε<−++−+−−+−111m m n n n n a a a a a a ",又收敛,对上述{}n S 0>ε,,02>∃N 2N n >∀,,有2N m >ε<−m n S S ,取{}1,max 21+=N N N ,于是,当时,N m n >,m m n n n n b a b a b a +++++"11()()()1111−++−−++−+−=m m m n n n n n n S S a S S a S S a "[]()11121−−+++−+−+−++−+−≤n m n n m m m n n n n S S a a a M a a a a a a M "εM 3<.由柯西收敛准则知级数∑收敛.∞=1n nn ba 另证收敛⇒∑∞=1n nb0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<∑++=pn n k kb1.记,,则∑++==in n k ki bS 1p i ,,2,1"=ε<i S ,p i ,,2,1"=.由绝对收敛得其部分和有界,即,有(∑∞=−−11n n na a)0>∃MM a aS mn n nm ≤−=′∑=−11,",2,1=m .由阿贝尔定理得p n p p n p n p n n n n pn n k kk a S a a S a a S a a S ba ++−+−++++++=+−++−+−≤∑113222111"p n p a S M ++≤ε又M a a a a a a a p n p n p n +<−++−+=−+++01010",从而()012a M ba pn n k kk +≤∑++=ε.由柯西收敛准则知其收敛.例27(华东师大2001)证明:若级数绝对收敛,则级数也绝对收敛.∑∞=1n na∑∞=+++121)(n n na a a a"证 记,则由绝对收敛知收敛,所以{有界,即,有n n a a S ++="1∑∞=1n na∑∞=1n na}n S 0>∃M .,2,1,"=≤n M S n 于是有n n n a M a a a a ≤+++)(21",由绝对收敛知级数∑也绝对收敛.∑∞=1n na∞=+++121)(n n na a a a"思考题14(华中科技2004)设,求级数之和.)(),1(,010∞→→≥==∑=n b x n ax x n nk kn ∑−+)(1n n nx x a提示:1−−=n n n x x a .例28 证明:若对任意收敛于0的数列{}n x ,级数∑都收敛,则级数绝对收敛.∞=1n n nx a∑∞=1n n a 分析 问题等价于:若级数∑na发散,则至少存在一个收敛于0的数列{,使得级数发散,于是问题转化为:从}n x ∑n nx a∑+∞=n a 出发,构造出满足条件的数列{.联想例10中(1)的结论立明.}n x证 假设∑∞=1n n a 发散,记其前项和为,则n n S +∞=∞→n n S lim .取210=ε,,,由0>∀N N n >∃+∞=∞→n n S lim 得 210lim<=∞→mn m S S ,从而当充分大()时,有m n m >21<m n S S ,于是0221121ε=>−≥+++++=++m n m m m n n n n S S S S a S a S a ", 由柯西收敛准则知级数 ∑∞=1n n n S a 发散,取1,1≥=n S x nn ,则0lim =∞→n n x ,且发散,这与题目的条件矛盾,故命题成立.∑∞=1n n n x a 思考题15(中国人民大学2000)若正项级数发散,则存在收敛于0的正数序列,使得级数发散.∑∞=1n na{}n b ∑∞=1n n n b a 例29 研究级数∑∞=1sin n n n的收敛性.记其前n 项和为,将其分成两项 n S −++=nn n S S S , 其中分别表示前n 项和中所有正项之和与负项之和.证明:极限−+nnS S ,−+∞→nnn S S lim 存在,并求其值.证 由Dirichlet 判别法知其收敛.又因为∑∑∑∑∞=∞=∞=∞=−=≥111212cos 21121sin sin n n n n n n n n n n ,右端第一个级数发散,第二个级数收敛(利用Dirichlet 判别法),从而∑∞=1sin n n n非绝对收敛. 由于)(sin 2122)(1∞→−∞→−=−−+=∑=−+−+−n k k S S S S S S n k n n n n n n,所以,1)1(lim lim lim −=−=−+=−∞→−−−+∞→−+∞→nnn n n n n n n n n S S S S S S S S . 注 此例给出了条件收敛与绝对收敛的一个本质区别,且这个结论对一切条件收敛级数都成立.三 构造级数例30 试构造一级数,使它满足:∑∞=1n na(1)∑收敛; (2)∞=1n na ⎟⎠⎞⎜⎝⎛≠n o a n 1. 解 ∑∞=121n n ,∑∞=11n n 满足(2),将两者结合起来,构造级数如下: "+++++=∑∞=22221514131211n n a 即当n 是整数平方时,n a n 1=,否则21n a n =,显然⎟⎠⎞⎜⎝⎛≠n o a n 1,同时 +∞<≤+≤=∑∑∑∑=≤==nk n k nk nk k n k kk a S 12212112112故此级数收敛.例31 举出一个发散的交错级数,使其通项趋于零. 分析 交错级数""+−++−+−−n n a a a a a a 2124321 ()0>n a 部分和为,可见只要构造一个级数,使得,同时使和一个收敛,另一个发散即可.为此可构造级数如下:∑∑==−−=n k k nk k n a aS 121122∑∞=1n n a 0→n a ∑∞=−112k k a∑∞=12k ka()""+−−+−+−+−nn 21121514131211222. 例32(南开大学1999)已知级数收敛,问级数和是否必收敛?说明理由.∑∞=1n na∑∞=12n na∑∞=13n na解 未必收敛.如级数∑∞=−1)1(n nn收敛,但发散.令∑∞=12n na"+−−−+−−+−=∑∞=33333331331331331312212212111n n a""+−−−−+项k k k k k k k k k k k11113。

数学分析新讲重排本与原版

数学分析新讲重排本与原版

数学分析新讲重排本与原版
本书的前身是北京大学数学系教学改革实验讲义。

改革的基调是:强调启发性,强调数学内在的统一性,重视学生能力的培养。

书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用括从开普勒行星运动定律推导万有引力定律)。

从概念的引入到定理的证明,书
中作了煞费苦心的安排,使传统的材料以新的面貌出现。

书中还收入了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳威尔不动点定理等)。

全书共三册。

册内容是:一元微积分,初等微分方程及其应用。

第二册内容是:一元微积分一步讨论,广义积分,多元函数微分学,重积分。

第三册内容是:微分学的几何应用,曲线积分与曲面积分,场论介绍,级数与含参变元的积分等。

本书可作为大专院校数学系数学分析基础课教材或补充读物,又可作为大、中学教师,科技工作者和工程技术人员案头常备的数学参考书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 整体与部分1姚正安数学分析的概念常常是由局部到整体然后再从整体回到局部(如区间上函数的连续、可微性), 所以在数学分析的证明和计算中常常是将整体问题分成几个局部问题来分别证明和计算, 本讲着重探讨这方面的证明方法.§1.1 子序列问题在数列的收敛与发散中常常用子序列的敛散性来进行讨论, 也就是用部分序列的性质来探讨整体序列的性质.问题1.1.1 数列n x 收敛的充要条件是n x 2、12+n x 收敛到同一极限.【分析】此问题实际上是探讨整体序列n x 与两个部分序列n x 2、12+n x 之间的收敛关系. 【证明】必要性 设x x n n =∞→lim ,则任给0>ε,找得到正整数N,当N n >时,有ε<-||x x n .此时对2N,当2n>2N 时也有ε<-||2x x n ,亦即x x n n =∞→2lim .同理可证x x n n =+∞→12lim .充分性 设x x x n n n n ==+∞→∞→122lim lim ,则对任给0>ε,找得到正整数N 1,当n>N 1,时,有ε<-||2x x n ① 同时可找到正整数N 2,当n>N 2时,有ε<-+||12x x n ②从而取N=max{2N 1,2N 2+1},当n>N 时,n 为偶数,则满足①,n 为奇数,则满足②,即当n>N 时,有ε<-||x x n ,亦即 x x n n =∞→lim .问题1.1.2 设∑=--=nk k k n u x 11)1( 且k u 满足:(1);121 ≥≥≥≥≥+k k u u u u (2).0lim =∞→k k u则n n x ∞→lim 存在.【分析】先证n n x 2lim ∞→存在.由,02212≥+-+n n u u 得222212212432121243212)()()()()()()(+++--=-+-++-+-≤-++-+-=n n n n n n n n x u u u u u u u u u u u u u u x即n x 2是单调上升数列.又 ])()()[(21222543212n n n n u u u u u u u u x +-++-+--=-- ,由}{k u 单调下降和0lim =∞→k k u ,知}{k u 是非负序列(不然从某项开始 0<k u ,当0k k >时,0k k u u <,则0lim 0<≤∞→k k k u u ).再由}{k u 单调下降, 0,,0,012225432≥-≥-≥---n n u u u u u u 及02≥n u ,从而n n x 2lim ∞→存在.下证12lim +∞→n n x 存在.由12212+++=n n n u x x ,从而由数列极限的运算法则,有12212lim lim lim +∞→∞→+∞→+=n n n n n n u x x ,而0lim =∞→k k u ,由问题 1.1.1知,0lim 12=+∞→n n u .从而n n n n x x 212lim lim ∞→+∞→=.再由问题1.1.1知n n x ∞→lim 存在.注意:一般的教科书上都注明0≥n u ,其实从}{n u 单调下降和0lim =∞→n n u ,可推得出nu 是非负序列.此外我们假定n u 单调上升,且0lim =∞→n n u ,问题1.1.2依然正确.问题 1.1.3 设])1(21[)1(11nnn n x n n n +--+--= (n=1,2,…),试证n n x ∞→lim 存在,并求其值.【证明】,2122)1(212312)21(2)22212()2221(22==-+=-+++-+++=+--+++-=n n n n n n n n n n n nn n n n x n)(211211212)1(121212)21(21212211212)1221212()122121(212∞→→++=++++-=+++++++-+-+++=++++-+-+++-+=+n n n n n n n n n n n n n n n n n n n n n n x n ,由问题1.1.1和以上推导知21lim =∞→n n x . 问题1.1.4 证明sin lim ∞→n n 不存在.【证明1】(反证) 设sin lim ∞→n n 存在,则sin lim ∞→n (n +2)=sin lim ∞→n n,由此 0n]sin -2)(n [sin lim =+∞→n ,亦即 0)1n ( cos 1sin 2lim =+∞→n ,而 sin 1≠0,所以有 cos lim ∞→n n=0)2(¨cos lim =+∞→n n .另一方面由问题1.1.1, 知 sin lim ∞→n 2n=sin lim ∞→n n ,但sin lim ∞→n 2n=2cos lim ∞→n n •sin lim ∞→n n =0,所以 sin lim ∞→n n =0,于是 1cos sin lim 22=+∞→n n n ,这与1cos sin 22=+n n 矛盾。

【证明2】(反证) 设 sin lim ∞→n n =A ,则由问题1.1.1,得sin lim ∞→n 2n=sin lim ∞→n (2n +1)=A ,但因为 sin (2n+1) = cos 1 sin 2n + sin 1 cos 2n,sin (2n+2) = cos 1 sin (2n+1) + sin 1 cos (2n+1), 则由 sin 1≠0,得 cos lim ∞→n 2n =cos lim ∞→n (2n+1)=A 1sin 1cos 1-,所以 cos lim ∞→n n=A 1sin 1cos 1-。

另外 cos (2n+1)-cos (2n -1)= -2sin 1 sin 2n.取极限得 sin lim ∞→n 2n=0,从而得 sin lim ∞→n n=0=A, 所以cos lim ∞→n n =001sin 1cos 1=⋅-,同样和1cos sin 22=+n n 矛盾。

下面我们来探讨比问题1.1.1更一般的整体与部分数列问题。

问题1.1.5 数列}{n x 收敛的充要条件是}{n x 的任意真子序列}{k n x 收敛。

【分析】这里讨论的部分数列是任给的真子列}{k n x ,这样的子列有无穷多个。

【证明】必要性 设x x n n =∞→lim ,}{k n x 是}{n x 的任一真子列,则}{k n 是自然数集中严格单调上升的一个数列,且+∞=∞→k n n lim ,对任给的0>ε,存在自然数N ,当n>N 时,有 ε<-||x x n①由}{k n 单调趋于无穷,则存在k 0,使得,0N n k >从而当k>k 0时,n k >N 满足①,即ε<-||x x k n ,由此 x x k n n =∞→lim 。

充分性 所谓真子列是指下标集N-{n k }是无穷集,则称}{k n x 是}{n x 的真子列,假定对所有的真子列}{k n x 收敛,下证}{n x 收敛。

显然,}{2n x 、}{12+n x 皆为}{n x 的真子列,则此二真子列皆收敛,设A x n n =∞→2lim ,B x n n =+∞→12lim ,下证A =B 。

}{4n x 是}{2n x 的真子列,}{14+n x 是}{12+n x 的真子列。

又必要性之证明有A x n n =∞→4lim ,B x n n =+∞→14lim 。

取}{}{n n x x k ⊆,且,2)1(1]21[4kk k n -+++=k=1,2,… ([x]为x 的整数部分),则}{},14{}4{}{k k n N n n n -+⋃=为无穷集。

由此}{}{n n x x k 是的一个真子列,于是有k n n x ∞→lim 存在有限。

又(1)},4{}{2k n k =得 ;lim lim lim lim 442A x x x x n n k n n n n n k k ====∞→∞→∞→∞→(2)},14{}{12+=+k n k 得 .lim lim lim lim 141412B x x x x n n k n n n n n k k ====+∞→+∞→∞→∞→+综合(1),(2)有A=B.由问题1.1.1知}{n x 收敛。

注意:这里充分性的证明是构造性的,而且这里须注意的是整体序列}{n x 变动的是下标n ,而部分序列变动的是}{k n x 中的k 。

问题1.1.6 0lim =∞→n n x 的充要条件是0||lim =∞→n n x 。

【证明】若0lim =∞→n n x ,则对任给的0>ε,存在自然数N ,当n>N 时,,|0||||0|ε<-=-n n x x 即0||lim =∞→n n x 。

反之,若0||lim =∞→n n x ,则对任给的0>ε,存在自然数N ,当n>N 时,,|0||||0|ε<-=-n n x x 即0lim =∞→n n x 。

问题 1.1.7 若数l 是数列}{n x 的一个聚点,则有}{n x 的子序列}{k n x ,使得,lim l x k n n =∞→反之也成立。

【分析】要证明本问题先得弄清聚点得概念,然后来“抽取”子序列。

【证明】由l 是}{n x 的一个聚点,,从而对任给的0>ε,区间),(εε+-l l 中有}{n x 得无穷多项(可重复的选取同一个数).下面是子列的“抽取”法。

对1=ε,在)1,1(+-l l 中任取一个}{n x 的项作为1n x ,对21=ε,在)21,21(+-l l 中有},,{}{121n n x x x x -的无穷多项,任取一个作为2n x ,…,对k 1=ε,在)1,1(kl k l +-中有},,{}{121--k n n x x x x 的无穷多项,任取一个作为k n x ,这样又归纳法我们可取}{n x 的子列}{k n x ,由取法可知k n 是严格单调的自然数列。

以下证明,lim l x k n n =∞→对任给0>ε,总有k 0,使得ε<01k ,从而当k>k 0时,ε<<<-011||k k l x k n ,亦即,lim l x k n n =∞→反之亦然。

问题1.1.8 设L 是数列}{n x 的上极限,则可选取}{n x 的子序列}{k n x 使,lim L x k n n =∞→同样可抽取子序列}{}{n n x x r ⊆,使,lim l x r n n =∞→l 是}{n x 的下极限(这里L,l 可取无穷)。

相关文档
最新文档