食品分析与检验蛋白质与氨基酸的测定

合集下载

食品分析

食品分析

第一章绪论一、食品分析的性质、任务和作用1、性质:评价食品品质的三个方面:营养性、安全性、可接受性,功能性食品分析——是研究和评价食品的卫生与质量及其变化的理论,是研究各类食品的组成成分的检验方法和检验技术的一门应用性科学,是食品科学的一个重要的分支,具有很强的技术性和实践性。

2、任务和作用任务:是运用物理、化学、生物化学等学科的基本原理及技术,对食品工业生产的原料、辅料、成品、半成品、副产品等主要成分及含量进行包括营养与卫生在内的检测和监督作用:(1)控制和管理生产,保证和监督食品的质量(2)为食品新资源和新产品的开发、新技术和新工艺的探索提供可靠的依据(3)对假冒伪劣产品的检测及控制(4)控制污染物○1生物污染○2化学污染○3环境污染二、开展食品检验的意义1、监督食品质量及卫生状况,确保人类的健康2、指导人们合理摄取人体需要的各种营养素3、评价环境状况及饮食状况、食品加工依据4、进出口食品的监控5、法律仲裁的依据三、食品分析的内容1、食品营养成分的分析2、食品添加剂的分析3、食品中有害物质的分析(1)有害元素及有机物(2)农药(3)细菌、霉菌及其毒素(4)食品加工中形成的有害物质(5)抗生素、激素等残留(6)来自包装材料的有害物质4、食品中功能成分的分析5、食品感官鉴定四、食品分析的现状及发展方向现状:1、范围越来越广2、项目越来越3、准确度要求越来越高4、越来越向着微量分析发展5、越来越快速发展方向:多功能、现代化、自动化、快速、准确五、食品分析主要方法和分析过程方法:1、化学分析法,包括容量法、重量法、比色法2、微生物分析法3、酶分析法4、仪器分析法5、感官检验法分析过程:1、取样(采样)2、样品的预处理3、样品含量的测定4、数据处理第二章样品的采集、保存及预处理(一)采样的目的意义食品的采样检验的目的在于检验意义:1、检验试样在感官性质上有无变化2、一般成分有无变化3、加入的添加剂等外来物质是否符合国家标准规定4、食品成分中有无掺假5、有无重金属、有害物质和各种微生物的污染及变质、腐败采样——从大量的分析对象中抽取有代表性的一部分样品作为分析材料的工作(二)采样原则1、样品要均匀、有代表性2、要保持样品原有的理化性质,防止成分逸散或带入杂质(三)采样步骤从大批物料中的各个部分采集少量物料称为检样许多检样合在一起称为原始样品原始样品经过处理,再抽取其中的一部分做分析用,称为分析样(四)采样方式随机抽样:总体中每一个样品抽到的机会均等。

食品分析课件6.蛋白质及氨基酸的测定

食品分析课件6.蛋白质及氨基酸的测定
趋势分析
对连续测定结果进行趋势分析,了解变化趋势。
数据可靠性评估
1 2
重复性检验
通过多次重复测定,评估测定方法的重复性。
准确性检验
通过与其他已知准确度高的方法进行比较,评估 测定方法的准确性。
3
检出限和精密度
根据方法检出限和精密度,评估数据可靠性。
06
实际应用与案例分析
食品营养标签的制定
蛋白质含量
在食品生产过程中,蛋白质含量的均匀度是评价产品质量的重要指标之一。通过 测定不同批次或不同部位食品中的蛋白质含量,可以了解产品的均匀度,从而控 制产品质量。
氨基酸比例
氨基酸比例是评价食品质量的重要参考指标。不同食品中的氨基酸比例有所不同 ,通过测定食品中的氨基酸比例,可以了解产品的质量,为质量控制提供依据。
05
数据分析与解读
数据处理方法
平均值计算
对多次测定结果取平均值,以减少误差。
异常值剔除
根据统计学原理,将偏离平均值过大的数据剔除。
数据标准化
将不同来源的数据进行标准化处理,以便于比较。
结果解读与比较
正常范围判断
将测定结果与标准值或参考值进行比较,判断是否在正常范围内。
差异分析
对不同样品或不同处理条件下的结果进行差异分析,找出显著性差 异。
操作规范
严格遵守操作规程,避免操作 不当导致实验失败或安全事故

数据记录
及时记录实验数据,避免丢失 数据或误差。
安全须知
穿戴防护服
实验过程中需穿戴实验 服和化学防护眼镜等个
人防护用品。
保持通风
保持实验室通风良好, 避免有害气体积累。
废弃物处理
急救措施
按照实验室规定正确处 理废弃物,防止环境污

蛋白质氨基酸测定

蛋白质氨基酸测定

注意问题:
① 加入样品不要沾附在凯氏烧瓶瓶颈;
② 消化开始时不要用强火,要控制好热源,并 注意不时转动凯氏烧瓶,以便利用冷凝酸液将 附在瓶壁上的固体残渣洗下并促进其消化完全; ③ 样品中若含脂肪或糖较多,在消化前应加入 少量辛醇或液体石蜡或硅油作消泡剂,以防消 化过程中产生大量泡沫; ④ 消化完全后要冷至室温才能稀释或定容。所 用试剂溶液应用无氨蒸馏水配制。
思考:
1、样品中加入浓硫酸后,溶液的颜色立即发生什么 变化? 2、如何判断消化的终点?
② 蒸馏与吸收:
按图安装好微量定氮蒸馏装置。于水蒸气发生
瓶内装水至2/3容积处,加甲基橙指示剂数滴及 硫酸数毫升,以保持水呈酸性,加入数粒玻璃 珠。 在吸收瓶中加入10mL 40g/L硼酸及2滴混合指示 剂,将冷凝管下端插入液面以下。 准确吸取消化液10mL于反应管内,经漏斗再加 入10mL氢氧化钠溶液,用少量蒸馏水冲洗漏斗, 夹好漏斗夹并水封,加热煮沸水蒸气发生瓶内 的水进行蒸馏。 指示剂变绿色后继续蒸馏10 min,将冷凝管尖 端提离液面继续蒸1min
(4)蛋白质系数
不同的蛋白质其氨基酸构成比例及方式不同,故各种 不同的蛋白质其含氮量也不同,蛋白质的量与氮含量 的关系用蛋白质系数表示: 蛋白质系数——每份氮素相当于的蛋白质的份数。一般 蛋白质含氮为16%,所以1份氮素相当于6.25份蛋白质。 此数值(6.25)称为蛋白质系数,用F表示。不同种类 食品的蛋白质系数有所不同,如玉米,荞麦,青豆, 鸡蛋等为6.25,花生为5.46,大米为5.95,大豆及其 制品为5.71,小麦粉为5.70,牛乳及其制品为6.38。
加入硫酸铜的作用
催化作用:加速有机物的氧化分解 C+ 2CuSO4 → Cu2SO4 + SO2↑+ CO2↑ Cu2SO4 + 2H2SO4 → 2CuSO4 + 2H2O + SO2↑ 此反应不断进行,待有机物被消化完后,不再有硫 酸亚铜(褐色)生成,溶液呈现清澈的蓝绿色。 消化完全指示:蓝绿色;

食品中蛋白质和氨基酸的测定(精)

食品中蛋白质和氨基酸的测定(精)
苋菜红 胭脂红 柠檬黄 日落黄 靛蓝 亮蓝
2.合成色素的提取
聚酰胺吸附色素
3.定性分析 14. 定量分析 5 .薄层层析法、高效液相色谱法测定的基本要 求
三、甜味剂的测定
糖精钠的测定:糖精是应用较为广泛的人工甜味 剂 其学名为邻—磺酰苯甲酰亚胺其结构式为:
1.HPLC法 2.酚磺酞比色法 [原理] 样品中的糖精钠在酸性条件下用乙醚提 取分离后,与酚和硫酸在175 ℃作用,生成酚 磺酞,再与氢氧化钠反应产生红色溶液,与标 准系列比较定量。 [说明] ①本法受温度影响较大,要使糖精充分与 酚在硫酸作用下生成酚磺酞,应严格控制在 175士2℃温度下反应 2小时。②苯甲酸等有机 物对测定有干扰,故要通过碱性氧化铝层析柱 以排除干扰。 3. 紫外分光光度法
二、蛋白质和氨基酸的分类
三、蛋白质的一般性质
1. 物理性质
2 .化学性质
第二节 蛋白质的测定
蛋白质的测定方法分两大类:一类是利用蛋白质 的共性即含氮量、肽键和折射率等测定蛋白质 含量;另一类是利用蛋白质中的氨基酸残基、 酸性和碱性基因以及芳香基团等测定蛋白质含 量 。 具体测定方法:凯氏定氮法是最常用的,国内 外应用普遍;双缩脲反应、染料结合反应、酚 试剂法; 国外:红外分析仪
④ 样品中若含脂肪较多时,消化过程中易产生大 量泡沫,为防止泡沫溢出瓶外,在开始消化时 应用小火加热,并时时摇动;或者加入少量辛 醇或液体石蜡或硅油消泡剂,并同时注意控制 热源强度。 ⑤ 当样品消化液不易澄清透明时,可将凯氏烧 瓶冷却,加入30%过氧化氢 2—3 m1 后再继 续加热消化。 ⑥ 若取样量较大,如干试样超过5 g 可按每克 试样5 m1的比例增加硫酸用量。
[步骤] 整个过程分三步:消化、蒸馏、吸收与 滴 定 1.消化 总反应式: 2NH2(CH2)2COOH+13H2SO4= (NH42SO4+6CO2+12SO2+16H2O

食品理化检验分析 第九章 蛋白质和氨基酸的测定

食品理化检验分析   第九章 蛋白质和氨基酸的测定
4.用HCL滴定
二、 自动凯氏定氮法 1、原理及适用范围同前 2、特点:
(1)消化装置用优质玻璃制成的凯氏消化瓶,红 外线加热的消化炉。 (2)快速:一次可同时消化8个样品,30分钟可消 化完毕。 (3)自动:自动加碱蒸馏,自动吸收和滴定,自 动数字显示装置。可计算总氮百分含量并记录,12 分钟完成1个样。
5.计算: 氨基酸态氮=〔 c×(V2-V1)×0.014×100 ) 〕/W×100 V1——用中性红为指示剂时,碱液所消耗 的体积 V2——用百里酚酞乙醇液为指示剂时标液 消耗量
0.014——氮的毫摩尔质量,g/mmol。
(二)茚三酮的比色法
原理:氨基酸在一定条件下与茚三酮起反应,生 成蓝紫色化合物,可比色定量。(570nm)
一.双缩脲法 1.原理 脲(尿素)NH2—CO—NH2 加热至150~160℃时 ,两分子缩和成双缩脲。 NH2—CO—NH2 + NH2—CO—NH2 NH2—CO—NH—CO—NH2 + NH3 双缩脲能和硫酸铜的碱性溶液生成紫红色络和 物,此反应叫双缩脲反应。(缩二脲反应) 蛋白质分子中含有肽键( —CO—NH—),与双缩 脲结构相似。在同样条件下也有呈色反应,在一定 条件下,其颜色深浅与蛋白质含量成正比,可用分 光光度计来测其吸光度,确定含量。(560nm)
3.双指示剂:
① 40%中性甲醛溶液:以百里酚酞作指示剂,用 氢氧化钠将40%甲醛中和至淡蓝色。
② 0.1%百里酚酞乙醇溶液,(9.4~10.6)
③ 0.1%中性红 50%乙醇溶液,(6.8~8.0) ④ 0.1 mol/L 氢氧化钠标准溶液。
4.操作:
取相同两份样品20~30mg→分别于250ml三角瓶→各 加50ml蒸馏水 一份加中性红3滴→用0.1mol/L NaOH 滴定终点(由红变琥珀色),记录用量,另一份加百里酚 酞乙醇液3滴加中性甲醛20ml→摇匀→用0.1mol/L NaOH 滴至淡兰色。分别记录两次所消耗的碱液ml数。

蛋白质氨基酸测定

蛋白质氨基酸测定

三聚氰胺(melamine)
是一种有机含氮杂环化合物,学名1,3,5-三嗪-2,4,6-三胺, 或称为2,4,6-三氨基-1,3,5-三嗪,简称三胺、蜜胺、氰尿 酰胺,是一种重要的化工原料,主要用途是与醛缩合,生 成三聚氰胺-甲醛树脂,生产塑料,这种塑料不易着火,耐 水、耐热、耐老化、耐电弧、耐化学腐蚀,有良好的绝缘 性能和机械强度,是木材、涂料、造纸、纺织、皮革、电 器等不可缺少的原料。它还可以用来做胶水和阻燃剂,部 分亚洲国家,也被用来制造化肥。
①样品消化 : 准确称取一定量的样品至干燥洁净的 500mL凯氏烧瓶中,加入硫酸铜0.5g(1g)、硫酸钾10g (3g)和浓硫酸20mL、玻璃珠数粒→轻轻摇匀,以45º斜 支于石棉网上→用电炉以小火加热(或先烧瓶放在距电 炉较远处),待内容物全部炭化、泡沫停止产生后→加 大火力(或将烧瓶放在电炉上),保持瓶内液体微沸→至 液体变蓝绿色透明后→继续加热微沸30min→关闭电炉, 取下烧瓶、冷却→转移至100mL容量瓶中,加水定容。
❖ 加入硫酸铜的作用 催化作用:加速有机物的氧化分解 C+ 2CuSO4 → Cu2SO4 + SO2↑+ CO2↑ Cu2SO4 + 2H2SO4 → 2CuSO4 + 2H2O + SO2↑ 此反应不断进行,待有机物被消化完后,不再有硫 酸亚铜(褐色)生成,溶液呈现清澈的蓝绿色。
消化完全指示:蓝绿色;
三聚氰胺的最大的特点是含氮量很高(66 %),加之其生产工艺简单、成本很低, 给了掺假、造假者极大地利益驱动,有人 估算在植物蛋白粉和饲料中使蛋白质增加 一个百分点,用三聚氰胺的花费只有真实 蛋白原料的1/5。所以“增加”产品的表观 蛋白质含量是添加三聚氰胺的主要原因, 三聚氰胺作为一种白色结晶粉末,没有什 么气味和味道,掺杂后不易被发现等也成 了掺假、造假者心存侥幸的辅助原因。

KJ01 蛋白质和氨基酸的测定.

KJ01 蛋白质和氨基酸的测定.

生物工程系
食品分析与检验技术 6.3.3 茚三酮比色法
生物工程系
食品分析与检验技术 实训(一)食品中蛋白质含量测定 ——凯氏定氮法 一、实训目的 1.学习凯氏定氮法测定蛋白质的原理。 2.掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸
馏、滴定及蛋白质含量计算等。
生物工程系
食品分析与检验技术 二、实训原理 蛋白质是含氮的化合物。样品与浓硫酸和催化剂共同加热 消化,使蛋白质分解,其中碳和氢被氧化为二氧化碳和水溢出, 而样品中的有机氮转化为氨,并与硫酸结合生成硫酸铵,留在
生物工程系
食品分析与检验技术 操作方法 1.样品(氨基酸≈20 mg) 50 ml水,3滴0.1 %中性红 NaOH滴定至琥珀色。 250 ml三角烧瓶 摇匀 加入
0.05 mol / L
2.样品(氨基酸≈20 mg) 250 ml三角烧瓶
ml水,3滴0.1%百里酚酞,20 %中性甲醛
加入50
摇匀,
生物工程系
食品分析与检验技术
生物工程系
食品分析与检验技术 6.2.3 水杨酸比色法

原理 蛋白质 → 硫酸消化 → 铵盐溶液+
NaClO → 一定酸度和温度 → 蓝色化合物 (可在660 nm进行比色)。

主要仪器 分光光度 恒温水浴箱
生物工程系
食品分析与检验技术
试剂
氮标准液:(NH4)2SO4 → 100 ℃ 2 h
% H3BO3
0.1 M HCl
甲基红-溴甲酚绿指示剂
生物工程系
食品分析与检验技术
生物工程系
食品分析与检验技术
生物工程系
食品分析与检验技术
◆ 微量凯氏定氮法 • 原理 同常量凯氏定氮法。 • 主要仪器 凯氏烧瓶(100 ml);微量凯氏定氮装置。 • 试剂 0.0100 mol/L HCl标液;其他同常量凯氏定氮法。 • 操作方法 略

食品检验与分析第十章蛋白质和氨基酸的测定

食品检验与分析第十章蛋白质和氨基酸的测定

食品检验与分析第十章蛋白质和氨基酸的测定蛋白质是生命体内非常重要的一类生物大分子,它在细胞结构和机能维持、代谢调控以及免疫防御等方面起着重要作用。

因此,对蛋白质的准确测定和定量分析具有极其重要的意义。

本章主要介绍蛋白质和氨基酸的测定方法。

蛋白质的测定方法主要分为定性测定和定量测定两大类。

定性测定方法包括生物试验法、电泳法、免疫学方法和核磁共振法等。

定量测定方法包括比色法、碱液法、生物试验法、紫外分光光度法和蛋白质序列测定法等。

比色法是常用的蛋白质定量方法之一,它利用蛋白质与试剂形成复合物,复合物在特定波长下具有特异性吸光度。

根据吸光度与蛋白质浓度的线性关系,就可以测定蛋白质的含量。

常用的比色法有布拉德福法、Lowry法和BCA法等。

布拉德福法是最常用的蛋白质定量方法之一、该法利用菜酶素染色反应,使蛋白质呈现紫色,然后通过比色法测定溶液的吸光度,从而测定蛋白质的含量。

布拉德福法的优点是灵敏度高,适用于各种类型的蛋白质测定。

Lowry法是另一种常用的蛋白质定量方法,该法利用碱液将蛋白质氢氧化,生成肽链片段,然后与Folin-Phenol试剂发生酸碱反应,生成蓝色产物,通过比色法测定吸光度,从而得到蛋白质的含量。

BCA法是一种基于比色法的蛋白质定量方法,该法利用铜离子和双酚试剂反应生成复合物,复合物在特定波长下具有最大吸光度,通过测定吸光度可以得到蛋白质的含量。

BCA法的优点是灵敏度高,适用于各种类型的蛋白质测定。

氨基酸是构成蛋白质的基本单位,对氨基酸的快速准确测定具有重要意义。

氨基酸的测定方法主要分为色谱法和比色法两大类。

色谱法是氨基酸测定的常用方法之一,主要包括气相色谱法和高效液相色谱法。

气相色谱法将氨基酸转化为甲醯基衍生物,然后通过气相色谱进行分离和定量。

高效液相色谱法使用分离柱进行分离,可以达到更高的分离效率和灵敏度。

比色法是氨基酸测定的另一种常用方法,主要有二色法和氨基酸定量方法。

二色法利用氨基酸与染料之间的化学反应产生色素,通过比色法测定吸光度,从而确定氨基酸的含量。

蛋白质及氨基酸分析

蛋白质及氨基酸分析

② 蒸馏:在消化完全的样品溶液中加入浓 氢氧化钠使呈碱性,加热蒸馏,即可释放 出氨气,反应方程式如下: 2NaOH+ (NH4)2SO4= 2NH3↓+ Na2SO4 + 2H2O
③ 吸收与滴定:加热蒸馏所放出的氨,可用 硼酸溶液进行吸收,待吸收完全后,再用 盐酸标准溶液滴定,因硼酸呈微弱酸性(k =5.8×10-10),用酸滴定不影响指示剂 的变色反应,但它有吸收氨的作用,吸收 及滴定的反应方程式如下: 2NH3 + 4H3BO3=(NH4)2B4O7+5H2O (NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H30ml离心管→加 1mlClC4→混合→加50ml酒石酸钾钠稳定 剂→盖上盖子离心10min(4000转/分)→ 放置1小时→吸混合液15ml→于20ml离心 管中→离心到完全透明→取上清夜5ml于 →10ml容量瓶→加水定容→于560nm处测 定吸光度,从标准曲线上查出蛋白质含量。
1.蛋白质分析的重要性 (1)生物活性测定 一些蛋白质包括酶或酶抑制因 子和食品科学与营养有关,例如肉类嫩化中的蛋 白酶、水果成熟中的果胶酶以及豆类中的胰蛋白 酶抑制因子都是蛋白质。 (2)功能性质调查 不同种类食品中的蛋白质都有 其独特的食品功能性质,例如小麦面粉中的麦醇 溶蛋白和麦谷蛋白具有成面团性,牛乳中的酪蛋 白在干酪制作中具有凝结作用,而鸡蛋卵清蛋白 具有起泡能力。
二蛋白质的含量测定凯氏定氮法凯氏定氮法是测定总有机氮量较为准确操作较为简单的方法之一可用于所有动植物食品的分析及各种加工食品的分析可同时测定多个样品故国内外应用较为普遍是个经典分析方法至今仍被作为标准检验方法样品与浓硫酸和催化剂一同加热消化使蛋白质分解其中碳和氢被氧化为二氧化碳和水逸出而样品中的有机氮转化为氨与硫酸结合成硫酸铵

蛋白质测定分析

蛋白质测定分析


⑥ 若取样量较大,如干试样超过5 g 可按每 克试样5 m1的比例增加硫酸用量。如硫酸 缺少,过多的硫酸钾会引起氨的损失,这 时会形成硫酸氢钾,而不与氨作用,因此 当硫酸被过多底物消耗掉或样品中脂肪含 量过高时,要添加硫酸。
⑦ —般消化至呈透明后,继续消化30分钟即 可。有机物如分解完全,消化液呈蓝色或浅 绿色,但含铁量多时,呈较深绿色。 ⑧ 蒸馏装置不能漏气。
③消化时应注意不时转动凯氏烧瓶,以便利用
冷凝酸液将附在瓶壁上的固体残渣洗下,促
进其消化完全。
④ 样品中若含脂肪较多时,消化过程中易产 生大量泡沫,为防止泡沫溢出瓶外,在开 始消化时应用小火加热,并时时摇动;或 者加入少量辛醇或液体石蜡或硅油消泡剂, 并同时注意控制热源强度。
⑤ 当样品消化液不易澄清透明时,可将凯氏 烧瓶冷却,加入30%过氧化氢 2—3 m1 后再 继续加热消化。

B 催化剂

用作催化剂的有Hg、HgO、Se,硒化合 物,CuSO4、TiO2,对Hg,HgO有毒但结 果好,Se与CuSO4得到结果是一种,TiO2 的结果偏低,采用不同的催化剂则消化时 间不同, HgO消化麦子为38min,Se与 CuSO4消化麦子55min,TiO2消化麦子 70min,所以在给出测定结果时要注明催化 剂的类型。

仪器:要 防止爆沸。

各种试剂的作用
(1)浓H2SO4: A:脱水使有机物炭化,然后有机物炭化生 成碳,碳将H2SO4还原为SO2,本身则变为CO2 B: 氧化 C : pro 与浓 H2SO4 生成 NH3↑, CO2 , SO2 , H2O↑ D: NH3与H2SO4生成硫酸铵
(2)CuSO4的作用(催化剂)
(酸)
(碱)

食品中18种氨基酸检验方法

食品中18种氨基酸检验方法

食品中18种氨基酸检验方法食品中氨基酸是构成蛋白质的重要成分之一。

氨基酸的检验方法能够帮助我们了解食品中氨基酸的含量和种类,对于食品的营养价值评估和质量控制具有重要意义。

本文将介绍18种常见氨基酸的检验方法。

1. 色谱法:色谱法是检测氨基酸含量的常用方法之一。

通过将样品中的氨基酸分离出来,并利用色谱柱分离各个氨基酸,再利用紫外检测器检测各个氨基酸的含量。

2. 毛细管电泳法:毛细管电泳法是一种高效、快速的氨基酸分析方法。

通过将样品中的氨基酸在电场作用下在毛细管中迁移,再利用紫外检测器检测各个氨基酸的含量。

3. 高效液相色谱法:高效液相色谱法是一种常用的氨基酸分析方法。

通过将样品中的氨基酸在液相中分离,并利用紫外检测器检测各个氨基酸的含量。

4. 离子交换色谱法:离子交换色谱法是一种常用的氨基酸分离和检测方法。

通过将样品中的氨基酸在离子交换柱上分离,并利用紫外检测器检测各个氨基酸的含量。

5. 高温液相色谱法:高温液相色谱法是一种适用于疏水性氨基酸检测的方法。

通过将样品中的氨基酸在高温条件下分离,并利用紫外检测器检测各个氨基酸的含量。

6. 酶法:酶法是一种常用的氨基酸分析方法。

通过将样品中的氨基酸与特定的酶反应,生成可测定的产物,并利用酶活性的变化来测定各个氨基酸的含量。

7. 比色法:比色法是一种简单、快速的氨基酸分析方法。

通过将样品中的氨基酸与特定的试剂反应,生成具有特定颜色的产物,并利用比色计测定各个氨基酸的含量。

8. 紫外分光光度法:紫外分光光度法是一种常用的氨基酸检测方法。

通过测量各个氨基酸在紫外光波长下的吸光度,来测定各个氨基酸的含量。

9. 荧光分析法:荧光分析法是一种敏感、高效的氨基酸检测方法。

通过测量各个氨基酸在激发光波长下的荧光强度,来测定各个氨基酸的含量。

10. 质谱法:质谱法是一种高灵敏度的氨基酸分析方法。

通过将样品中的氨基酸转化为气相离子,并利用质谱仪测定各个氨基酸的含量。

11. 核磁共振法:核磁共振法是一种非破坏性的氨基酸分析方法。

蛋白质和氨基酸测定方法

蛋白质和氨基酸测定方法

第十章 蛋白质和氨基酸的测定第一节 概述蛋白质是生命的物质基础,是构成生物体细胞组织的重要成分,是生物体发育及修补组织的原料。

一切有生命的活体都含有不同类型的蛋白质。

人体内的酸、碱及水分平衡,遗传信息的传递,物质代谢及转运都与蛋白质有关。

人及动物只能从食物中得到蛋白质及其分解产物,来构成自身的蛋白质,故蛋白质是人体重要的营养物质,也是食品中重要的营养成分。

蛋白质在食品中含量的变化范围很宽。

动物来源和豆类食品是优良的蛋白质资源。

部分种类食品的蛋白质含量见表10-1表10-1 部分食品的蛋白质含量蛋白质是复杂的含氮有机化合物,摩尔质量大,大部分高达数万~数百万,分子的长轴则长达1nm ~100nm ,它们由20种氨基酸通过酰胺键以一定的方式结合起来,并具有一定的空间结构,所含的主要化学元素为C 、H 、O 、N ,在某些蛋白质中还含有微量的P 、Cu 、Fe 、I 等元素,但含氮则是蛋白质区别于其它有机化合物的主要标志。

不同的蛋白质其氨基酸构成比例及方式不同,故各种不同的蛋白质其含氮量也不同。

一般蛋白质含氮量为16%,即1份氮相当于6.25份蛋白质,此数值(6.25)称为蛋白质系食 品 种 类 蛋白质的质量分数(以湿基计)/% 食 品 种 类 蛋白质的质量分数(以湿基计)/%谷类和面食大米(糙米、长粒、生) 7.9大米(白米、长粒、生、强化) 7.1小麦粉(整粒) 13.7玉米粉(整粒、黄色) 6.9意大利面条(干、强化) 12.8玉米淀粉 0.3乳制品牛乳(全脂、液体) 3.3牛乳(脱脂、干) 36.2切达干酪 24.9酸奶(普通的、低脂) 5.3水果和蔬菜苹果(生、带皮) 0.2芦笋(生) 2.3草莓(生) 0.6莴苣(冰、生) 1.0土豆(整粒、肉和皮) 2.1 豆类 大豆(成熟的种子、生) 36.5 豆(腰子状、所有品种、 23.6 成熟的种子、生) 豆腐(生、坚硬) 15.6 豆腐(生、普通) 8.1 肉、家禽、鱼 牛肉(颈肉、烤前腿) 18.5 牛肉(腌制、干牛肉) 29.1 鸡(可供煎炸的鸡胸肉、 23.1 生) 火腿(切片、普通的) 17.6 鸡蛋(生、全蛋) 12.5 鱼(太平洋鳕鱼、生) 17.9 鱼(金枪鱼、白色、罐 26.5 装、油浸、滴干的固体)数。

食品理化检验的内容

食品理化检验的内容

食品理化检验的内容食品理化检验是指对食品样品进行各种生化成分的检测和分析,以了解食品的成分、性质、质量和安全性等方面的信息。

其主要内容包括以下几个方面:1. 可溶性固形物检验:对食品样品中的可溶性固形物进行测定,反映样品中的总溶解性成分。

2. 水分检验:对食品中的水分含量进行测定,水分是食品中的重要组成部分,关系到食品的质量和储存稳定性。

3. 脂肪检验:对食品样品中的脂肪含量和脂肪酸组成进行测定,脂肪是食品中的主要能量来源之一。

4. 糖类检验:对食品样品中的糖含量和糖的种类进行测定,糖是食品中的主要能量来源之一。

5. 蛋白质检验:对食品样品中的蛋白质含量和氨基酸组成进行测定,蛋白质是食品中的主要营养成分之一。

6. 矿物质检验:对食品样品中的矿物质含量进行测定,矿物质是人体必需的微量元素,对人体的生理功能和健康起着重要作用。

7. 维生素检验:对食品样品中的维生素含量进行测定,维生素是人体必需的有机化合物,对人体的健康和生长发育具有重要影响。

8. 酸碱度检验:对食品样品的酸碱度进行测定,酸碱度是反映食品是否符合人体的生理需求的重要指标。

9. 微生物检验:对食品样品中的微生物数量和种类进行测定,可判断食品是否存在致病菌或微生物污染。

10. 农药残留检验:对食品样品中的农药残留量进行测定,判断食品是否超过国家标准的安全限量。

11. 重金属检验:对食品样品中的重金属元素含量进行测定,重金属是人体有害的物质,过量摄入会对人体健康造成危害。

12. 非法添加物检验:对食品样品中的非法添加物进行检测,防止不合法添加物对食品安全带来的威胁。

通过以上的检测和分析,可以全面了解食品样品的成分和质量状况,并评估食品的安全性和合格性。

这对于保障公众的食品安全和饮食健康具有重要意义。

任务05 测定食品中蛋白质-思维导图

任务05 测定食品中蛋白质-思维导图

控温消化炉,半自动凯氏定氮仪、消化管及消化管架、滴定管
硫酸铜、硫酸钾、浓硫酸、硼酸、氢氧化钠、甲基红、溴甲酚绿
3.仪器、 设备、ቤተ መጻሕፍቲ ባይዱ剂
硫酸铜
a催化作用:加速有机物的氧化分解。
b消化完全的指示剂:蓝绿色,澄清,透明;
c蒸馏时碱性反应的指示剂:变深蓝色或产生黑 色沉淀
硫酸钾
提高溶液沸点
浓硫酸
氧化作用:有机物质氧化分解为H2O和CO2
(1)消化
4.实验操作
(2)加碱 蒸馏 吸收
(3)滴定
5、数据分析及处理 6、注意事项
一、 蛋白质
《食品分析与检验技术》
任务五 测定食品中蛋白质及氨基酸
元素:
定义
1
C、H、O、N元素,S、P、Fe、Cu
(一) 相关知识
单位
氨基酸。
人体必需氨基酸:
8必需
凯氏定氮法 2
苯蛋赖苏色亮异亮颉
(二) 测定方法
双缩脲法
1
紫外吸收法
Folin-试剂 1
凯氏定氮法 最常用方法 测定总氮最准确
(三) 应用
考马斯亮蓝法 1
案例
乳粉中蛋白质含量的测定?
1.方法
凯氏定氮法
前提
蛋白质含N量约为16%,蛋白质含量=总氮量*蛋白质系数。
消化
蛋白质与浓硫酸共热,使有机氮全部转化为无机氮(硫酸铵)。
2.原理
加碱 蒸馏 吸收
碱化蒸馏使氨游离,用硼酸吸收
滴定
盐酸标准溶液滴定
计算
标准酸的摩尔数~~~~样品总氮量~~蛋白质的量

《食品分析》-蛋白质和氨基酸的分析

《食品分析》-蛋白质和氨基酸的分析
蛋白质的测定方法分两大类: (1)利用蛋白质的共性即含氮量、肽键和折射率等测定蛋 白质含量; (2)利用蛋白质中的氨基酸残基、酸性和碱性基团以及芳 香基 团等测定蛋白质含量。
第二节 凯氏定氮法
新鲜食物中含氮化合物大多以蛋白质为主, 因此在检测中往往以测定总氮量,然后乘以蛋 白质的换算系数来得到蛋白质含量。
W——蛋白质质量分数,g/100g; V1——试样消耗酸标准滴定液的体积,mL; V2——空白试样消耗酸标准滴定液的体积,mL; V3——吸取消化液体积,mL; C ——酸标准滴定液的浓度,mol/L; 0.01401——1mmol酸标准滴定液相当的氮质量,g; m ——试样质量,g; F ——氮换算为蛋白质的系数。
小玻棒及棒状玻塞 螺旋夹
反应室
烧瓶 电炉
反应室外层
橡皮管及 螺旋夹
冷凝管 接收瓶
装水至2/3处,加甲基红乙 醇溶液和硫酸保持水呈酸性
试样2-10mL 氢氧化钠 10mL
蒸馏10min后液面离开冷凝 管下端继续蒸馏1min
10mL硼酸和1-2滴混合指示剂
W (V1 V2 ) c 0.01401 F的功能 基团吸收不同频率的辐射。 对于蛋白质和多肽,多肽键 在 中 红 外 波 段 (6.47µm) 和 近 红 外 (NIR) 波 段 ( 如 3300 ~ 3500nm , 2080 ~ 2220nm 。 1560~1670nm)的特征吸收可 用于测定食品中的蛋白质含 量。
注意事项
➢配制试剂均采用无氨蒸馏水 ➢消化时应缓慢沸腾,附着在瓶壁上的固体残渣可用冷凝酸
液洗下促其消化 ➢应小火加热并不断摇动含脂肪或糖较多的样品 ➢若干试样超过5g,可按5mL/g比例增加硫酸用量 ➢样品消化液不易澄清透明时,可加入30g/100mL过氧化氢
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

食品分析与检验蛋白质与氨基酸的测定蛋白质与氨基酸的测定在食品分析与检验领域中具有重要意义。

蛋白
质是食品中重要的营养组分,而氨基酸是构成蛋白质的基本单元,对于评
价食品的品质和安全性具有重要意义。

本文将介绍蛋白质与氨基酸的测定
方法及其在食品分析与检验中的应用。

蛋白质的测定方法主要有几种:生物测定法、光谱法和色谱法。

其中,生物测定法主要是通过测定食品中的氮元素含量来间接测定蛋白质含量。

常用的方法有凯氏氮法、造浆法和改良Kjeldahl法等。

光谱法主要是通
过根据蛋白质的特征光吸收谱测定其含量。

常用的方法有紫外-可见光谱法、荧光光谱法和红外光谱法等。

色谱法是通过分离和检测蛋白质的各种
成分来测定其含量。

常用的方法有凝胶过滤层析法、液相色谱法和气相色
谱法等。

氨基酸是构成蛋白质的基本单元,对于评价蛋白质的营养价值和品质
具有重要作用。

氨基酸的测定方法主要有色谱法和生物传感器方法。

其中,色谱法是目前最主要的氨基酸定量方法,其主要包括高效液相色谱法和气
相色谱法。

高效液相色谱法常用于氨基酸的定性和定量分析,具有灵敏度高、选择性好和分析速度快的特点;气相色谱法通常用于氨基酸的定性分析,具有高分离能力和分析速度快的优势。

生物传感器方法是一种新兴的
氨基酸测定方法,通过利用生物传感器对氨基酸的选择性响应来测定其含量。

生物传感器方法具有灵敏度高、反应快和操作简便等特点。

在食品分析与检验中,蛋白质与氨基酸的测定具有广泛的应用。

首先,蛋白质含量是评价食品营养价值的重要指标之一、通过测定食品中蛋白质
的含量,可以评估其蛋白质营养价值和食品质量。

其次,氨基酸是判定食
品蛋白质种类和品质的重要指标。

通过测定食品中各种氨基酸的含量,可
以评价蛋白质的品质和营养价值。

此外,蛋白质与氨基酸的测定还可以用
于食品的伪标问题的检验,如检验食品中是否含有非法添加的蛋白质或氨
基酸衍生物。

综上所述,蛋白质与氨基酸的测定在食品分析与检验中具有重要意义。

通过选择合适的测定方法,可以准确、快速地测定食品中的蛋白质含量和
氨基酸组成,从而评价食品的品质、安全性和营养价值。

相关文档
最新文档