(完整版)2017年江苏省连云港市中考数学试卷(含答案解析版)
2017连云港中考数学练习试题答案

2017连云港中考数学练习真题一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的倒数是( )A.5B.﹣5C.D.﹣2.下列计算正确的是( )A.2a•3a=6aB.(﹣a3)2=a6C.6a÷2a=3aD.(﹣2a)3=﹣6a33.据统计,中国水资源总量约为27500亿立方米,居世界第六位,其中数据27500亿用科学记数法表示为( )A.2.75×108B.2.75×1012C.27.5×1013D.0.275×10134.如图所示,该几何体的俯视图是( )A. B. C. D.5.化简﹣等于( )A. B. C.﹣ D.﹣6.下列各式中,能用完全平方公式进行因式分解的是( )A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+17.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,208.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:① = ;② = ;③ = ;④ =其中正确的个数有( )A.1个B.2个C.3个D.4个9.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为( )2•1•c•n•j•yA. B. C. D.10.如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为( )A.2B.3C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.不等式组的解集是.12.去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月,3月的平均增长率为.13.如图,C,D是以线段AB为直径的⊙O上的两点,若CA=CD,且∠ACD=40°,则∠CAB的度数为.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有.(填序号)三、解答题(本大题共2小题,每小题8分,共16分)15.解方程: .16.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.18.如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…(1)观察以上图形并完成下表:图形名称基本图形的个数菱形的个数图① 1 1图② 2 3图③ 3 7图④ 4… … …猜想:在图(n)中,菱形的个数为(用含有n(n≥3)的代数式表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,1),则x1= ;第2017个基本图形的中心O2017的坐标为.五、解答题(本大题共2小题,每小题10分,共20分)19.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).20.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.六、解答题(本题满分12分)21.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.七、解答题(本题满分12分)22.某旅游风景区出售一种纪念品,该纪念品的成本为12元/个,这种纪念品的销售价格为x(元/个)与每天的销售数量y(个)之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)销售价格定为多少时,每天可以获得最大利润?并求出最大利润.(3)“十•一”期间,游客数量大幅增加,若按八折促销该纪念品,预计每天的销售数量可增加200%,为获得最大利润,“十•一”假期该纪念品打八折后售价为多少?八、解答题(本题满分14分)23.如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽∽;②求证:△CDE∽△CBA;(2)求证:△FBD≌△EDC;(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.2017连云港中考数学练习真题答案一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的倒数是( )A.5B.﹣5C.D.﹣【考点】倒数.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣ .故选:D.2.下列计算正确的是( )A.2a•3a=6aB.(﹣a3)2=a6C.6a÷2a=3aD.(﹣2a)3=﹣6a3【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.【解答】解:∵2a•3a=6a2,∴选项A不正确;∵(﹣a3)2=a6,∴选项B正确;∵6a÷2a=3,∴选项C不正确;∵(﹣2a)3=﹣8a3,∴选项D不正确.故选:B.3.据统计,中国水资源总量约为27500亿立方米,居世界第六位,其中数据27500亿用科学记数法表示为( )A.2.75×108B.2.75×1012C.27.5×1013D.0.275×1013【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27500亿用科学记数法表示为:2.75×1012.故选:B.4.如图所示,该几何体的俯视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.5.化简﹣等于( )A. B. C.﹣ D.﹣【考点】分式的加减法.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式= + = + = = ,故选B6.下列各式中,能用完全平方公式进行因式分解的是( )A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+1【考点】因式分解﹣运用公式法.【分析】根据完全平方公式,可得答案.【解答】解:4x2+4x+1=(2x+1)2,故D符合题意;故选:D.7.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20【考点】众数;扇形统计图;加权平均数;中位数.【分析】根据扇形统计图给出的数据,先求出销售各台的人数,再根据平均数、中位数和众数的定义分别进行求解即可.【解答】解:根据题意得:销售20台的人数是:20×40%=8(人),销售30台的人数是:20×15%=3(人),销售12台的人数是:20×20%=4(人),销售14台的人数是:20×25%=5(人),则这20位销售人员本月销售量的平均数是 =18.4(台);把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是 =20(台);∵销售20台的人数最多,∴这组数据的众数是20.故选C.8.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:① = ;② = ;③ = ;④ =其中正确的个数有( )A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;三角形的重心.【分析】BE、CD是△ABC的中线,即D、E是AB和AC的中点,即DE是△ABC的中位线,则DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【解答】解:∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE= BC,即 = ,DE∥BC,∴△DOE∽△COB,∴ =( )2=( )2= ,= = = ,故①正确,②错误,③正确;设△ABC的BC边上的高AF,则S△ABC= BC•AF,S△ACD= S△ABC= BC•AF,∵△ODE中,DE= BC,DE边上的高是× AF= AF,∴S△ODE= × BC× AF= BC•AF,∴ = = ,故④错误.故正确的是①③.故选B.9.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为( )A. B. C. D.【考点】函数的图象.【分析】先根据两车并非同时出发,得出D选项错误;再根据高铁从甲地到乙地的时间以及动车从甲地到乙地的时间,得出两车到达乙地的时间差,结合图形排除A、C选项,即可得出结论.【解答】解:由题可得,两车并非同时出发,故D选项错误;高铁从甲地到乙地的时间为615÷300=2.05h,动车从甲地到乙地的时间为615÷200+ ≈3.24h,∵动车先出发半小时,∴两车到达乙地的时间差为3.24﹣2.05﹣0.5=0.69h,该时间差小于动车从甲地到乙地所需时间的一半,故C选项错误;∵0.69>0.5,∴两车到达乙地的时间差大于半小时,故A选项错误,故选:B.10.如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为( )A.2B.3C.D.【考点】正方形的性质;直角三角形斜边上的中线.【分析】连接AC,易得△ACF是直角三角形,再根据直角三角形的性质即可得出结论.【解答】解:连接AC,∴四边形ABCD是正方形,∴∠BAC=45°.∵EF⊥AE,EF=AE,∴△AEF是等腰直角三角形,∴∠EAF=45°,∴∠CAF=90°.∵AB=BC=2,∴AC= =2 .∵AE=EF=AB+BE=2+1=3,∴AF= =3 ,∴CF= = = .∵M为CF的中点,∴AM= CF= .故选D.二、填空题(本大题共4小题,每小题5分,共20分)11.不等式组的解集是﹣3【考点】解一元一次不等式组.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3故答案为﹣312.去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月,3月的平均增长率为25% .【考点】一元二次方程的应用.【分析】根据“原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%”可列出关于x的一元二次方程,解方程即可得出结论;【解答】解:设2月,3月的平均增长率为x,根据题意得:4(1+x)2(1﹣36%)=4,解得:x=25%或x=﹣2.25(舍去)故答案为:25%.13.如图,C,D是以线段AB为直径的⊙O上的两点,若CA=CD,且∠ACD=40°,则∠CAB的度数为20°.【考点】圆周角定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【解答】解:∵∠ACD=40°,CA=CD,∴∠CAD=∠CDA= =70°,∴∠ABC=∠ADC=70°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=20°.故答案为:20°.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有①③④.(填序号)【考点】四边形综合题.【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF 的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【解答】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF= = =2 ,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.三、解答题(本大题共2小题,每小题8分,共16分)15.解方程: .【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,解得:x=30.16.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【考点】作图﹣轴对称变换;作图﹣平移变换.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴ = ,∵M为中点,∴ = ,∴ + = + ,即 = ,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵ = = = ,∴ = + = ,∴ 的长= × ×4π= ×4π= π.18.如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…(1)观察以上图形并完成下表:图形名称基本图形的个数菱形的个数图① 1 1图② 2 3图③ 3 7图④ 4 11… … …猜想:在图(n)中,菱形的个数为4n﹣5 (用含有n(n≥3)的代数式表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,1),则x1= ;第2017个基本图形的中心O2017的坐标为.【考点】利用轴对称设计图案;菱形的判定与性质;利用平移设计图案.【分析】(1)根据从第3个图形开始,每多一个基本图形就会多出4个菱形解答即可;(2)根据菱形的性质求得心O1的坐标为( ,1),据此可得.【解答】解:(1)由题意可知,图③中菱形的个数7=3+4×(3﹣2),图④中,菱形的个数为3+4×(4﹣2)=11,∵当n≥3时,每多一个基本图形就会多出4个菱形,∴图(n)中,菱形的个数为3+4(n﹣2)=4n﹣5,故答案为:11,4n﹣5;(2)过点O1作O1A⊥y轴,O1B⊥x轴,则OA=1,由菱形的性质知∠BAO1=30°,∴AO1= = =,即x1= ,中心O2的坐标为(2 ,1)、O3的坐标为(3 ,1)…,O2017的坐标为,故答案为:,.五、解答题(本大题共2小题,每小题10分,共20分)19.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,分别求出DF、BF的长度,在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.【解答】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,sin∠DBF= = ,cos∠DBF= = ,∵BD=6,∴DF=3,BF=3 ,∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=3 ,CF=BE=CD﹣DF=1,在Rt△ACE中,∠ACE=45°,∴AE=CE=3 ,∴AB=3 +1.答:铁塔AB的高为(3 +1)m.20.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【考点】反比例函数与一次函数的交点问题.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y= (x>0)的图象上,∴ .解得:m=8,n=4.∴反比例函数的表达式为y= .∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得: .∴一次函数的表达式为y= x+3.六、解答题(本题满分12分)21.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【考点】列表法与树状图法;轴对称图形;中心对称图形;概率公式.【分析】(1)若乙固定在E处,求出移动甲后黑色方块构成的拼图一共有多少种可能,其中是轴对称图形的有几种可能,由此即可解决问题.(2)①画出树状图即可解决问题.②中心对称图形有两种可能,由此即可解决问题.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .故答案为 .(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率= .②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F 处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是 .故答案为 .七、解答题(本题满分12分)22.某旅游风景区出售一种纪念品,该纪念品的成本为12元/个,这种纪念品的销售价格为x(元/个)与每天的销售数量y(个)之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)销售价格定为多少时,每天可以获得最大利润?并求出最大利润.(3)“十•一”期间,游客数量大幅增加,若按八折促销该纪念品,预计每天的销售数量可增加200%,为获得最大利润,“十•一”假期该纪念品打八折后售价为多少?【考点】二次函数的应用.【分析】(1)根据函数图象中两个点的坐标,利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析,利用二次函数的性质可得最值情况;(3)根据(2)中相等关系列出函数解析式,由二次函数的性质求解可得.【解答】解:(1)设y=kx+b,根据函数图象可得:,解得:,∴y=﹣5x+200;(2)设每天获利w元,则w=(x﹣12)y=﹣5x2+260x﹣2400=﹣5(x﹣26)2+980,∴当x=26时,w最大,最大利润为980元;(3)设“十一”假期每天利润为P元,则P=(0.8x﹣12)•y(1+200%)=﹣12x2+660x﹣7200=﹣12(x﹣ )2+1875,∴当x= 时,P最大,此时售价为0.8× =22,答:“十•一”假期该纪念品打八折后售价为22元.八、解答题(本题满分14分)23.如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽△ABF∽△BCD;②求证:△CDE∽△CBA;(2)求证:△FBD≌△EDC;(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.【考点】相似形综合题.【分析】(1)①根据等腰三角形的性质得到∠DBC=∠DCB,∠FBA=∠FAB,∠ACE=∠EAC,等量代换得到∠FAB=∠BCD=∠EAC,于是得到结论;②根据相似三角形的性质得到,根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到∠EDC=∠FBD,∠FDB=∠ACB等量代换得到∠FDB=∠ACB,根据全等三角形的判定即可得到结论;(3)根据全等三角形的性质得到FB=DE,DF=CE,等量代换得到FD=AE,FA=DE,推出四边形AFDE是平行四边形,连接AD,于是得到AD平分∠BAC,根据菱形的判定定理即可得到结论.【解答】解:(1)①∵DB=DC,∴∠DBC=∠DCB,∵FB=FA,EA=EC,∴∠FBA=∠FAB,∠ACE=∠EAC,∵∠FBA=∠DBC=∠ECA,∴∠FAB=∠BCD=∠EAC,∴△ACE∽△ABF∽△BCD;故答案为:△ABF,△BCD;②由①知,△ACE∽△BCD,∴ ,即,∵∠ECA=∠DCB,∴∠ECD=∠ACB,∴△CDE∽△CBA;(2)∵△CDE∽△CBA,∴∠ABC=∠EDC,∵∠ABC=∠FBD,∴∠EDC=∠FBD,同理△BFD∽△BAC,∴∠FDB=∠ACB,∵∠ACB=∠ECD,∴∠FDB=∠ACB,在△FBD与△EDC中,∴△FBD≌△EDC;(3)四边形AFDE是菱形,理由:∵△FBD≌△EDC,∴FB=DE,DF=CE,∵FB=FA,EA=EC,∴FD=AE,FA=DE,∴四边形AFDE是平行四边形,连接AD,则AD平分∠BAC,即∠BAD=∠CAD,∵∠BAF=∠CAE,∴∠DAF=∠DAE,∵AF∥DE,∴∠DAF=∠ADE,∴∠EAD=∠ADE,∴EA=ED,∴▱AFDE是菱形.。
连云港市中考数学2017(1-2班)

连云港市中考数学2017(1-2班)班级_________ 姓名___________ 得分__________一、选择题7.已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是 ( ) A.120y y >>B.210y y >>C.120y y >>D.210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是 ( ) A.4B.23C.2D.0二、填空题13.如图,在平行四边形ABCD 中,AE BC ^于点E ,AF CD ^于点F ,若60EAF =∠°,则B =∠ . 14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .15.设函数3y x =与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 . 16.如图,已知等边三角形OAB 与反比例函数()0,0ky k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知62sin154-=°)2 三、解答题21.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.如图,已知等腰三角形ABC 中,AB AC =,点D ,E 分别在边AB 、AC 上,且AD AE =,连接BE 、CD ,交于点F .(1)判断ABE ∠与ACD ∠的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .23.如图,在平面直角坐标系xOy 中,过点()2,0A -的直线交y 轴正半轴于点B ,将直线AB 绕着点O 顺时针旋转90°后,分别与x 轴y 轴交于点D 、C .w (1)若4OB =,求直线AB 的函数关系式;(2)连接BD ,若ABD △的面积是5,求点B 的运动路径长.24.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式; (2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.如图,湿地景区岸边有三个观景台A 、B 、C .已知1400AB =米,1000AC =米,B 点位于A 点的南偏西60.7°方向,C 点位于A 点的南偏东66.1°方向.w(1)求ABC △的面积;(2)景区规划在线段BC 的中点D 处修建一个湖心亭,并修建观景栈道AD .试求A 、D 间的距离.(结果精确到0.1米)2(参考数据:sin 53.20.80°≈,cos53.20.60°≈,sin 60.70.87°≈,cos60.70.49°≈,sin 66.10.91°≈,cos66.10.41°≈,2 1.414≈)26.如图,已知二次函数()230y ax bx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC .(1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG =.求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH BF ¹,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图2,当AH BF >时,若将点G 向点C 靠近(DG AE >),经过探索,发现:11112ABCD A B C D EFGH S S S =+矩形矩形四边形.如图3,当AH BF >时,若将点G 向点D 靠近(DG AE <,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S =四边形,29HF =,求EG 的长.(2)如图5,在矩形ABCD 中,3AB =,5AD =,点E 、H 分别在边AB 、AD 上,1BE =,2DH =,点F 、G 分别是边BC 、CD 上的动点,且10FG =,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.。
2017年江苏省连云港市中考数学试题

2021年江苏省连云港市中考数学试题一、1. 2的绝对值是( )A.2B.2C.12D.12【答案】B【解析】试题分析:根据绝对值的性质,一个正数的绝对值为本身,可知2的绝对值为2.应选:B考点:绝对值2. 计算2a a的结果是( )A.aB.2aC.22aD.3a【答案】D考点:同底数幂相乘3. 小广,小娇分别统计了自己近5次数学测试成绩,以下统计量中能用来比拟两人成绩稳定性的是( )【答案】A【解析】试题分析:根据方差的意义,可知方差越小,数据越稳定,因此可知比拟两人成绩稳定性的数据为方差. 应选:A 考点:方差4. 如图,ABC DEF △∽△,:1:2AB DE,那么以下等式一定成立的是( )A.12BCDFB. C. D.【答案】D考点:相似三角形的性质5. 由6个大小一样的正方体塔成的几何体如下图,比拟它的正视图,左视图和俯视图的面积,那么( )【答案】C 【解析】 应选:C 考点:三视图6. 关于8的表达正确的选项是( )8的点B.826C.8228最接近的整数是3【答案】D考点:二次根式 7. 抛物线20y ax a 过12,Ay ,21,By 两点,那么以下关系式一定正确的选项是( ) A.120y yB.210y y C.120y y D.210y y【答案】C 【解析】 应选:C考点:抛物线的增减性8. 如下图,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,那么点2017A 与点0A 间的距离是( )21A.4B.23C.2 【答案】A 【解析】试题分析:根据题意可知每六次循环一次,可知2021÷6=331……1,所以第2021次为A 1位置,由此可知其到A 0的距离正好等于直径的长4. 应选:A 考点:规律探索二、填空题〔每题3分,总分值24分,将答案填在答题纸上〕 9. 使分式11x 有意义的x 的取值范围是 .【答案】x≠1考点:分式有意义的条件 10. 计算22a a .【答案】24a【解析】试题分析:根据整式的乘法公式〔平方差公式()()22a b a b a b +-=-〕可得22a a 24a . 故答案为:24a考点:平方差公式11. 截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为.【答案】【解析】试题分析:由科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.因此6800000=.2-1-c-n-j-y故答案为:考点:科学记数法的表示较大的数12. 关于x的方程220x x m有两个相等的实数根,那么m的值是.【答案】1【解析】试题分析:根据一元二次方程根的判别式,可由方程有两个相等的实数根可的△2-4=4-4m=0,解得1.故答案为:1.考点:一元二次方程根的判别式13. 如图,在平行四边形ABCD中,AE BC于点E,AF CD于点F,假设∠°,那么BEAF60∠.【答案】60考点:1、四边形的内角和,2、平行四边形的性质14. 如图,线段AB与O⊙相切于点B,线段AO与O⊙相交于点C,12AB,8AC,那么O⊙的半径长为.【出处:21教育名师】【答案】5【解析】试题分析:连接,根据切线的性质可知⊥,可设圆的半径为r,然后根据勾股定理可得222()r AB r AC+=+,即22212(8)r r+=+,解得5.故答案为:5.考点:1、切线的性质,2、勾股定理15. 设函数3yx 与26y x的图象的交点坐标为,a b,那么12a b的值是.【答案】-2考点:分式的化简求值16. 如图,等边三角形OAB 与反比例函数0,0kyk x x的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,那么BD DC的值为 .()【答案】 【解析】试题分析:根据反比例函数图像与k 的意义,可知∠15°,∠45°,如图,过C 作⊥,⊥,可知,·15°=,然后根据相似三角形的判定可知△∽△,可得=.2 故答案为:考点:1、反比例函数的图像与性质,2、相似三角形的判定与性质,3、解直角三角形三、解答题 〔本大题共11小题,共102分.解容许写出文字说明、证明过程或演算步骤.〕 17. 计算:0318 3.14.【答案】0考点:实数的运算 18. 化简:211a a a a. 【答案】21a【解析】试题分析:根据分式的乘除法,先对分子分母分解因式,然后直接约分即可. 试题解析: 考点:分式的乘除 19. 解不等式组: .【答案】【解析】试题分析:分别解两个不等式,然后求它们的公共局部即可.试题解析:考点:解不等式组x分.校方从600幅参赛作品中随机抽取了局部参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答以下问题:(1)统计表中c的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)假设80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?【答案】(1)0.34,7080x.(2)图形见解析;(3) 180幅.〔3〕根据80分以上的频率求出估计值即可.试题解析:.(2)画图如图;(3)答:估计全校被展评的作品数量是180幅.考点:条形统计图;统计表--(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【答案】〔1〕13〔2〕23(2)列出树状图如下图:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122.183.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23考点:树状图法求概率22. 如图,等腰三角形ABC中,AB AC,点D,E分别在边AB、AC上,且AD AE,连接BE、CD,交于点F.(1)判断ABE∠的数量关系,并说明理由;∠与ACD(2)求证:过点A、F的直线垂直平分线段BC.【答案】(1)ABE ACD∠∠〔2〕证明见解析(2)因为AB AC,所以ABC ACB∠∠.由(1)可知ABE ACD∠∠,所以FBC FCB∠∠,所以FB FC又因为AB AC,所以点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.考点:1、全等三角形的判定,2、线段垂直平分线的判定23. 如图,在平面直角坐标系xOy中,过点2,0A的直线交y轴正半轴于点B,将直线AB 绕着点O 顺时针旋转90°后,分别与x 轴y 轴交于点D 、C .【来源:21·世纪·教育·网】 (1)假设4OB,求直线AB 的函数关系式;(2)连接BD ,假设ABD △的面积是5,求点B 的运动路径长.【答案】〔1〕24〔2〕 【解析】试题分析:〔1〕根据图像求出B 的坐标,然后根据待定系数法求出直线的解析式;〔2〕设,然后根据△的面积可得到方程,解方程可求出m 的值,由此可根据旋转的意义求出B 的路径的长-2-1--(2)设OB m ,因为ABD △的面积是5,所以152AD OB . 所以1252m m ,即22100m m . 解得111m或111m(舍去).因为90BOD ∠°,所以点B 的运动路径长为1111211142.考点:一次函数的图像与性质24. 某蓝莓种植生产基地产销两旺,采摘的蓝莓局部加工销售,局部直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)假设基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【答案】〔1〕35063000y x〔2〕安排7名工人进展采摘,13名工人进展加工,才能使一天的收入最大,最大收入为60550元21**【解析】试题分析:〔1〕根据题意可知x人参加采摘蓝莓,那么〔20-x〕人参加加工,可分别求出直接销售和加工销售的量,然后乘以单价得到收入钱数,列出函数的解析式;21**〔2〕根据采摘量和加工量可求出x的取值范围,然后根据一次函数的增减性可得到分配方案,并且求出其最值.试题解析:考点:二次函数的最值,二次函数的应用25. 如图,湿地景区岸边有三个观景台A、B、C.1400AC米,BAB米,1000点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求ABC△的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果准确到0.1米)(参考数据:sin53.20.80°≈,sin66.10.91°≈,°≈,cos60.70.49°≈,cos53.20.60°≈,sin60.70.87≈)cos66.10.41°≈,2 1.414试题解析:2222AD AF DF≈米.4004004002565.6答:A 、D 间的距离为565.6米.考点:解直角三角形 26. 如图,二次函数的图象经过点3,0A,4,1B,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;假设ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标;(3)假设将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?假设存在,求出此时抛物线的关系式;假设不存在,请说明理由.【答案】〔1〕215322y x x 〔2〕直角三角形,〔2,2〕〔3〕存在,抛物线的关系式为【解析】试题分析:〔1〕根据待定系数法可直接代入得到方程组求值,得到函数的解析式;〔2〕过点B作BD x轴于点D,然后根据角之间的关系得到是直角三角形,最后根据坐标得到D点;〔3〕取BC中点M,过点M作ME y轴于点E,根据勾股定理求出的长和的长,再通过平移的性质得到平移的距离,然后根据二次函数的平移性质可得到解析式.(2)ABC△为直角三角形.过点B作BD x轴于点D,易知点C坐标为0,3,所以OA OC,所以45OAC∠°,又因为点B坐标为4,1,所以AD BD,所以45∠°,BAD所以180454590∠°°°°,所以ABCBAC△为直角三角形,圆心M的坐标为2,2.(3)存在.取BC中点M,过点M作ME y轴于点E,因为M的坐标为2,2,所以22MC,22215OM,所以45∠°,MOA又因为45BAD ∠°,所以OM AB ∥,所以要使抛物线沿射线BA 方向平移, 且使1M ⊙经过原点, 那么平移的长度为225或225,因为45BAD∠°,所以抛物线的顶点向左、向下均分别平移个单位长度, 或个单位长度.综上所述,存在一个位置,使1M ⊙经过原点,此时抛物线的关系式为考点:二次函数的综合27. 如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG .求证:2ABCD EFGHS S 矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:假设图1中AHBF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .21·世纪*教育网 如图2,当AHBF 时,假设将点G 向点C 靠近(DG AE ),经过探索,发现:11112ABCDA B C D EFGHS S S 矩形矩形四边形.如图3,当AH BF 时,假设将点G 向点D 靠近(DG AE ,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究〞中发现的结论解答以下问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,AHBF ,AE DG ,11EFGHS 四边形,29HF,求EG 的长.(2)如图5,在矩形ABCD 中,3AB,5AD ,点E 、H 分别在边AB 、AD 上,1BE ,2DH,点F 、G 分别是边BC 、CD 上的动点,且10FG,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.【答案】问题呈现:2ABCD EFGH S S 矩形四边形;实验探究:11112ABCDA B C D EFGHS S S 矩形矩形四边形;迁移应用:〔1〕;〔2〕172试题解析:问题呈现:因为四边形ABCD 是矩形,所以AB CD ∥,90A ∠°,又因为AE DG ,所以四边形AEGD 是矩形,所以1122HEGAEGDS EG AE S△矩形,同理可得12FEG BCGES S△矩形. 因为HEGFEG EFGH S S S △△四边形,所以2ABCD EFGHS S 矩形四边形.实验探究:由题意得,当将点G 向点D 靠近DG AE时,如下图,1112HECHAEC S S△矩形,1112EFB EBFB S S△矩形, 1112FGA FCGA S S△矩形,1112GHD GDHD S S△矩形, 所以11111111HEC EFB FGA GHD A B C D EFGHSS S S S S △△△△矩形四边形, 所以1111111122HAEC EBFB FCGA CDHD A B C D EFGHS S S S S S 矩形矩形矩形矩形矩形四边形,即11112ABCDA B C D EFGHSS S 矩形矩形四边形.21世纪教育网所以112A D ,1132A B , 所以22211910952544EG A B , 所以,.〔2〕四边形EFGH面积的最大值为17.2考点:四边形的综合。
2017年江苏省连云港市中考数学试卷

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省连云港市2017年中考试卷数 学本试卷满分120分,考试时间120分钟.一、选择题(每小题3分,共24分)1.2的绝对值是( )A .2-B .2C .12- D .122.计算2a a 的结果是( )A .aB .2aC .22aD .3a3.小广、小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数4.如图,已知ABC DEF △∽△, : 1 : 2AB DE ,则下列等式一定成立的是 ( )A .12BC DFB . 1 2A D ∠的度数∠的度数C . 1 2ABC DEF △的面积△的面积D . 1 2ABC DEF △的周长△的周长(第4题)(第5题)(第8题)5.由6个大小相同的正方体塔成的几何体如图所示,比较它的主视图,左视图和俯视图的面积,则( )A .三个视图的面积一样大B .主视图的面积最小C .左视图的面积最小D .俯视图的面积最小 6.()A .B 26C 22D . 37.已知抛物线2(0)y ax a >过1(2,)A y ,2(1,)B y 两点,则下列关系式一定正确的是 ( ) A .120y y >>B .210y y >>C .120y y >>D .210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( )A .4B .C .2D .0二、填空题(每小题3分,共24分)9.使分式11x 有意义的x 的取值范围是 .10.计算(2)(2)a a .11.截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6 800 000吨,数据6 800 000用科学计数法可表示为 . 12.已知关于x 的方程220x x m 有两个相等的实数根,则m 的值是 .13.如图,在平行四边形ABCD 中,AE BC 于点E ,AF CD 于点F,若56EAF ∠°,则B ∠ .14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB ,8AC ,则O ⊙的半径长为 .(第13题)(第14题)(第16题) 15.设函数3y x与26yx 的图象的交点坐标为(,)a b ,则12a b的值是 .16.如图,已知等边三角形OAB 与反比例函数(0,0)ky k x x>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BD DC 的值为 (已知62sin15°). 三、解答题(本大题共11小题,共102分) 17.(6分)计算:03(1)8(π 3.14).-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共6页) 数学试卷 第4页(共6页)18.(6分)化简:211a aa a.19.(6分)解不等式组:314,32(1) 6.x x x <≤20.(8分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x ≤≤).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题:(1)统计表中c 的值为 ;样本成绩的中位数落在分数段 中; (2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类. (1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(10分)如图,已知等腰三角形ABC 中,ABAC ,点D ,E 分别在边AB 、AC 上,且ADAE ,连接BE 、CD ,交于点F .(1)判断ABE ∠与ACD ∠的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC .23.(10分)如图,在平面直角坐标系xOy 中,过点2,0A的直线交y 轴正半轴于点B ,将直线AB 绕着点O 顺时针旋转90°后,分别与x 轴y 轴交于点D 、C .(1)若4OB ,求直线AB 的函数关系式;(2)连接BD ,若ABD △的面积是5,求点B 的运动路径长.24.(10分)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓. (1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式; (2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)25.(10分)如图,湿地景区岸边有三个观景台A 、B 、C .已知 1 400AB 米, 1 000AC 米,B 点位于A 点的南偏西60.7°方向,C 点位于A 点的南偏东66.1°方向. (1)求ABC △的面积;(2)景区规划在线段BC 的中点D 处修建一个湖心亭,并修建观景栈道AD .试求A 、D 间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos53.20.60°≈,sin60.70.87°≈,cos60.70.49°≈,sin66.10.91°≈,cos66.10.41°≈1.414)26.(12分)如图,已知二次函数23(0)y ax bx a的图象经过点3,0A ,4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.(14分)问题呈现:如图①,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG .求证:2ABCD EFGH S S 矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图①中AHBF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图②,当AH BF 时,若将点G 向点C 靠近(DG AE >),经过探索,发现: 11112ABCD A B C D EFGH S S S 矩形矩形四边形.如图③,当AH BF >时,若将点G 向点D 靠近(DG AE <),请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图④,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S 四边形,29HF,求EG 的长.(2)如图⑤,在矩形ABCD 中,3AB ,5AD ,点E 、H 分别在边AB 、AD 上,1BE ,2DH ,点F 、G 分别是边BC 、CD 上的动点,且10FG ,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2017年江苏省各市中考数学试题汇总(13套)

文件清单:2017年中考真题精品解析数学(江苏无锡卷)(含答案)2017年中考真题精品解析数学(江苏连云港卷)(含答案)2017年江苏省徐州市中考数学试卷(含答案)2017年江苏省淮安市中考数学试卷(含答案)2017年江苏省盐城市中考数学试卷(含答案)2017年苏州市初中毕业暨升学考试试卷(含答案)2017年南京市初中毕业生学业考试(含答案)2017年江苏省南通市中考数学试题(含答案)2017年江苏省常州市中考数学试题及答案(含答案)2017年江苏省扬州市中考数学试题(含答案)2017年江苏省泰州市中考数学试题(含答案)2017年江苏省镇江市中考数学试题(含答案)2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣152.函数=2-xy x 中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >23.下列运算正确的是( )A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 54.下列图形中,是中心对称图形的是( )A .B .C .D .5.若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.3210.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75二、填空题(本大题共8小题,每小题2分,共16分)11.计算123的值是.12.分解因式:3a2﹣6a+3=.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由»AE,EF,»FB,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(63,则点M的坐标为.x图象上异于原点O的任意一点,经过T变换后得到点B.(2)A是函数y=32①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣15【答案】D .【解析】试题解析:∵﹣5×(﹣15)=1,∴﹣5的倒数是﹣15.故选D .考点:倒数2.函数=2-xy x 中自变量x 的取值范围是()A .x ≠2B .x ≥2C .x ≤2D .x >2【答案】A .考点:函数自变量的取值范围.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【答案】D.【解析】试题解析:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.4.下列图形中,是中心对称图形的是()A.B.C.D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式的加减.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,=0.5=50%,x2=﹣2.5(不合题意舍去),解得:x1答即该店销售额平均每月的增长率为50%;故选C.考点:一元二次方程的应用.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.32【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH=22AD DH-=12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=2285DH BH+=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线的性质;2.菱形的性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A .2B .54C .53D .75【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234+=5,∵CD=DB ,∴AD=DC=DB=52,∵12•BC•AH=12•AB•A C ,∴AH=125,在Rt △BCE 中,22222475()55BC BE -=-= .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.二、填空题(本大题共8小题,每小题2分,共16分)11.计算123⨯的值是.【答案】6.【解析】试题解析:123⨯==6.⨯=12336考点:二次根式的乘除法.12.分解因式:3a2﹣6a+3=.【答案】3(a﹣1)2.考点:提公因式法与公式法的综合运用.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表示为:2.5×105.考点:科学记数法—表示较大的数.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.的图象经过点(﹣1,﹣2),则k的值为.15.若反比例函数y=kx【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为c m2.【答案】15π.考点:圆锥的计算.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由»AE,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于 .【答案】534﹣6.【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1,∴GE=32,∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°, 同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π. 考点:1.扇形面积的计算;2.矩形的性质.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3. 【解析】试题解析:平移CD 到C ′D ′交AB 于O ′,如图所示,则∠BO ′D ′=∠BOD , ∴tan ∠BOD=tan ∠BO ′D ′, 设每个小正方形的边长为a ,则O ′B=22(2)5a a a +=,O ′D ′=22(2a)(2)22a a +=,BD ′=3a , 作BE ⊥O ′D ′于点E , 则BE=3a 232222BD O F a aO D a''==''g , ∴O ′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO ′E=32a2322BE O E a==',∴tan ∠BOD=3.考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数的运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x=+【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB 的延长线于点F,求证:AB=BF.【答案】证明见解析.【解析】试题分析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.学科网 试题解析:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ), ∴CD=BF , ∴AB=BF .考点:1.平行四边形的性质;2.全等三角形的判定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】1.3考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.考点:条形统计图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣3),则点M的坐标为.(2)A是函数y=32x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【答案】(1)Q(a+32b,12b);M(9,﹣23);(2)①y=37x;②34试题解析:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=12PC=12b,DQ=32PQ=32b,∴Q(a+32b,12b);(2)①∵A是函数y=32x图象上异于原点O的任意一点,∴可取A(2,3),∴2+32×3=72,12×3=32,∴B (72,2),设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7,∴直线OB 的函数表达式为y=7x ;②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得2+722k b k b ⎧'⎪⎨'+=⎪⎩,解得3k b ⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB 解析式为y=﹣3x+3,∴D (0,3),且A (2,B (72,2),∴,,∴OAB OAD S AB 3===S AD 4V V . 考点:一次函数综合题.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A 型 B 型 处理污水能力(吨/月)240180已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元. (1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)(2)由于求至少要支付的钱数,可知购买6台A 型污水处理器、3台B 型污水处理器,费用最少,进而求解即可.试题解析:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩,解得=10=8x y ⎧⎨⎩.答:设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.27.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=28x 2﹣24x ﹣1528.【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可解决问题;(2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.∴12AC PC AP CE CH HE ===, ∴CH=2n ,EH=2m=6, ∵CD ⊥AB , ∴PC=PD=n , ∵PB ∥HE ,∴△DPB ∽△DHE , ∴144PB DP n EH DH n ===, ∴3-1264m m =+,∴m=1, ∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9, 连接OP ,在Rt △OCP 中,PC=2222OC OP -=∴2,2∴E(9,62),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,62)代入得到a=28,∴抛物线的解析式为y=28(x+3)(x﹣5),即y=28x2﹣24x﹣1528.考点:圆的综合题.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【答案】(1) 83;(2) 477≤m<47.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得AD ABCD PD,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形, ∴CM=EQ=3,∠M=90°, ∴EM=2222437EC CM -=-=,∵∠DAC=∠EDM ,∠ADC=∠M , ∴△ADC ∽△DME ,AD DGDM EM=, ∴77AD =,∴AD=47,由△DME ∽△CDA , ∴DM EM =CD AD, ∴71=4AD,∴AD=47,综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围477≤m <47.考点:四边形综合题.2017年江苏省连云港市中考数学试题数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2的绝对值是( ) A.2-B.2C.12-D.122.计算2a a ×的结果是( ) A.aB.2aC.22aD.3a3.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数4.如图,已知ABC DEF △∽△,:1:2AB DE =,则下列等式一定成立的是( )A.12BC DF=B.12A D =∠的度数∠的度数C.12ABC DEF =△的面积△的面积D.12ABC DEF =△的周长△的周长5.由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则( )A.三个视图的面积一样大 C.主视图的面积最小 C.左视图的面积最小D.俯视图的面积最小6.8( )A.8826C.822=?D.837.已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是( ) A.120y y >>B.210y y >>C.120y y >>D.210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( )A.4B.23C.2D.0二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.使分式11x -有意义的x 的取值范围是 . 10.计算()()22a a -+= .11.截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为 .12.已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 . 13.如图,在平行四边形ABCD 中,AE BC ^于点E ,AF CD ^于点F ,若60EAF =∠°,则B =∠ .14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .15.设函数3y x=与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 .16.如图,已知等边三角形OAB 与反比例函数()0,0k y k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知62sin154-=°)三、解答题 (本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:()()0318 3.14p ---+-.18.化简:211a a a a-×-.19.解不等式组:()3143216x x x ì-+<ïí--?ïî.20.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x#).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题: (1)统计表中c 的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.如图,已知等腰三角形ABC中,AB AC=,点D,E分别在边AB、AC上,且AD AE=,连接BE、CD,交于点F.(1)判断ABE∠的数量关系,并说明理由;∠与ACD(2)求证:过点A、F的直线垂直平分线段BC.23.如图,在平面直角坐标系xOy中,过点()A-的直线交y轴正半轴于点B,2,0将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD△的面积是5,求点B的运动路径长.24.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.如图,湿地景区岸边有三个观景台A、B、C.已知1400AC=米,AB=米,1000B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求ABC△的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos60.70.49°≈,°≈,sin66.10.91°≈,sin60.70.87°≈,cos53.20.60≈)cos66.10.41°≈,2 1.41426.如图,已知二次函数()230y axbx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG =. 求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH BF ¹,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图2,当AH BF >时,若将点G 向点C 靠近(DG AE >),经过探索,发现:11112ABCD A B C D EFGH S S S =+矩形矩形四边形.如图3,当AH BF >时,若将点G 向点D 靠近(DG AE <,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S =四边形,29HF ,求EG 的长.(2)如图5,在矩形ABCD中,3AD=,点E、H分别在边AB、AD上,1AB=,5BE=,FG=,连接EF、HG,请DH=,点F、G分别是边BC、CD上的动点,且102直接写出四边形EFGH面积的最大值.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 2的绝对值是( ) A.2-B.2C.12-D.12【答案】B 【解析】试题分析:根据绝对值的性质,一个正数的绝对值为本身,可知2的绝对值为2. 故选:B 考点:绝对值2. 计算2a a ×的结果是( ) A.aB.2aC.22aD.3a【答案】D考点:同底数幂相乘3. 小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数。
2017连云港中考试卷解析版

2017年江苏省连云港市中考数学试卷满分:150分 版本:苏科版 第I 卷(选择题,共24分)一、选择题(每小题3分,共8小题,合计24分) 1.(2017江苏连云港)2的绝对值是A .-2B .2C .12- D .12答案:B ,解析:根据“正数的绝对值是本身”可知2的绝对值是2. 2.(2017江苏连云港)计算2a a ×的结果是A .aB .2aC .22aD .3a答案:D ,解析:根据“同底数幂相乘,底数不变,指数相加”,可得2a a ×=3a .3.(2017江苏连云港)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是A .方差B .平均数C .众数D .中位数答案:A ,解析:一组数据的波动大小(稳定性)用方差来表示.4.(2017江苏连云港)如图,已知ABC DEF △∽△,:1:2AB DE =,则下列等式一定成立的是A .12BC DF = B .12A D =∠的度数∠的度数 C .12ABC DEF =△的面积△的面积 D .12ABC DEF =△的周长△的周长答案:D ,解析:已知ABC DEF △∽△且相似比为1∶2,A 选项中BC 与DF 不是对应边; B 选项中的∠A 和∠D 是一对对应角,根据“相似三角形的对应角相等”可得∠A =∠D ;根据“相似三角形的面积比等于相似比的平方”可得两个三角形的面积比是1∶4,根据“相似三角形的周长比等于相似比”可得两个三角形的周长比是1∶2;因此A 、 B 、 C 选项错误D 选项正确.5.(2017江苏连云港)由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则 A .三个视图的面积一样大 B .主视图的面积最小 C .左视图的面积最小 D .俯视图的面积最小答案:C ,解析:分别画出这个几何体的正视图,左视图和俯视图,假设每个正方体的一个侧面的面积为1,则正视图的面积为5,左视图的面积为3,俯视图的面积为4,得到左视图的面积最小,故选择C 选项.6.(2017A BC .228±=D 3答案:D ,解析:根据“实数与数轴上的点是一一对应”A错误;8表示8的算术平方根,化简结果为228=故B 、 C 选项错误;∵2.8<8<2.9最接近的整数是3,因此D 选项正确.7.(2017江苏连云港)已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是A .120y y >>B .210y y >>C .120y y >>D .210y y >>答案:C ,解析:∵()20y ax a =>∴抛物线的开口向上,对称轴为y 轴,()12,A y -在对称轴的左侧,()21,B y 在对称轴的右侧,点A 离开对称轴的距离大于点B 离开对称轴的距离,∴120y y >>因此选择C 选项.8.(2017江苏连云港)如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是A .4B .C .2D .0答案:A ,解析:如图所示,当点A 0运动到A 6处时,与A 0重合,2017÷6=336---1,即点2017A 与点A 1重合,点2017A 与点0A 间的距离即是0A A 1为O ⊙的直径,故点2017A 与点0A 间的距离是4,因此选择A .第II 卷(非选择题,共126分) 二、填空题:本大题共6个题,每小题4分,满分24分.9.(2017江苏连云港)使分式11x -有意义的x 的取值范围是 .答案:x ≠1,解析:根据分式有意义的条件,分母不为零,可得x -1≠0,即x ≠1.10.(2017江苏连云港)计算()()22a a -+= .答案:24a-,解析:根据整式的乘法公式(平方差公式()()22a b a b a b +-=-)可得()()22a a -+=24a-.11.(2017江苏连云港)截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为 .答案:6.8×106,解析:由科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.因此6800000=6.8×106. 12.(2017江苏连云港)已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 .答案:1,解析:根据一元二次方程根的判别式,可由方程有两个相等的实数根可得△=b 2-4ac =4-4m =0,解得m =1.13.(2017江苏连云港)如图,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若60EAF =∠°,则B =∠ .答案:60°,解析:根据四边形的内角和,由垂直的性质可求得∠C =360°-90°-90°=120-90°,再根据平行四边形的性质可求得∠B =60°.14.(2017江苏连云港)如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .答案:5,解析:连接OB ,根据切线的性质可知OB ⊥AB ,设圆的半径为r ,然后根据勾股定理可得222()r AB r AC +=+,即22212(8)r r +=+,解得r =5. 15.(2017江苏连云港)设函数3y x =与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 .答案:-2,解析:根据函数的交点(),a b ,可代入两个函数的解析式得ab =3,b =-2a-6,即b +2a=-6,然后通分236211-=-=+=+ab a b b a . 16.(2017江苏连云港)如图,已知等边三角形OAB 与反比例函数()0,0ky k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知sin15°)k 的意义,可知∠BOD =15°,∠DOC =45°,如图,过C 作CF ⊥OD ,BE ⊥OD ,可知OF =CF ,BE =OB ·sin15°,然后根据相似三角形的判定可知△CDF ∽△BDE ,可得BD BE DC CF =.三、解答题:本大题共11个小题,满分102分.17.(2017江苏连云港)(本小题满分6分)计算:()()01 3.14p ----.思路分析:根据实数的运算,结合立方根,零次幂的性质可求解,解:原式=1-2+1=0.18.(2017江苏连云港)(本小题满分6分)化简:211a a a a-×-. 思路分析:根据分式的乘除法,先对分子分母分解因式,然后直接约分即可,解:原式=211)1(1aa a a a =-⨯-.19.(2017江苏连云港)(本小题满分6分)解不等式组:⎩⎨⎧≤--<+-6)1(23413x x x .思路分析:分别解两个不等式,然后求它们的公共部分即可, 解:解不等式314x -+<,得1x >-. 解不等式3x -2(x -1) ≤6,得x ≤4. 所以,原不等式组的解集是1<x ≤4.20.(2017江苏连云港)(本小题满分8分) 某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60≤x ≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题: (1)统计表中c 的值为 ;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?思路分析:(1)根据统计表中频率的和为1可求解c的值,然后根据安从小到大排列的数据,找到中间一个或两个的平均数即可判断样本成绩的中位数落在的分数段,(2)分别求出a、b的值,然后补全频数分布直方图,(3)根据80分以上的频率求出估计值即可,解:(1)0.34,70≤x<80.(2)画图如图;(3)600×(0.24+0.06)=180 (幅)答:估计全校被展评的作品数量是180幅.21.(2017江苏连云港)(本小题满分10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.思路分析:(1)根据垃圾总共有三种,A类只有一种可直接求概率,(2)列出树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可,解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122183==. 即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23. 22.(2017江苏连云港)(本小题满分10分) 如图,已知等腰三角形ABC 中,AB AC =,点D ,E 分别在边AB 、AC 上,且AD AE =,连接BE 、CD ,交于点F .(1)判断ABE ∠与ACD ∠的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC .思路分析:(1)根据全等三角形的判定SAS 可证明△ABE ≌△ACD ,然后证ABE ∠=ACD ∠,(2)根据(1)的结论可得AB =AC ,从而得ABC ACB =∠∠,∵ABE ACD =∠∠∴FBC FCB =∠∠∴FB FC =,得点A 、F 均在线段BC 的垂直平分线上,即可证出结论,解:(1)ABE ACD =∠∠.因为AB AC =,BAE CAD =∠∠,AE AD =,所以ABE ACD △≌△. 所以ABE ACD =∠∠.(2)因为AB AC =,所以ABC ACB =∠∠.由(1)可知ABE ACD =∠∠,所以FBC FCB =∠∠,所以FB FC =. 又因为AB AC =,所以点A 、F 均在线段BC 的垂直平分线上, 即直线AF 垂直平分线段BC .23.(2017江苏连云港)(本小题满分10分) 如图,在平面直角坐标系xOy 中,过点()2,0A -的直线交y 轴正半轴于点B ,将直线AB 绕着点O 顺时针旋转90°后,分别与x 轴y 轴交于点D 、C .(1)若4OB =,求直线AB 的函数关系式;(2)连接BD ,若ABD △的面积是5,求点B 的运动路径长.思路分析:(1)根据图像求出B 的坐标,然后根据待定系数法求出直线AB 的解析式; (2)设OB =m ,然后根据△ABD 的面积可得到方程,解方程可求出m 的值,由此可根据旋转的意义求出B 的路径的长,解:(1)因为4OB =,且点B 在y 轴正半轴上,所以点B 坐标为()0,4. 设直线AB 的函数关系式为y kx b =+,将点()2,0A -,()0,4B 的坐标分别代入得⎩⎨⎧=+-=024b k b ,解得⎩⎨⎧==24k b ,所以直线AB 的函数关系式为24y x =+.(2)设OB m =,因为ABD △的面积是5,所以521=⨯OB AD . 所以()1252m m +=,即22100m m +-=.解得1m =-或1m =--舍去). 因为90BOD =∠°, 所以点B 的运动路径长为ππ2111)111(241+-=+-⨯. 24.(2017江苏连云港)(本小题满分10分)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式; (2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.思路分析:(1)根据题意可知x 人参加采摘蓝莓,则(20-x )人参加加工,可分别求出直接销售和加工销售的量,然后乘以单价得到收入钱数,列出函数的解析式;(2)根据采摘量和加工量可求出x 的取值范围,然后根据一次函数的增减性可得到分配方案,并且求出其最值,解:(1)根据题意得:63000350)20(35130)]20(3570[40y +-=-⨯+--=x x x x . (2)因为)20(3570x x -≥,解得320≥x ,又因为x 为正整数,且x ≤20. 所以7≤x ≤20,且x 为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,y 取最大值,最大值为60550630007350=+⨯-.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.25.(2017江苏连云港)(本小题满分10分)如图,湿地景区岸边有三个观景台A 、B 、C .已知1400AB =米,1000AC =米,B 点位于A 点的南偏西60.7°方向,C 点位于A 点的南偏东66.1°方向. (1)求ABC △的面积;(2)景区规划在线段BC 的中点D 处修建一个湖心亭,并修建观景栈道AD .试求A 、D 间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos53.20.60°≈,sin60.70.87°≈,cos60.70.49°≈,sin66.10.91°≈,cos66.10.41°≈ 1.414)思路分析:(1)过点C 作CE ⊥BA 交BA 的延长线于点E ,然后根据直角三角形的内交回求出∠CAE ,再根据正弦的性质求出的长,从而得到ABC △的面积;(2)连接AD ,过D 作DF ⊥AB ,垂足为点F ,则DF ∥CE,然后根据中点的性质和余弦值求出BE 、AE 的长,再根据勾股定理求解即可.解:(1)过点C 作CE ⊥BA 交BA 的延长线于点E , 在Rt AEC △中,18060.766.153.2CAE=--=∠°°°°,所以CE =AC ·sin53.2°=1000×0.8=800米. 所以S △ABC =56000080014002121=⨯⨯=⨯CE AB (平方米). (2)连接AD ,过D 作DF ⊥AB ,垂足为点F ,则DF ∥CE , ∵D 是BC 的中点, ∴DF=21CE=400米,且F 为BE 的中点, 在Rt AEC △中,AE =AC ·cos53.2°=1000×0.6=600米. ∴BE=BA+AE=1400+600+2000米 ∴AF=21BE-AE=400米, 在Rt △ADF 中,565.6AD 米.答:A 、D 间的距离为565.6米..26.(2017江苏连云港)(本小题满分12分)如图,已知二次函数3ax y 2++=bx (a ≠0)的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.思路分析:(1)根据待定系数法可直接代入得到方程组求值,得到函数的解析式;(2)过点B 作BD ⊥x 轴于点D ,然后根据角之间的关系得到是直角三角形,最后根据坐标得到D 点;(3)取BC 中点M ,过点M 作ME ⊥y 轴于点E ,根据勾股定理求出MC 的长和OM 的长,再通过平移的性质得到平移的距离,然后根据二次函数的平移性质可得到解析式,解:1)把点()3,0A ,()4,1B 代入23y ax bx =++中得⎩⎨⎧=++=++134140339b a b a ,解得⎪⎪⎩⎪⎪⎨⎧-==2521b a ,所以所求函数的关系式为215322y x x =-+.(2)ABC △为直角三角形. 过点B 作BD ⊥x 轴于点D ,易知点C 坐标为()0,3,所以OA OC =,所以45OAC =∠°, 又因为点B 坐标为()4,1,所以AD BD =,所以45BAD =∠°, 所以180454590BAC =--=∠°°°°,所以ABC△为直角三角形,圆心M 的坐标为()2,2. (3)存在.取BC 中点M ,过点M 作ME ⊥y 轴于点E ,。
(完整word版)2017年连云港市中考数学试卷分析

2017年连云港市中考数学试卷分析(连云港市赣马初级中学张莉)2017年连云港市中考数学试题全面、准确地考查了学生在初中阶段所学的知识,准确地把握了《新课程标准》和《命题指导纲要》有利于指导初中数学教学,有利于学生的全面发展。
总体来说,试题具有基础和能力并重的特点,贴近实际突出数学的应用性,让学生通过试题来解决实际问题,切实体现了“数学来源于生活,而又高于生活”。
一、试卷结构分析今年的题型结构与往年相比,题型结构总体稳定,灵活性加强,注重考察学生的综合能力。
整套试题满分150分,考试时间120分钟,共四大题27个小题。
1、题型题量:全卷共有三种题型四道大题27个小题,其中选择题8道(共24分),填空题8道(24分),解答题分两部分共11道(102分)。
2、考查内容分布:从考查内容来看,今年的试卷涉及《数学课程标准》规定的“数与代数”、“空间与图形”、“统计与概率”、“实践与应用”四大知识领域,并且对初中数学的主要内容:函数、方程与不等式、三角形、四边形、圆、统计、概率都作了重点考查。
二、试题分析的交点问题;等边三角形的性质;翻折变换;解直角三角形三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,根据等腰直角三角形斜边是直角边的倍表示斜边的长,从而解决问题.17实数的运算;零指数幂考查了实数的运算,零指数幂,属于基础题,熟记实数运算法则即可解题.18分式的乘除法考查了分式的乘法,利用分式的乘法是解题关键19解一元一次不等式组考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键20频数(率)分布直方图;:用样本估计总体;频数(率)分布表;中位数.菁优考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题题解题的关键是学会利用分割法添加辅助线,学会利用特殊位置解决问题,属于中考压轴题重点分析题型:25.(10分)(2017•连云港)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).【考点】:解直角三角形的应用﹣方向角问题.【分析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可;【解答】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=AC•sin53.2°≈1000×0.8=800米.∴S△ABC=•AB•CE=×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF∥CE.∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=400米,∵AE=AC•cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=EB﹣AE=400米,在Rt△ADF中,AD==400=565.6米.【点评】本题考查解直角三角形﹣方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.另本题与高中将要学习的三角函数有着紧密的联系,从试卷答题情况可以在一定程度上反映出学生的上升力。
2017年江苏省连云港市中考数学试卷(含答案解析版)

2017年江苏省连云港市中考数学试卷(含答案解析版)2017年江苏省连云港市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1. (3分)2的绝对值是()A.- 2 B . 2 C. - L D.二2 22. (3分)计算a?a2的结果是()A. aB. a2C. 2a2D. a33. (3分)小广、小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数4. (3分)如图,已知△ AB3A DEF AB DE=1: 2,则下列等式一定成立的是()A阮=1BZA的度数」C △怔C的面和」D △怔C的周长=_5 = 2 . 的度数P . ADEF的面积~ 的周长~5. (3分)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯A.三个视图的面积一样大B?主视图的面积最小C.左视图的面积最小D.俯视图的面积最小6. (3分)关于:一:的叙述正确的是()A.在数轴上不存在表示的点B . +一'■C. :- = ± 2二 D .与:一:最接近的整数是37. (3分)已知抛物线y=ax2(a>0)过A (- 2, yj、B (1, y?)两点,贝U下列关系式一定正确的是(、A. y >0>y2B. y >0>yC. y1>y2>0D. y2>y1> 08. (3分)如图所示,一动点从半径为2的。
O上的A)点出发,沿着射线AO方向运动到。
O 上的点A处,再向左沿着与射线AO夹角为60°的方向运动到。
O上的点A处;接着又从A点出发,沿着射线AO方向运动到O O上的点A处,再向右沿着与射线AO夹角为60°的方向…按此规律运动到点A2017处,则点A2017与点A间的距离是运动到。
2017年江苏省连云港市中考数学试卷(2)

2017年江苏省连云港市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)计算a•a2的结果是()A.a B.a2C.2a2D.a33.(3分)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数4.(3分)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=5.(3分)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小6.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是37.(3分)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>08.(3分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O 方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.2 C.2 D.0二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)分式有意义的x的取值范围为.10.(3分)计算(a﹣2)(a+2)=.11.(3分)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为.12.(3分)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.13.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B=°.14.(3分)如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.15.(3分)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是.16.(3分)如图,已知等边三角形OAB与反比例函数y=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:﹣(﹣1)﹣+(π﹣3.14)0.18.(6分)化简•.19.(6分)解不等式组.20.(8分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(10分)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC 上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.23.(10分)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.24.(10分)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.(10分)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).26.(12分)如图,已知二次函数y=ax 2+bx +3(a ≠0)的图象经过点A (3,0),B (4,1),且与y 轴交于点C ,连接AB 、AC 、BC .(1)求此二次函数的关系式;(2)判断△ABC 的形状;若△ABC 的外接圆记为⊙M ,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点A 1、B 1、C 1,△A 1B 1C 1的外接圆记为⊙M 1,是否存在某个位置,使⊙M 1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.(14分)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE=DG ,求证:2S 四边形EFGH =S 矩形ABCD .(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1. 如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S .如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩与S之间的数量关系,并说明理由.形ABCD迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已=11,HF=,求EG的长.知AH>BF,AE>DG,S四边形EFGH(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值.2017年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)(2017•连云港)2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:2的绝对值是2.故选:B.【点评】此题考查了绝对值的性质,属于基础题,解答本题的关键是掌握正数的绝对值是它本身.2.(3分)(2017•连云港)计算a•a2的结果是()A.a B.a2C.2a2D.a3【分析】根据同底数幂的乘法,可得答案.【解答】解:a•a2=a3,故选:D.【点评】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.3.(3分)(2017•连云港)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3分)(2017•连云港)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=【分析】根据相似三角形的性质判断即可.【解答】解:∵△ABC∽△DEF,∴=,A不一定成立;=1,B不成立;=,C不成立;=,D成立,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等、相似三角形(多边形)的周长的比等于相似比、相似三角形的面积的比等于相似比的平方是解题的关键.5.(3分)(2017•连云港)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【解答】解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,因此左视图的面积最小.故选:C.【点评】此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.(3分)(2017•连云港)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是3【分析】根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.【解答】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.【点评】考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.7.(3分)(2017•连云港)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0【分析】依据抛物线的对称性可知:(2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(﹣2,y1)关于y轴对称点的坐标为(2,y1).又∵a>0,0<1<2,∴y2<y1.故选:C.【点评】本题主要考查的是二次函数的性质,熟练掌握二次函数的对称性和增减性是解题的关键.8.(3分)(2017•连云港)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.2 C.2 D.0【分析】根据题意求得A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…于是得到A2017与A1重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴A0A2017=2R=4.故选A.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)(2017•连云港)分式有意义的x的取值范围为x≠1.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(3分)(2017•连云港)计算(a﹣2)(a+2)=a2﹣4.【分析】根据平方差公式求出即可.【解答】解:(a﹣2)(a+2)=a2﹣4,故答案为:a2﹣4.【点评】本题考查了平方差公式,能熟记平方差公式的内容是解此题的关键.11.(3分)(2017•连云港)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为 6.8×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将6800000用科学记数法表示为:6.8×106.故答案为:6.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•连云港)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是1.【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4m=0,解之即可得出结论.【解答】解:∵关于x的方程x2﹣2x+m=0有两个相等的实数根,∴△=(﹣2)2﹣4m=4﹣4m=0,解得:m=1.故答案为:1.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.13.(3分)(2017•连云港)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B=56°.【分析】根据四边形的内角和等于360°求出∠C,再根据平行四边形的邻角互补列式计算即可得解.【解答】解:∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°,在四边形AECF中,∠C=360°﹣∠EAF﹣∠AEC﹣∠AFC=360°﹣56°﹣90°﹣90°=124°,在▱ABCD中,∠B=180°﹣∠C=180°﹣124°=56°.故答案为:56.【点评】本题考查了平行四边形的性质,四边形的内角和,熟记平行四边形的邻角互补是解题的关键.14.(3分)(2017•连云港)如图,线段AB与⊙O相切于点B,线段AO与⊙O 相交于点C,AB=12,AC=8,则⊙O的半径长为5.【分析】连接OB,根据切线的性质求出∠ABO=90°,在△ABO中,由勾股定理即可求出⊙O的半径长.【解答】解:连接OB,∵AB切⊙O于B,∴OB⊥AB,∴∠ABO=90°,设⊙O的半径长为r,由勾股定理得:r2+122=(8+r)2,解得r=5.故答案为:5.【点评】本题考查了切线的性质和勾股定理的应用,关键是得出直角三角形ABO,主要培养了学生运用性质进行推理的能力.15.(3分)(2017•连云港)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b的值代入即可求出值.【解答】解:∵函数y=与y=﹣2x﹣6的图象的交点坐标是(a,b),∴将x=a,y=b代入反比例解析式得:b=,即ab=3,代入一次函数解析式得:b=﹣2a﹣6,即2a+b=﹣6,则+===﹣2,故答案为:﹣2.【点评】此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a与b的关系式是解本题的关键.16.(3分)(2017•连云港)如图,已知等边三角形OAB与反比例函数y=(k >0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线OM:y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解答】解:如图,过O作OM⊥AB于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数y=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°==,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=x,∴OB=x,∴=,∴BF=,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴==,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,根据等腰直角三角形斜边是直角边的倍表示斜边的长,从而解决问题.三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)(2017•连云港)计算:﹣(﹣1)﹣+(π﹣3.14)0.【分析】先去括号、开方、零指数幂,然后计算加减法.【解答】解:原式=1﹣2+1=0.【点评】本题考查了实数的运算,零指数幂,属于基础题,熟记实数运算法则即可解题.18.(6分)(2017•连云港)化简•.【分析】根据分式的乘法,可得答案.【解答】解:原式=•=.【点评】本题考查了分式的乘法,利用分式的乘法是解题关键.19.(6分)(2017•连云港)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣3x+1<4,得:x>﹣1,解不等式3x﹣2(x﹣1)≤6,得:x≤4,∴不等式组的解集为﹣1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2017•连云港)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为0.34;样本成绩的中位数落在分数段70≤x<80中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?【分析】(1)由60≤x<70频数和频率求得总数,根据频率=频数÷总数求得a、b、c的值,由中位数定义求解可得;(2)根据(1)中所求数据补全图形即可得;(3)总数乘以80分以上的频率即可.【解答】解:(1)本次调查的作品总数为18÷0.36=50(幅),则c=17÷50=0.34,a=50×0.24=12,b=50×0.06=3,其中位数为第25、26个数的平均数,∴中位数落在70≤x<80中,故答案为:0.34,70≤x<80;(2)补全图形如下:(3)600×(0.24+0.06)=180(幅),答:估计全校被展评作品数量是180幅.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2017•连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:,由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.22.(10分)(2017•连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E 分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.23.(10分)(2017•连云港)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x 轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【分析】(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.【解答】解:(1)∵OB=4,∴B(0,4)∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴AD•OB=5,∴(m+2)•m=5,即m2+2m﹣10=0,解得m=﹣1+或m=﹣1﹣(舍去),∵∠BOD=90°,∴点B的运动路径长为:×2π×(﹣1+)=π.【点评】本题考查的是待定系数法求一次函数的解析式以及三角形面积公式和弧长计算,难度一般.24.(10分)(2017•连云港)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【分析】(1)根据总销售收入=直接销售蓝莓的收入+加工销售的收入,即可得出y关于x的函数关系式;(2)由采摘量不小于加工量,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.【解答】解:(1)根据题意得:y=[70x﹣(20﹣x)×35]×40+(20﹣x)×35×130=﹣350x+63000.答:y与x的函数关系式为y=﹣350x+63000.(2)∵70x≥35(20﹣x),∴x≥.∵x为正整数,且x≤20,∴7≤x≤20.∵y=﹣350x+63000中k=﹣350<0,∴y的值随x的值增大而减小,∴当x=7时,y取最大值,最大值为﹣350×7+63000=60550.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【点评】本题考查了一次函数的应用、一次函数的性质以及解一元一次不等式,解题的关键是:(1)根据数量关系,找出y与x的函数关系式;(2)根据一次函数的性质,解决最值问题.25.(10分)(2017•连云港)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).【分析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可;【解答】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=AC•sin53.2°≈1000×0.8=800米.∴S=•AB•CE=×1400×800=560000平方米.△ABC(2)连接AD,作DF⊥AB于F.,则DF∥CE.∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=400米,∵AE=AC•cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=EB﹣AE=400米,在Rt△ADF中,AD==400=565.6米.【点评】本题考查解直角三角形﹣方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.26.(12分)(2017•连云港)如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.【分析】(1)直接利用待定系数法求出a,b的值进而得出答案;(2)首先得出∠OAC=45°,进而得出AD=BD,求出∠OAC=45°,即可得出答案;(3)首先利用已知得出圆M平移的长度为:2﹣或2+,进而得出抛物线的平移规律,即可得出答案.【解答】解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠OAC=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC==,OM=2,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA方向平移,且使⊙M1经过原点,则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y=x2﹣x+3=(x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:y=(x﹣)2﹣或y=(x﹣)2﹣.【点评】此题主要考查了二次函数综合以及二次函数的平移、等腰直角三角形的性质等知识,正确得出圆M的平移距离是解题关键.27.(14分)(2017•连云港)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求=S矩形ABCD.(S表示面积)证:2S四边形EFGH实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB 边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S=S矩形ABCD+S.四边形EFGH如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD与S 之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF=,求EG 的长.(2)如图5,在矩形ABCD 中,AB=3,AD=5,点E 、H 分别在边AB 、AD 上,BE=1,DH=2,点F 、G 分别是边BC 、CD 上的动点,且FG=,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.【分析】问题呈现:只要证明S △HGE =S 矩形AEGD ,同理S △EGF =S 矩形BEGC ,由此可得S 四边形EFGH =S △HGE +S △EFG =S 矩形BEGC ; 实验探究:结论:2S四边形EFGH =S 矩形ABCD ﹣.根据=,=,=,=,即可证明;迁移应用:(1)利用探究的结论即可解决问题. (2)分两种情形探究即可解决问题. 【解答】问题呈现:证明:如图1中,。
(完整word版)连云港2017中考数学试卷分析

2017年连云港市中考数学试卷简析2017年的中考终于结束了,今年中考的数学试卷总体难度适中,考法也较为传统,试卷结构相较往年没有什么较大的变化,1-8题为选择题,占24分;9-16题为填空题,占24分;17~27题为解答题,占102分。
选择题均以基础为主,连往常一般会有一定难度的第7题较为简单,考察二次函数的性质和新定义题型,属于学生平时较常练习⊙上的运动规律,大部分考生难以解答的题型;第8题考察动点在O且用时较多,得分率很低,不过这也是近几年各省市的热门考点。
填空题前五题属于基础题型,考察难度不大。
第16题考查反比例函数和三角形翻折中的线段比例关系,相比往年的填空压轴题难度也有所上升。
17~22题为解答题,难度中等。
今年解答题中考查了概率和数据的统计,难度更低。
但是数据的统计与分析由于考查较少,容易被学生忽略,也有可能成为这次考试的一个绊脚石。
尺规作图今年没有考,这还是出乎了不少老师的意料。
压轴题部分,难度相对往年有所下降。
25题第(1)小题求三角形的面积,难度很低;第(2)小题考查三角函数难度也不是很大。
26题考查二次函数的综合知识,第(1)小题考查一元二次方程根的判别式,较为常规,但此题二次项系数不为零容易忽视,学生平时需总结常犯的错误;第(2)小题考查抛物线中三角形的形状判定,对学生知识点的综合性及灵活性的要求加大了很多,得分率不是很高;第(3)小题考查抛物线的运动,函数过定点问题,其问法较为常见,会有部分学生难以理解题目的意思,对解题造成一定的阻碍,导致得分率更低。
27题考查探究和迁移,综合性明显加大,对学生的要求就更高了,如果平时疏于此类题的练习,想得分很难。
相比往年的中考题目,今年的试卷在知识点方面考查比较全面,基础题难度方面总体有所下降,难点集中在26、27题,但压轴题的计算量相比往年有明显减少,整体难度相比往年也有所上升。
2017年8月30日。
2017年江苏省连云港市中考数学试卷-答案

a 则 1 2 2a b 6 2 ,故答案为: 2
故答案为:5
【提示】连接 OB ,根据切线的性质求出 ABO 90 ,在 △ABO 中,由勾股定理即可求出 O 的半径长.
【考点】圆的切线的性质,勾股定理,一元二次方程.
15.【答案】 2 【解析】解: 函数 y 3 与 y 2x 6 的图像的交点坐标是 (a,b) ,将 x a , y b 代入反比例解析式
4.【答案】D
【解析】解:Q △ABC∽△DEF , BC 1 ,A 不一定成立; EF 2
A的度数 D的度数
1
,B
不成立;
△ABC的面积 △DEF的面积
1 4
,C
不成立;
△ABC的周长 △DEF的周长
1 2
,D
成立,故选:D.
【提示】根据相似三角形的性质判断即可.
【考点】相似三角形的性质.
2017 6 336...1,按此规律运动到点 A2017 处, A2017 与 A1 重合, A0 A2017 2R 4 . 故选 A.
2 / 13
【提示】根据题意求得 A0 A1 4 , A0 A2 2 3 , A0 A3 2 , A0 A4 2 3
A0 A5 2 , A0 A6 0 , A0 A7 4 ,…于是得到 A2017 与 A1 重合,即可得到结论. 【考点】圆的性质. 二、填空题 9.【答案】 x 1 【解析】解:当分母 x 1 0 ,即 x 1 时,分式 1 有意义.
x 1 故答案是: x 1 【提示】分式有意义时,分母不等于零. 【考点】分式有意义的条件. 10.【答案】 a2 4 【解析】解: (a 2)(a 2) a2 4 ,故答案为: a2 4
2017学年江苏省连云港中考数学年试题

【考点】三角形中位线的性质.
14.【答案】80
【解析】解:∵ (a b)(a b) a2 b2 ,∴ a2 b2 108 80 .
【提示】根据平方差公式即可求出答案.
【考点】平方差公式.
15.【答案】120 【解析】解:六边形的内角和为: (6 2) 180o 720o,∴正六边形的每个内角为: 720o 120o .
(2)答案见解析
【解析】解:(1) 2 3 ,去分母得: 2(x 1) 3x ,解得: x 2,经检验 x 2 是分式方程的解,
x x 1
故原方程的解为 x 2 .
2x 0①
(2)
x
1 x
2x 1② 3
,由①得:
x
0
;
由②得: x 5 ,故不等式组的解集为 0 x 5 .
13.【答案】14
【解析】解:∵ D,E 分别是△A 7 ,
∴ BC 2DE 14 .
【提示】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知, BC 2DE ,
进而由 DE 的值求得 BC .
3 【解析】解:∵共 6 个数,小于 5 的有 4 个,∴ P(小于5) 4 2 .
63
【提示】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生
的概率.
【考点】等可能条件下的概率.
2 / 11
11.【答案】 x 6
【解析】解:∵ x 6 有意义,∴x 的取值范围是: x 6 .
【解析】解:数字 0.00000071用科学记数法表示为 7.1107 .
【提示】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a 10n ,与较大数的科学记数法不 同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定. 【考点】科学计数法. 4.【答案】B
2017连云港中考数学练习试题答案(2)

2017连云港中考数学练习试题答案(2)2017连云港中考数学练习真题答案一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的倒数是( )A.5B.﹣5C.D.﹣【考点】倒数.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣ .故选:D.2.下列计算正确的是( )A.2a•3a=6aB.(﹣a3)2=a6C.6a÷2a=3aD.(﹣2a)3=﹣6a3【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.【解答】解:∵2a•3a=6a2,∴选项A不正确;∵(﹣a3)2=a6,∴选项B正确;∵6a÷2a=3,∴选项C不正确;∵(﹣2a)3=﹣8a3,∴选项D不正确.故选:B.3.据统计,中国水资源总量约为27500亿立方米,居世界第六位,其中数据27500亿用科学记数法表示为( )A.2.75×108B.2.75×1012C.27.5×1013D.0.275×1013【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27500亿用科学记数法表示为:2.75×1012.故选:B.4.如图所示,该几何体的俯视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.5.化简﹣等于( )A. B. C.﹣ D.﹣【考点】分式的加减法.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式= + = + = = ,故选B6.下列各式中,能用完全平方公式进行因式分解的是( )A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+1【考点】因式分解﹣运用公式法.【分析】根据完全平方公式,可得答案.【解答】解:4x2+4x+1=(2x+1)2,故D符合题意;故选:D.7.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20【考点】众数;扇形统计图;加权平均数;中位数.【分析】根据扇形统计图给出的数据,先求出销售各台的人数,再根据平均数、中位数和众数的定义分别进行求解即可.【解答】解:根据题意得:销售20台的人数是:20×40%=8(人),销售30台的人数是:20×15%=3(人),销售12台的人数是:20×20%=4(人),销售14台的人数是:20×25%=5(人),则这20位销售人员本月销售量的平均数是 =18.4(台);把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是 =20(台);∵销售20台的人数最多,∴这组数据的众数是20.故选C.8.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:① = ;② = ;③ = ;④ =其中正确的个数有( )A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;三角形的重心.【分析】BE、CD是△ABC的中线,即D、E是AB和AC的中点,即DE是△ABC的中位线,则DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【解答】解:∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE= BC,即 = ,DE∥BC,∴△DOE∽△COB,∴ =( )2=( )2= ,= = = ,故①正确,②错误,③正确;设△ABC的BC边上的高AF,则S△ABC= BC•AF,S△ACD= S△ABC= BC•AF,∵△ODE中,DE= BC,DE边上的高是× AF= AF,∴S△ODE= × BC× AF= BC•AF,∴ = = ,故④错误.故正确的是①③.故选B.9.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为( )A. B. C. D.【考点】函数的图象.【分析】先根据两车并非同时出发,得出D选项错误;再根据高铁从甲地到乙地的时间以及动车从甲地到乙地的时间,得出两车到达乙地的时间差,结合图形排除A、C选项,即可得出结论.【解答】解:由题可得,两车并非同时出发,故D选项错误;高铁从甲地到乙地的时间为615÷300=2.05h,动车从甲地到乙地的时间为615÷200+ ≈3.24h,∵动车先出发半小时,∴两车到达乙地的时间差为3.24﹣2.05﹣0.5=0.69h,该时间差小于动车从甲地到乙地所需时间的一半,故C选项错误;∵0.69>0.5,∴两车到达乙地的时间差大于半小时,故A选项错误,故选:B.10.如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM 的长为( )A.2B.3C.D.【考点】正方形的性质;直角三角形斜边上的中线.【分析】连接AC,易得△ACF是直角三角形,再根据直角三角形的性质即可得出结论.【解答】解:连接AC,∴四边形ABCD是正方形,∴∠BAC=45°.∵EF⊥AE,EF=AE,∴△AEF是等腰直角三角形,∴∠EAF=45°,∴∠CAF=90°.∵AB=BC=2,∴AC= =2 .∵AE=EF=AB+BE=2+1=3,∴AF= =3 ,∴CF= = = .∵M为CF的中点,∴AM= CF= .故选D.二、填空题(本大题共4小题,每小题5分,共20分)11.不等式组的解集是﹣3【考点】解一元一次不等式组.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3故答案为﹣312.去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月,3月的平均增长率为25% .【考点】一元二次方程的应用.【分析】根据“原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%”可列出关于x的一元二次方程,解方程即可得出结论;【解答】解:设2月,3月的平均增长率为x,根据题意得:4(1+x)2(1﹣36%)=4,解得:x=25%或x=﹣2.25(舍去)故答案为:25%.13.如图,C,D是以线段AB为直径的⊙O上的两点,若CA=CD,且∠ACD=40°,则∠CAB的度数为20°.【考点】圆周角定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【解答】解:∵∠ACD=40°,CA=CD,∴∠CAD=∠CDA= =70°,∴∠ABC=∠ADC=70°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=20°.故答案为:20°.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有①③④.(填序号)【考点】四边形综合题.【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【解答】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF= = =2 ,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.三、解答题(本大题共2小题,每小题8分,共16分)15.解方程: .【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,解得:x=30.16.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【考点】作图﹣轴对称变换;作图﹣平移变换.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴ = ,∵M为中点,∴ = ,∴ + = + ,即 = ,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵ = = = ,∴ = + = ,∴ 的长= × ×4π= ×4π= π.18.如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…(1)观察以上图形并完成下表:图形名称基本图形的个数菱形的个数图① 1 1图② 2 3图③ 3 7图④ 4 11… … …猜想:在图(n)中,菱形的个数为4n﹣5 (用含有n(n≥3)的代数式表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,1),则x1= ;第2017个基本图形的中心O2017的坐标为.【考点】利用轴对称设计图案;菱形的判定与性质;利用平移设计图案.【分析】(1)根据从第3个图形开始,每多一个基本图形就会多出4个菱形解答即可;(2)根据菱形的性质求得心O1的坐标为( ,1),据此可得.【解答】解:(1)由题意可知,图③中菱形的个数7=3+4×(3﹣2),图④中,菱形的个数为3+4×(4﹣2)=11,∵当n≥3时,每多一个基本图形就会多出4个菱形,∴图(n)中,菱形的个数为3+4(n﹣2)=4n﹣5,故答案为:11,4n﹣5;(2)过点O1作O1A⊥y轴,O1B⊥x轴,则OA=1,由菱形的性质知∠BAO1=30°,∴AO1= = = ,即x1= ,中心O2的坐标为(2 ,1)、O3的坐标为(3 ,1)…,O2017的坐标为,故答案为:,.五、解答题(本大题共2小题,每小题10分,共20分)19.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,分别求出DF、BF的长度,在Rt△ACE中,求出AE、CE 的长度,继而可求得AB的长度.【解答】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,sin∠DBF= = ,cos∠DBF= = ,∵BD=6,∴DF=3,BF=3 ,∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=3 ,CF=BE=CD﹣DF=1,在Rt△ACE中,∠ACE=45°,∴AE=CE=3 ,∴AB=3 +1.答:铁塔AB的高为(3 +1)m.20.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【考点】反比例函数与一次函数的交点问题.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y= (x>0)的图象上,∴ .解得:m=8,n=4.∴反比例函数的表达式为y= .∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得: .∴一次函数的表达式为y= x+3.六、解答题(本题满分12分)21.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【考点】列表法与树状图法;轴对称图形;中心对称图形;概率公式.【分析】(1)若乙固定在E处,求出移动甲后黑色方块构成的拼图一共有多少种可能,其中是轴对称图形的有几种可能,由此即可解决问题.(2)①画出树状图即可解决问题.②中心对称图形有两种可能,由此即可解决问题.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .故答案为 .(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率= .②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是 .故答案为 .七、解答题(本题满分12分)22.某旅游风景区出售一种纪念品,该纪念品的成本为12元/个,这种纪念品的销售价格为x(元/个)与每天的销售数量y(个)之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)销售价格定为多少时,每天可以获得最大利润?并求出最大利润.(3)“十•一”期间,游客数量大幅增加,若按八折促销该纪念品,预计每天的销售数量可增加200%,为获得最大利润,“十•一”假期该纪念品打八折后售价为多少?【考点】二次函数的应用.【分析】(1)根据函数图象中两个点的坐标,利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析,利用二次函数的性质可得最值情况;(3)根据(2)中相等关系列出函数解析式,由二次函数的性质求解可得.【解答】解:(1)设y=kx+b,根据函数图象可得:,解得:,∴y=﹣5x+200;(2)设每天获利w元,则w=(x﹣12)y=﹣5x2+260x﹣2400=﹣5(x﹣26)2+980,∴当x=26时,w最大,最大利润为980元;(3)设“十一”假期每天利润为P元,则P=(0.8x﹣12)•y(1+200%)=﹣12x2+660x﹣7200=﹣12(x ﹣ )2+1875,∴当x= 时,P最大,此时售价为0.8× =22,答:“十•一”假期该纪念品打八折后售价为22元.八、解答题(本题满分14分)23.如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F 在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽△ABF∽△BCD;②求证:△CDE∽△CBA;(2)求证:△FBD≌△EDC;(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.【考点】相似形综合题.【分析】(1)①根据等腰三角形的性质得到∠DBC=∠DCB,∠FBA=∠FAB,∠ACE=∠EAC,等量代换得到∠FAB=∠BCD=∠EAC,于是得到结论;②根据相似三角形的性质得到,根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到∠EDC=∠FBD,∠FDB=∠ACB等量代换得到∠FDB=∠ACB,根据全等三角形的判定即可得到结论;(3)根据全等三角形的性质得到FB=DE,DF=CE,等量代换得到FD=AE,FA=DE,推出四边形AFDE是平行四边形,连接AD,于是得到AD平分∠BAC,根据菱形的判定定理即可得到结论.【解答】解:(1)①∵DB=DC,∴∠DBC=∠DCB,∵FB=FA,EA=EC,∴∠FBA=∠FAB,∠ACE=∠EAC,∵∠FBA=∠DBC=∠ECA,∴∠FAB=∠BCD=∠EAC,∴△ACE∽△ABF∽△BCD;故答案为:△ABF,△BCD;②由①知,△ACE∽△BCD,∴ ,即,∵∠ECA=∠DCB,∴∠ECD=∠ACB,∴△CDE∽△CBA;(2)∵△CDE∽△CBA,∴∠ABC=∠EDC,∵∠ABC=∠FBD,∴∠EDC=∠FBD,同理△BFD∽△BAC,∴∠FDB=∠ACB,∵∠ACB=∠ECD,∴∠FDB=∠ACB,在△FBD与△EDC中,∴△FBD≌△EDC;(3)四边形AFDE是菱形,理由:∵△FBD≌△EDC,∴FB=DE,DF=CE,∵FB=FA,EA=EC,∴FD=AE,FA=DE,∴四边形AFDE是平行四边形,连接AD,则AD平分∠BAC,即∠BAD=∠CAD,∵∠BAF=∠CAE,∴∠DAF=∠DAE,∵AF∥DE,∴∠DAF=∠ADE,∴∠EAD=∠ADE,∴EA=ED,∴▱AFDE是菱形.。
2017年江苏省连云港市中考数学试卷有答案版本

2017 年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题:本大题共8 小题,每小题3 分,共24 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3 分)(2017•连云港)2 的绝对值是()A.﹣2 B.2 C.﹣D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:2 的绝对值是2.故选:B.【点评】此题考查了绝对值的性质,属于基础题,解答本题的关键是掌握正数的绝对值是它本身.2.(3 分)(2017•连云港)计算a•a2的结果是()A.a B.a2C.2a2D.a3【分析】根据同底数幂的乘法,可得答案.【解答】解:a•a2=a3,故选:D.【点评】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.3.(3 分)(2017•连云港)小广,小娇分别统计了自己近5 次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.A . =B . =C . =D . 故选:A .【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3 分)(2017•连云港)如图,已知△ABC ∽△DEF ,AB :DE=1:2,则下列等式一定成立的是( )=【分析】根据相似三角形的性质判断即可.【解答】解:∵△ABC ∽△DEF ,∴=,A 不一定成立;=1,B 不成立;=,C 不成立;=,D 成立,故选:D .【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等、相似三角形(多边形)的周长的比等于相似比、相似三角形的面积的比等于相似比的平方是解题的关键.5.(3 分)(2017•连云港)由 6 个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则( )A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【解答】解:主视图有5 个小正方形,左视图有3 个小正方形,俯视图有4 个小正方形,因此左视图的面积最小.故选:C.【点评】此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.(3 分)(2017•连云港)关于的叙述正确的是()A.在数轴上不存在表示的点B.=+C.=±2 D.与最接近的整数是3【分析】根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.【解答】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2 ,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.【点评】考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.7.(3 分)(2017•连云港)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0【分析】依据抛物线的对称性可知:(2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(﹣2,y1)关于y 轴对称点的坐标为(2,y1).又∵a>0,0<1<2,∴y2<y1.故选:C.【点评】本题主要考查的是二次函数的性质,熟练掌握二次函数的对称性和增减性是解题的关键.8.(3 分)(2017•连云港)如图所示,一动点从半径为2 的⊙O 上的A0点出发,沿着射线A0O 方向运动到⊙O 上的点A1处,再向左沿着与射线A1O 夹角为60°的方向运动到⊙O 上的点A2处;接着又从A2点出发,沿着射线A2O 方向运动到⊙O 上的点A3处,再向左沿着与射线A3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.2 C.2 D.0【分析】根据题意求得A0A1=4,A0A2=2,A0A3=2,A0A4=2 ,A0A5=2,A0A6=0,A0A7=4,…于是得到A2017与A1重合,即可得到结论.【解答】解:如图,∵⊙O 的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴A0A2017=2R=4.故选A.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.二、填空题:本大题共8 小题,每小题 3 分,共24 分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3 分)(2017•连云港)分式有意义的x 的取值范围为x≠1.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1 时,分式有意义.故答案是:x≠1.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(3 分)(2017•连云港)计算(a﹣2)(a+2)=a2﹣4.【分析】根据平方差公式求出即可.【解答】解:(a﹣2)(a+2)=a2﹣4,故答案为:a2﹣4.【点评】本题考查了平方差公式,能熟记平方差公式的内容是解此题的关键.11.(3 分)(2017•连云港)截至今年4 月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000 吨,数据6800000 用科学记数法可表示为 6.8×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将6800000 用科学记数法表示为:6.8×106.故答案为:6.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.(3 分)(2017•连云港)已知关于x 的方程x2﹣2x+m=0 有两个相等的实数根,则m 的值是 1 .【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4m=0,解之即可得出结论.【解答】解:∵关于x 的方程x2﹣2x+m=0 有两个相等的实数根,∴△=(﹣2)2﹣4m=4﹣4m=0,解得:m=1.故答案为:1.【点评】本题考查了根的判别式,牢记“当△=0 时,方程有两个相等的实数根” 是解题的关键.13.(3 分)(2017•连云港)如图,在▱ABCD 中,AE⊥BC 于点E,AF⊥CD 于点F.若∠EAF=56°,则∠B= 56°.【分析】根据四边形的内角和等于360°求出∠C,再根据平行四边形的邻角互补列式计算即可得解.【解答】解:∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°,在四边形AECF 中,∠C=360°﹣∠EAF﹣∠AEC﹣∠AFC=360°﹣56°﹣90°﹣90°=124°,在▱ABCD 中,∠B=180°﹣∠C=180°﹣124°=56°.故答案为:56°.【点评】本题考查了平行四边形的性质,四边形的内角和,熟记平行四边形的邻角互补是解题的关键.14.(3 分)(2017•连云港)如图,线段AB 与⊙O 相切于点B,线段AO 与⊙O相交于点C,AB=12,AC=8,则⊙O 的半径长为 5 .【分析】连接OB,根据切线的性质求出∠ABO=90°,在△ABO 中,由勾股定理即可求出⊙O 的半径长.【解答】解:连接OB,∵AB 切⊙O 于B,∴OB⊥AB,∴∠ABO=90°,设⊙O 的半径长为r,由勾股定理得:r2+122=(8+r)2,解得r=5.故答案为:5.【点评】本题考查了切线的性质和勾股定理的应用,关键是得出直角三角形ABO,主要培养了学生运用性质进行推理的能力.15.(3 分)(2017•连云港)设函数y=与y=﹣2x﹣6 的图象的交点坐标为(a,b),则+的值是﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b 代入反比例解析式,求出ab 的值,代入一次函数解析式,得出2a+b 的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab 及2a+b 的值代入即可求出值.【解答】解:∵函数y=与y=﹣2x﹣6 的图象的交点坐标是(a,b),∴将x=a,y=b 代入反比例解析式得:b=,即ab=3,代入一次函数解析式得:b=﹣2a﹣6,即2a+b=﹣6,则+= = =﹣2,故答案为:﹣2.【点评】此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b 代入两函数解析式得出关于 a 与 b 的关系式是解本题的关键.16.(3 分)(2017•连云港)如图,已知等边三角形OAB 与反比例函数y=(k >0,x>0)的图象交于A、B 两点,将△OAB 沿直线OB 翻折,得到△OCB,点A 的对应点为点C,线段CB 交x 轴于点D,则的值为.(已知sin15°=)∴ = ∴BF=, 【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线 OM : y=x ,求出∠BOF=15°,根据15°的正弦列式可以表示BF 的长,证明△BDF ∽△CDN ,可得结论.【解答】解:如图,过 O 作 OM ⊥AB 于 M ,∵△AOB 是等边三角形,∴AM=BM ,∠AOM=∠BOM=30°,∴A 、B 关于直线 OM 对称,∵A 、B 两点在反比例函数 y=(k >0,x >0)的图象上,且反比例函数关于直线 y=x 对称,∴直线 OM 的解析式为:y=x ,∴∠BOD=45°﹣30°=15°,过 B 作 BF ⊥x 轴于 F ,过 C 作 CN ⊥x 轴于 N ,sin ∠BOD=sin15°= =,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO 是等腰直角三角形,∴CN=ON ,设 CN=x ,则 OC=x , ∴OB=x ,,∵BF ⊥x 轴,CN ⊥x 轴,∴BF ∥CN ,∴△BDF ∽△CDN ,∴ ==, 故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x 对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,根据等腰直角三角形斜边是直角边的倍表示斜边的长,从而解决问题.三、解答题:本大题共11 小题,共102 分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6 分)(2017•连云港)计算:﹣(﹣1)﹣+(π﹣3.14)0.【分析】先去括号、开方、零指数幂,然后计算加减法.【解答】解:原式=1﹣2+1=0.【点评】本题考查了实数的运算,零指数幂,属于基础题,熟记实数运算法则即可解题.18.(6 分)(2017•连云港)化简•.【分析】根据分式的乘法,可得答案.【解答】解:原式=•=.【点评】本题考查了分式的乘法,利用分式的乘法是解题关键.19.(6 分)(2017•连云港)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣3x+1<4,得:x>﹣1,解不等式3x﹣2(x﹣1)≤6,得:x≤4,∴不等式组的解集为﹣1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8 分)(2017•连云港)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60≤x≤100).校方从600 幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表分数段频数频率60≤x<70 18 0.3670≤x<80 17 c80≤x<90 a 0.2490≤x≤100 b 0.06合计 1根据以上信息解答下列问题:(1)统计表中c 的值为0.34 ;样本成绩的中位数落在分数段70≤x<80 中;(2)补全频数分布直方图;(3)若80 分以上(含80 分)的作品将被组织展评,试估计全校被展评作品数量是多少?【分析】(1)由60≤x<70 频数和频率求得总数,根据频率=频数÷总数求得a、b、c 的值,由中位数定义求解可得;(2)根据(1)中所求数据补全图形即可得;(3)总数乘以80 分以上的频率即可.【解答】解:(1)本次调查的作品总数为18÷0.36=50(幅),则c=17÷50=0.34,a=50×0.24=12,b=50×0.06=3,其中位数为第25、26 个数的平均数,∴中位数落在70≤x<80 中,故答案为:0.34,70≤x<80;(2)补全图形如下:(3)600×(0.24+0.06)=180(幅),答:估计全校被展评作品数量是180 幅.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10 分)(2017•连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是 A 类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类的概率为:;(2)如图所示:,由图可知,共有18 种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12 种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)= =;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.22.(10 分)(2017•连云港)如图,已知等腰三角形ABC 中,AB=AC,点D、E分别在边AB、AC 上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A、F 的直线垂直平分线段BC.【分析】(1)证得△ABE≌△ACD 后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE 和△ACD 中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.23.(10 分)(2017•连云港)如图,在平面直角坐标系xOy 中,过点A(﹣2,0)的直线交y 轴正半轴于点B,将直线AB 绕着点顺时针旋转90°后,分别与x 轴、y 轴交于点D、C.(1)若OB=4,求直线AB 的函数关系式;(2)连接BD,若△ABD 的面积是5,求点B 的运动路径长.【分析】(1)依题意求出点 B 坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m 的方程,解方程求得m 的值,然后根据弧长公式即可求得.【解答】解:(1)∵OB=4,∴B(0,4)∵A(﹣2,0),设直线AB 的解析式为y=kx+b,则,解得,∴直线AB 的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD 的面积是5,∴AD•OB=5,∴ (m+2)•m=5,即m2+2m﹣10=0,解得m=﹣1+或m=﹣1﹣(舍去),∵∠BOD=90°,∴点B 的运动路径长为:×2π×(﹣1+ )= π.【点评】本题考查的是待定系数法求一次函数的解析式以及三角形面积公式和弧长计算,难度一般.24.(10 分)(2017•连云港)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40 元/斤,加工销售是130 元/斤(不计损耗).已知基地雇佣20 名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70 斤或加工35 斤,设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【分析】(1)根据总销售收入=直接销售蓝莓的收入+加工销售的收入,即可得出y 关于x 的函数关系式;(2)由采摘量不小于加工量,可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再根据一次函数的性质,即可解决最值问题.【解答】解:(1)根据题意得:y=[70x﹣(20﹣x)×35]×40+(20﹣x)×35×130=﹣350x+63000.答:y 与x 的函数关系式为y=﹣350x+63000.(2)∵70x≥35(20﹣x),∴x≥.∵x 为正整数,且x≤20,∴7≤x≤20.∵y=﹣350x+63000 中k=﹣350<0,∴y 的值随x 的值增大而减小,∴当x=7 时,y 取最大值,最大值为﹣350×7+63000=60550.答:安排7 名工人进行采摘,13 名工人进行加工,才能使一天的收入最大,最大收入为60550 元.【点评】本题考查了一次函数的应用、一次函数的性质以及解一元一次不等式,解题的关键是:(1)根据数量关系,找出y 与x 的函数关系式;(2)根据一次函数的性质,解决最值问题.25.(10 分)(2017•连云港)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400 米,AC=1000 米,B 点位于A 点的南偏西60.7°方向,C 点位于A 点的南偏东66.1°方向.(1)求△ABC 的面积;(2)景区规划在线段BC 的中点D 处修建一个湖心亭,并修建观景栈道AD,试求A、D 间的距离.(结果精确到0.1 米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).【分析】(1)作CE⊥BA 于E.在Rt△ACE 中,求出CE 即可解决问题;(2)接AD,作DF⊥AB 于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF 中求出AD 即可;【解答】解:(1)作CE⊥BA 于E.在Rt△AEC 中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=AC•sin53.2°≈1000×0.8=800 米.∴S△ABC= •AB•CE=×1400×800=560000 平方米.(2)连接AD,作DF⊥AB 于F.,则DF∥CE.∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=400 米,∵AE=AC•cos53.2°≈600 米,∴BE=AB+AE=2000 米,∴AF= EB﹣AE=400 米,在Rt△ADF 中,AD==400 =565.6 米.【点评】本题考查解直角三角形﹣方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.26.(12 分)(2017•连云港)如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y 轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC 的形状;若△ABC 的外接圆记为⊙M,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA 方向平移,平移后点A、B、C 的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.【分析】(1)直接利用待定系数法求出a,b 的值进而得出答案;(2)首先得出∠OAC=45°,进而得出AD=BD,求出∠OAC=45°,即可得出答案;(3)首先利用已知得出圆M 平移的长度为:2﹣或2+,进而得出抛物线的平移规律,即可得出答案.【解答】解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3 中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC 是直角三角形,过点B 作BD⊥x 轴于点D,易知点C 坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B 坐标为:(4,1),∴AD=BD,∴∠OAC=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC 是直角三角形,圆心M 的坐标为:(2,2);(3)存在取BC 的中点M,过点M 作ME⊥y 轴于点E,∵M 的坐标为:(2,2),∴MC==,OM=2 ,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA 方向平移,且使⊙M1经过原点,则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y= x2﹣x+3= (x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+ )2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:y= (x﹣)2﹣或y= (x﹣)2﹣.【点评】此题主要考查了二次函数综合以及二次函数的平移、等腰直角三角形的性质等知识,正确得出圆M 的平移距离是解题关键.27.(14 分)(2017•连云港)问题呈现:如图1,点E、F、G、H 分别在矩形ABCD 的边AB、BC、CD、DA 上,AE=DG,求证:2S 四边形EFGH=S 矩形ABCD.(S 表示面积)实验探究:某数学实验小组发现:若图1 中AH≠BF,点G 在CD 上移动时,上述结论会发生变化,分别过点E、G 作BC 边的平行线,再分别过点F、H 作AB 边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF 时,若将点G 向点C 靠近(DG>AE),经过探索,发现:2S 四边形EFGH=S 矩形ABCD+S .如图3,当AH>BF 时,若将点G 向点D 靠近(DG<AE),请探索S 四边形EFGH、S 矩与S 之间的数量关系,并说明理由.形ABCD迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H 分别是面积为25 的正方形ABCD 各边上的点,已知AH>BF,AE>DG,S 四边形EFGH=11,HF=,求EG 的长.(2)如图5,在矩形ABCD 中,AB=3,AD=5,点E、H 分别在边AB、AD 上,BE=1,DH=2,点F、G 分别是边BC、CD 上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH 面积的最大值.【分析】问题呈现:只要证明S△HGE=S 矩形AEGD,同理S△EGF=S 矩形BEGC,由此可得S 四边形EFGH=S△HGE+S△EFG=S 矩形BEGC;实验探究:结论:2S 四边形EFGH=S 矩形ABCD﹣.根据= ,= ,= ,= ,即可证明;迁移应用:(1)利用探究的结论即可解决问题.(2)分两种情形探究即可解决问题.【解答】问题呈现:证明:如图 1 中,∵四边形ABCD 是矩形,∴AB∥CD,∠A=90°,∵AE=DG,∴四边形AEGD 是矩形,= S 矩形AEGD,∴S△HGE=S 矩形BEGC,同理S△EGF=S△HGE+S△EFG= S 矩形BEGC.∴S四边形EFGH,= ,=实验探究:结论:2S 四边形EFGH=S 矩形ABCD﹣.理由:∵= ,= ,∴S 四边形EFGH= + + +﹣,∴2S 四边形EFGH=2 +2 +2 +2 ﹣2 ,∴2S四边形EFGH=S 矩形ABCD﹣.迁移应用:解:(1)如图4 中,∵2S四边形EFGH=S 矩形ABCD﹣.∴=25﹣2×11=3=A1B1•A1D1,∵正方形的面积为25,∴边长为5,∵A1D12=HF2﹣52=29﹣25=4,∴A1D1=2,A1B1= ,∴EG2=A1B12+52= ,∴EG= .(2)∵2S四边形EFGH=S 矩形ABCD+ .∴四边形A1B1C1D1面积最大时,矩形EFGH 的面积最大.①如图5﹣1 中,当G 与C 重合时,四边形A1B1C1D1面积最大时,矩形EFGH 的面积最大.此时矩形A1B1C1D1面积=1•(﹣2)=②如图5﹣2 中,当G 与D 重合时,四边形A1B1C1D1面积最大时,矩形EFGH 的面积最大.此时矩形A1B1C1D1面积=2•1=2,∵2>﹣2,∴矩形EFGH 的面积最大值=.【点评】本题考查四边形综合题、矩形的性质、勾股定理等知识,解题的关键是学会利用分割法添加辅助线,学会利用特殊位置解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年江苏省连云港市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3分)计算a•a2的结果是()A.a B.a2C.2a2D.a33.(3分)小广、小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数4.(3分)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=5.(3分)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小6.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2 D.与最接近的整数是37.(3分)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>08.(3分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线AO方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向右沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A间的距离是()A.4 B.2 C.2 D.0二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)分式有意义的x的取值范围为.10.(3分)计算(a﹣2)(a+2)= .11.(3分)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为.12.(3分)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.13.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B= °.14.(3分)如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.15.(3分)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是.16.(3分)如图,已知等边三角形OAB与反比例函数y=(k>0,x>0)的图象交于A、B 两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:﹣(﹣1)﹣+(π﹣3.14)0.18.(6分)化简:•.19.(6分)解不等式组:.20.(8分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表分数段频数频率60≤x<70 18 0.3670≤x<80 17 c80≤x<90 a 0.2490≤x≤100 b 0.06合计 1根据以上信息解答下列问题:(1)统计表中c的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(10分)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.23.(10分)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.24.(10分)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.(10分)如图,湿地景区岸边有三个观景台A、B、C.已知AB=1400米,AC=1000米,B 点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).26.(12分)如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A 1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.(14分)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S 矩形ABCD.(S表示面积)实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A 1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH =S矩形ABCD+S.如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH 、S矩形ABCD与S之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE >DG,S四边形EFGH=11,HF=,求EG的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值.2017年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)2的绝对值是()A.﹣2 B.2 C.﹣D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:2的绝对值是2.故选:B.【点评】此题考查了绝对值的性质,属于基础题,解答本题的关键是掌握正数的绝对值是它本身.2.(3分)计算a•a2的结果是()A.a B.a2C.2a2D.a3【分析】根据同底数幂的乘法,可得答案.【解答】解:a•a2=a3,故选:D.【点评】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.3.(3分)小广、小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3分)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=【分析】根据相似三角形的性质判断即可.【解答】解:∵△ABC∽△DEF,∴=,A不一定成立;=1,B不成立;=,C不成立;=,D成立,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等、相似三角形(多边形)的周长的比等于相似比、相似三角形的面积的比等于相似比的平方是解题的关键.5.(3分)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【解答】解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,因此左视图的面积最小.故选:C.【点评】此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点B.=+C.=±2D.与最接近的整数是3【分析】根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.【解答】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.【点评】考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.7.(3分)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0【分析】依据抛物线的对称性可知:(2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(﹣2,y1)关于y轴对称点的坐标为(2,y1).又∵a>0,0<1<2,∴y2<y1.故选:C.【点评】本题主要考查的是二次函数的性质,熟练掌握二次函数的对称性和增减性是解题的关键.8.(3分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线AO方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向右沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A间的距离是()A.4 B.2C.2 D.0【分析】根据题意求得A0A1=4,AA2=2,AA3=2,AA4=2,AA5=2,AA6=0,AA7=4,…于是得到A2017与A1重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,AA2=2,AA3=2,AA4=2,AA5=2,AA6=0,AA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴A0A2017=2R=4.故选A.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)分式有意义的x的取值范围为x≠1 .【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(3分)计算(a﹣2)(a+2)= a2﹣4 .【分析】根据平方差公式求出即可.【解答】解:(a﹣2)(a+2)=a2﹣4,故答案为:a2﹣4.【点评】本题考查了平方差公式,能熟记平方差公式的内容是解此题的关键.11.(3分)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为 6.8×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6800000用科学记数法表示为:6.8×106.故答案为:6.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是 1 .【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4m=0,解之即可得出结论.【解答】解:∵关于x的方程x2﹣2x+m=0有两个相等的实数根,∴△=(﹣2)2﹣4m=4﹣4m=0,解得:m=1.故答案为:1.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.13.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B= 56 °.【分析】根据四边形的内角和等于360°求出∠C,再根据平行四边形的邻角互补列式计算即可得解.【解答】解:∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°,在四边形AECF中,∠C=360°﹣∠EAF﹣∠AEC﹣∠AFC=360°﹣56°﹣90°﹣90°=124°,在▱ABCD中,∠B=180°﹣∠C=180°﹣124°=56°.故答案为:56.【点评】本题考查了平行四边形的性质,四边形的内角和,熟记平行四边形的邻角互补是解题的关键.14.(3分)如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为 5 .【分析】连接OB,根据切线的性质求出∠ABO=90°,在△ABO中,由勾股定理即可求出⊙O 的半径长.【解答】解:连接OB,∵AB切⊙O于B,∴OB⊥AB,∴∠ABO=90°,设⊙O的半径长为r,由勾股定理得:r2+122=(8+r)2,解得r=5.故答案为:5.【点评】本题考查了切线的性质和勾股定理的应用,关键是得出直角三角形ABO,主要培养了学生运用性质进行推理的能力.15.(3分)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是﹣2 .【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b的值代入即可求出值.【解答】解:∵函数y=与y=﹣2x﹣6的图象的交点坐标是(a,b),∴将x=a,y=b代入反比例解析式得:b=,即ab=3,代入一次函数解析式得:b=﹣2a﹣6,即2a+b=﹣6,则+===﹣2,故答案为:﹣2.【点评】此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a与b的关系式是解本题的关键.16.(3分)如图,已知等边三角形OAB与反比例函数y=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线OM:y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解答】解:如图,过O作OM⊥AB于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数y=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°==,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=x,∴OB=x,∴=,∴BF=,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴==,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,根据等腰直角三角形斜边是直角边的倍表示斜边的长,从而解决问题.三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:﹣(﹣1)﹣+(π﹣3.14)0.【分析】先去括号、开方、零指数幂,然后计算加减法.【解答】解:原式=1﹣2+1=0.【点评】本题考查了实数的运算,零指数幂,属于基础题,熟记实数运算法则即可解题.18.(6分)化简:•.【分析】根据分式的乘法,可得答案.【解答】解:原式=•=.【点评】本题考查了分式的乘法,利用分式的乘法是解题关键.19.(6分)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣3x+1<4,得:x>﹣1,解不等式3x﹣2(x﹣1)≤6,得:x≤4,∴不等式组的解集为﹣1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表分数段频数频率60≤x<70 18 0.3670≤x<80 17 c80≤x<90 a 0.2490≤x≤100 b 0.06合计 1根据以上信息解答下列问题:(1)统计表中c的值为0.34 ;样本成绩的中位数落在分数段70≤x<80 中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?【分析】(1)由60≤x<70频数和频率求得总数,根据频率=频数÷总数求得a、b、c的值,由中位数定义求解可得;(2)根据(1)中所求数据补全图形即可得;(3)总数乘以80分以上的频率即可.【解答】解:(1)本次调查的作品总数为18÷0.36=50(幅),则c=17÷50=0.34,a=50×0.24=12,b=50×0.06=3,其中位数为第25、26个数的平均数,∴中位数落在70≤x<80中,故答案为:0.34,70≤x<80;(2)补全图形如下:(3)600×(0.24+0.06)=180(幅),答:估计全校被展评作品数量是180幅.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:,由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.22.(10分)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.23.(10分)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【分析】(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.【解答】解:(1)∵OB=4,∴B(0,4)∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴AD•OB=5,∴(m+2)•m=5,即m2+2m﹣10=0,解得m=﹣1+或m=﹣1﹣(舍去),∵∠BOD=90°,∴点B的运动路径长为:×2π×(﹣1+)=π.【点评】本题考查的是待定系数法求一次函数的解析式以及三角形面积公式和弧长计算,难度一般.24.(10分)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【分析】(1)根据总销售收入=直接销售蓝莓的收入+加工销售的收入,即可得出y关于x的函数关系式;(2)由采摘量不小于加工量,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.【解答】解:(1)根据题意得:y=[70x﹣(20﹣x)×35]×40+(20﹣x)×35×130=﹣350x+63000.答:y与x的函数关系式为y=﹣350x+63000.(2)∵70x≥35(20﹣x),∴x≥.∵x为正整数,且x≤20,∴7≤x≤20.∵y=﹣350x+63000中k=﹣350<0,∴y的值随x的值增大而减小,∴当x=7时,y取最大值,最大值为﹣350×7+63000=60550.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【点评】本题考查了一次函数的应用、一次函数的性质以及解一元一次不等式,解题的关键是:(1)根据数量关系,找出y与x的函数关系式;(2)根据一次函数的性质,解决最值问题.25.(10分)如图,湿地景区岸边有三个观景台A、B、C.已知AB=1400米,AC=1000米,B 点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).【分析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可;【解答】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=AC•sin53.2°≈1000×0.8=800米.∴S△ABC=•AB•CE=×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF∥CE.∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=400米,∵AE=AC•cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=EB﹣AE=400米,在Rt△ADF中,AD==400=565.6米.【点评】本题考查解直角三角形﹣方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.26.(12分)如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A 1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.【分析】(1)直接利用待定系数法求出a,b的值进而得出答案;(2)首先得出∠OAC=45°,进而得出AD=BD,求出∠DAB=45°,即可得出答案;(3)首先利用已知得出圆M平移的长度为:2﹣或2+,进而得出抛物线的平移规律,即可得出答案.【解答】解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠DAB=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC==,OM=2,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,经过原点,∴要使抛物线沿射线BA方向平移,且使⊙M1则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y=x2﹣x+3=(x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M经过原点,此时抛物线的关系式为:1y=(x﹣)2﹣或y=(x﹣)2﹣.【点评】此题主要考查了二次函数综合以及二次函数的平移、等腰直角三角形的性质等知识,正确得出圆M的平移距离是解题关键.27.(14分)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S 矩形ABCD.(S表示面积)实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A 1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH =S矩形ABCD+S.如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH 、S矩形ABCD与S之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE >DG,S四边形EFGH=11,HF=,求EG的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值.【分析】问题呈现:只要证明S△HGE =S矩形AEGD,同理S△EGF=S矩形BEGC,由此可得S四边形EFGH=S△HGE+S△EFG=S 矩形BEGC ;实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.根据=,=,=,=,即可证明;迁移应用:(1)利用探究的结论即可解决问题. (2)分两种情形探究即可解决问题. 【解答】问题呈现:证明:如图1中,∵四边形ABCD 是矩形, ∴AB ∥CD ,∠A=90°, ∵AE=DG ,∴四边形AEGD 是矩形, ∴S △HGE =S 矩形AEGD , 同理S △EGF =S 矩形BEGC ,∴S 四边形EFGH =S △HGE +S △EFG =S 矩形BEGC .实验探究:结论:2S 四边形EFGH =S 矩形ABCD ﹣.理由:∵=,=,=,=,∴S 四边形EFGH =+++﹣,∴2S 四边形EFGH =2+2+2+2﹣2,∴2S 四边形EFGH =S 矩形ABCD ﹣.迁移应用:解:(1)如图4中,。