1、解三角形期末复习(含参考答案)
八年级数学上三角形期末复习题及答案解析
八年级数学提优练习题2013.11一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD 上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S .其中正确的有()个.四边形AOCPA.①②③B.①②④C.①③④D.①②③④2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC 于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;w W w .(2)若BD=CE,求证:FG=BF+CG.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.(1)∠COA的值为_________;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为_________.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP 的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.八年级数学提优练习题2013.11参考答案与试题解析一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD 上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S .其中正确的有()个.四边形AOCPA.①②③B.①②④C.①③④D.①②③④考点:等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;③首先证明∴△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.解答:解:连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;过点C作CH⊥AB于H,∵∠PAC=∠DAC=60°,AD⊥BC,∴CH=CD,∴S△ABC=AB•CH,S四边形AOCP=S△ACP+S△AOC=AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA)=CH•AC,∴S△ABC=S四边形AOCP;故④正确.故选D.点评:本题考查了等腰三角形的判定与性质,关键是正确作出辅助线.2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC考点:轴对称-最短路线问题;直角梯形. w W w .专题:压轴题;动点型.分析:首先根据轴对称的知识,可知P点的位置是连接点B和点C关于AD的对称点E与AD的交点,利用轴对称和对顶角相等的性质可得.解答:解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.点评:此题的关键是应知点P是怎样确定的.要找直线上一个点和直线同侧的两个点的距离之和最小,则需要利用轴对称的性质进行确定.3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④考点:旋转的性质;全等三角形的判定与性质.专题:开放型.分析:连DA,由△ABC是等腰直角三角形,D点为BC的中点,根据等腰直角三角形的性质得AD⊥BC,AD=DC,∠ACD=∠CAD=45°,得到∠GAD=∠ECD=135°,由∠EDF=90°,根据同角的余角相等得到∠1=∠2,所以△DAG≌△DCE,AG=EC,DG=DE,由此可分别判断.解答:解:连DA,如图,∵△ABC是等腰直角三角形,D点为BC的中点,∴AD⊥BC,AD=DC,∠ACD=∠CAD=45°,∴∠GAD=∠ECD=135°,又∵△DEF是一个含30°角的直角三角形,∴∠EDF=90°,∴∠1=∠2,∴△DAG≌△DCE,∴AG=EC,DG=DE,所以①②正确;∵AB=AC,∴BG﹣AC=BG﹣AB=AG=EC,所以③正确;∵S△BDG﹣S△CDE=S△BDG﹣S△ADG=S△ADB=S△ABC.所以④正确.故选B.点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直三角形的性质,特别是斜边上的中线垂直斜边并且等于斜边的一半.4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=CM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BAE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ACB=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,∴△CMD≌△CND,∴CN=CM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④考点:直角梯形;等边三角形的性质;含30度角的直角三角形;等腰直角三角形.分析:由BC∥AM得∠CDA=105°,根据等边三角形的性质得∠CDE=60°,则∠EDA=105°﹣60°=45°;过C作CG⊥AM,则四边形ABCG为矩形,于是∠DCG=90°﹣∠BCD=15°,而∠BCE=75°﹣60°=15°,易证得Rt△CBE≌Rt△CGD,则BC=CG,得到AB=BC;由于AG=BC,而AG≠MD,则CF:FD=BC:MD≠1,不能得到F点是CD的中点,根据等边三角形的性质则不能得到EF⊥CD;若∠AMB=30°,则∠CBF=30°,在Rt△AMB中根据含30度的直角三角形三边的关系得到BM=2AB,则BM=2BC,易得∠BFC=75°,所以BF=BC,得MF=BF,由CB∥AM得CF:FD=BF:MF=1,即可有CF=DF.解答:解:∵BC∥AM,∴∠BCD+∠CDA=180°,∵∠BCD=75°,∴∠CDA=105°,∵△CDE为等边三角形,∴∠CDE=60°,∴∠EDA=105°﹣60°=45°,所以①正确;过C作CG⊥AM,如图,∵∠A=90°,∴四边形ABCG为矩形,∴∠DCG=90°﹣∠BCD=15°,而△CDE为等边三角形,∴∠DCE=60°,CE=CD,∴∠BCE=75°﹣60°=15°,∴Rt△CBE≌Rt△CGD,∴BC=CG,∴AB=BC,所以②正确;∵AG=BC,而AG≠MD,∴CF:FD=BC:MD≠1,∴F点不是CD的中点,∴EF不垂直CD,所以③错误;若∠AMB=30°,则∠CBF=30°,∴在Rt△AMB中,BM=2AB,∴BM=2BC,∵∠BCD=75°,∴∠BFC=180°﹣30°﹣75°=75°,∴BF=BC,∴MF=BF,而CB∥AM,∴CF:FD=BF:MF=1,∴CF=FD,所以④正确.故选B.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形和等边三角形的性质、含30度的直角三角形三边的关系以及相似三角形的判定与性质.6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC 于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;等腰直角三角形.分析:根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.因此选C.点评:此题考查全等三角形的判定和性质,综合性较强.7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:根据角平分线定义求出∠ABE=∠EBC=∠C,根据等角对等边求出BE=CE,即可判断①;证△ABE∽△ACB,推出AB2=AE×AC,求出AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式即可求出BF=AE+EF,即可判断②;延长AB到N,使BN=BM,连接MN,证△AMC≌△AMN,△AFB≌△BLF,推出AB=BL,即可判断③;设∠LAC=x°,∠LAM=y°,则∠BAM=∠MAC=(x+y)°,证△AFB≌△BLF推出∠BAF=∠BLF,∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,得出方程x°+y°+y°=∠C+x°,求出∠C=2y°,∠ABC=4y°,即可判断④.解答:解:∵BE是∠ABC的角平分线,∴∠EBC=∠ABE=∠ABC,∵∠ABC=2∠C,∴∠ABE=∠EBC=∠C,∴BE=EC,∴①正确;∵∠ABE=∠ACB,∠BAC=∠EAB∴△ABE∽△ACB,∴=,∴AB2=AE×AC,在Rt△AFB与Rt△AFE中,由勾股定理得:AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式得:AE×AC﹣BF2=AE2﹣EF2,则BF2=AC×AE﹣AE2+EF2=AE×(AC﹣AE)+EF2=AE×EC+EF2=AE×BE+EF2,即(BE﹣EF)2=AE×BE+EF2,∴BE2﹣2BE×EF+EF2=AE×BE+EF2,∴BE2﹣2BE×EF=AE×BE,∴BE﹣2EF=AE,BE﹣EF=AE+EF,即BF=AE+EF,∴②正确;延长AB到N′,使BN=BM,连接MN′,则△BMN′为等腰三角形,∴∠BN′M=∠BMN′,△BN′M的一个外角∠ABC=∠BN′M+∠BM′N=2∠BN′M,则∠BN′M=∠ACB,在△AMC与△AMN′中,∴△AMC≌△AMN′(AAS),∴AN′=AC=AB+BN′=AB+BM,又∵AL⊥BE,∴∠AFB=∠LFB=90°,在△AFB与△LFB中,,∴△AFB≌△BLF(ASA),∴AB=BL,则AN′=AC=AB+BN′=AB+BM=BM+BL,即AC=BM+BL,∴③正确;设∠LAC=x°,∠LAM=y°,∵AM平分∠BAC,∴∠BAM=∠MAC=(x+y)°.∵△AFB≌△BLF,∴∠BAF=∠BLF,∵∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,∴x°+y°+y°=∠C+x°,∴∠C=2y°,∵∠ABC=2∠C,∴∠ABC=4y°,即∠MAL=∠ABC,∴④正确.故选C.点评:本题考查了勾股定理,相似三角形的性质和判定,角平分线性质,相似三角形的性质和判定等知识点的综合运用.二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.考点:等腰三角形的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据等腰三角形两底角相等求出∠C,再根据直角三角形两锐角互余求出∠CEG,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CEF,然后计算即可得解;(2)过点E作EH∥AB交BC于H,根据两直线平行,同位角相等可得∠ABC=∠EHC,内错角相等可得∠D=∠FEH,然后求出∠EHC=∠C,再根据等角对等边可得EC=EH,然后求出BD=EH,再利用“角角边”证明△BDF和△HEF全等,根据全等三角形对应边相等可得BF=FH,根据等腰三角形三线合一的性质可得CG=HG,即可得证.解答:(1)解:∵∠A=50°,w W w .∴∠C=(180°﹣∠A)=(180°﹣50°)=65°,∵EG⊥BC,∴∠CEG=90°﹣∠C=90°﹣65°=25°,∵∠A=50°,∠D=30°,∴∠CEF=∠A+∠D=50°+30°=80°,∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;(2)证明:过点E作EH∥AB交BC于H,则∠ABC=∠EHC,∠D=∠FEH,∵AB=AC,∴∠ABC=∠C,∴∠EHC=∠C,∴EC=EH,∵BD=CE,∴BD=EH,在△BDF和△HEF中,,∴△BDF≌△HEF(AAS),∴BF=FH,又∵EC=EH,EG⊥BC,∴CG=HG,∴FG=FH+HG=BF+CG.点评:本题考查了等腰三角形的性质,全等三角形的判定与性质,主要利用了等腰三角形两底角相等的性质,等角对等边的性质,(2)作辅助线构造出全等三角形是解题的关键.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数的性质:偶次方;坐标与图形性质;等腰直角三角形.分析:(1)根据a=t,b=t,推出a=b即可;(2)延长AF至T,使TF=AF,连接TC,TO,证△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再证△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO为等腰直角三角形即可;(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,证△NTB′≌△MTH,推出TN=MT,证△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.解答:(1)解:∵a,b满足(a﹣t)2+|b﹣t|=0(t>0).∴a﹣t=0,b﹣t=0,∴a=t,b=t,∴a=b,∵B(t,0),点C(0,t)∴OB=OC;(2)证明:延长AF至T,使TF=AF,连接TC,TO,∵F为CE中点,∴CF=EF,在△TCF和△AEF中∴△TCF≌△AEF(SAS),∴CT=AE,∠TCF=∠AEF,∴TC∥AD,∴∠TCD=∠CDA,∵AB=AE,∴TC=AB,∵AD⊥AB,OB⊥OC,∴∠COB=∠BAD=90°,∴∠ABO+∠ADO=180°,∵∠ADO+∠ADC=180°,∴∠ADC=∠ABC,∵∠TCD=∠CDA,∴∠TCD=∠ABO,在△TCO和△ABO中∴△TCO≌△ABO(SAS),∴TO=AO,∠TOC=∠AOB,∵∠AOB+∠AOC=90°,∴∠TOC+∠AOC=90°,∴△TAO为等腰直角三角形,∴∠OAF=45°;(3)解:连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,∵B和B′关于关于y轴对称,C在y轴上,∴CB=CB′,∴∠CBB′=∠CB′B,∵MH∥CN,∴∠MHB=∠CB′B,数学试卷及试题∴∠MHB=∠CBB′,∴MH=BM,∵BM=B′N,∴MH=B′N,∵MH∥CN,∴∠NB′T=∠MHT,在△NTB′和△MTH中∴△NTB′≌△MTH,∴TN=MT,又TQ⊥MN,∴MQ=NQ,∵CQ垂直平分BB′,∴BQ=B′Q,∵在∴△NQB′和△MQB中∴△NQB′≌△MQB (SSS),∴∠NB′Q=∠CBQ,而∠NB′Q+∠CB′Q=180°∴∠CBQ+∠CB′Q=180°∴∠B′CB+∠B′QB=180°,又∠B′CB=90°,∴∠B′QB=90°∴△BQB′是等腰直角三角形,∴OQ=OB=t,∴Q(0,﹣t).点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰三角形的性质,等腰直角三角形的性质和判定,相等垂直平分线,偶次方,绝对值等知识点的综合运用.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.(1)∠COA的值为45°;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.考点:全等三角形的判定与性质;坐标与图形性质.分析:(1)过A作AN⊥OC于N,AM⊥OB于M,得出正方形NOMA,根据正方形性质求出∠COA=∠COB,代入求出即可;(2)求出CN=BM,证△ANC≌△AMB,推出∠NAC=∠MAB,求出∠CAB=∠NAM,即可求出答案;(3)求出∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,求出∠HON=∠NMO=∠LMN,求出OL=ML,证△OLP≌△MLN,推出MN=OP,即可得出答案.解答:解:(1)过A作AN⊥OC于N,AM⊥OB于M,则∠ANO=∠AMO=∠COB=90°,∵A(4,4),∴AN=AM=4,∴四边形NOMA是正方形,∴∠COA=∠COB=×90°=45°.故答案为:45°;(2)∵四边形NOMA是正方形,∴AM=AN=4,OM=ON=4,∴OC×AN+OB×AM=16,∴OC+OB=8=ON+OM,即ON﹣OC=OB﹣OM,∴CN=BM,在△ANC和△AMB中,,∴△ANC≌△AMB(SAS),∴∠NAC=∠MAB,∴∠CAB=∠CAM+∠MAB=∠NAM=360°﹣90°﹣90°﹣90°=90°,即∠CAB=90°;(3)MN=2OH,证明:在Rt△OMH中,∠HON+∠NMO+∠NOM=90°,又∵∠NOM=45°,∠HON=∠NMO,∴∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,∴OM=MP,∠OMP=2∠OMN=45°,∴∠HON=∠NMO=∠LMN,∴∠OLM=90°=∠PLO,∴OL=ML,在△OLP和△MLN中,∴△OLP≌△MLN(ASA),∴MN=OP,∵OP=2HO,∴MN=2HO.点评:本题考查了坐标与图形性质,等腰三角形的性质和判定,正方形的性质和判定,全等三角形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.考点:全等三角形的判定与性质;非负数的性质:偶次方;非负数的性质:算术平方根;坐标与图形性质;等边三角形的性质.专题:探究型.分析:(1)根据二次根式以及偶次方都是非负数,两个非负数的和是0,则每个数一定同时等于0,即可求解;(2)连接OC,只要证明OC是∠AOD的角平分线即可判断AC=CD,求出∠ACD的度数即可判断位置关系;(3)延长GA至点M,使AM=OF,连接BM,由全等三角形的判定定理得出△BAM≌△BOF,△FBG≌△MBG,故可得出FG=GM=AG+OF,由此即可得出结论.解答:解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.点评:本题考查的是全等三角形的判定与性质,涉及到非负数的性质及等边三角形的性质等知识,难度适中.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.w W w .(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP 的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB 为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF ﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.考点:全等三角形的判定与性质;等边三角形的判定.专题:压轴题.分析:(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)与前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.解答:证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,w W w .∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。
2021-2022学年华师大版八年级数学上册《三角形全等的判定》期末综合复习题(附答案)
2021-2022学年华师大版八年级数学上册《三角形全等的判定》期末综合复习题(附答案)1.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°2.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③3.已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FCC.EF≠EC,AE=FC D.EF≠EC,AE≠FC4.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD5.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D6.如图,点E,F在BC上,BE=CF,∠A=∠D.请添加一个条件,使△ABF≌△DCE.7.如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)8.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.9.如图,∠A=∠BCD,CA=CD,点E在BC上,且DE∥AB,求证:AB=EC.10.如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.11.如图,AB∥DE,B,C,D三点在同一条直线上,∠A=90°,EC⊥BD,且AB=CD.求证:AC=CE.12.如图,点D、E分别是AB、AC的中点,BE、CD相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.13.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.14.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.15.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.16.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC =BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.17.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.18.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.证明:在△DEC和△ABC中,,∴△DEC≌△ABC(SAS),∴.19.如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE =DF,CE=BF.求证:∠B=∠C.20.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.21.如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.22.在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,在△ABC中,∠ABC=∠ACB,点D在AB边上(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,CD,BE与CD相交于点F.若,求证:BE=CD.注:如果选择多个条件分别作答,按第一个解答计分.23.如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC ≌△DEF.24.如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.25.如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC =∠CBD.26.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.27.如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.参考答案1.解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.2.解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.3.解:∵△ABC≌△DEF,∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,∵∠ACB=∠DFE,∴EF=EC.∵∠CED=35°,∠D=40°,∴∠D>∠CED.∴CE>CD.∵AC=DF,∴AC﹣CE<DF﹣CD,即AE<FC.∴AE≠FC.∴EF=EC,AE≠FC.故选:B.4.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.5.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.6.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,添加∠B=∠C,在△ABF和△DCE中,,∴△ABF≌△DCE(AAS),故答案为:∠B=∠C(答案不唯一).7.解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.8.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).9.证明:∵DE∥AB,∴∠DEC=∠ABC,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=EC.10.证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.11.证明:∵AB∥DE,∴∠B=∠D,∵EC⊥BD,∠A=90°,∴∠DCE=90°=∠A,在△ABC和△CDE中,,∴△ABC≌△CDE(ASA),∴AC=CE.12.证明:(1)在△BOD和△COE中,,∴△BOD≌△COE(AAS),∴OD=OE;(2)∵点D、E分别是AB、AC的中点,∴AD=BD=AB,AE=CE=AC,∵BD=CE.∴AD=AE,AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).13.证明:∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∴△ABE≌△DCF(AAS).∴AE=DF.14.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.15.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.16.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.17.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).18.证明:在△DEC和△ABC中,,∴△DEC≌△ABC(SAS),∴DE=AB.故答案为:CA,∠DCE=∠ACB,CB,DE=AB.19.证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠B=∠C.20.证明:(1)在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.21.证明:∵BD∥AC,∴∠ACB=∠EBD,在△ABC和△EDB中,,∴△ABC≌△EDB(SAS),∴∠ABC=∠D.22.证明:选择条件①的证明为:∵∠ABC=∠ACB,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴BE=CD;选择条件②的证明为:∵∠ABC=∠ACB,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴BE=CD;选择条件③的证明为:∵∠ABC=∠ACB,∴AB=AC,∵FB=FC,∴∠FBC=∠FCB,∴∠ABC﹣∠FBC=∠ACB﹣∠FCB,即∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴BE=CD.故答案为①AD=AE(②∠ABE=∠ACD或③FB=FC)23.证明:∵AC∥DF,∴∠CAB=∠FDE(两直线平行,同位角相等),又∵BC∥EF,∴∠CBA=∠FED(两直线平行,同位角相等),在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).24.证明:在△AOB与△COD中,,∴△AOB≌△DOC(AAS),∴OB=OC,∴∠OBC=∠OCB.25.证明:在△CDA和△DCB中,,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.26.证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴AB﹣AD=AC﹣AE,∴BD=CE.27.证明:在△ABE与△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).。
第11章三角形-2020-2021学年上学期八年级数学期末复习冲刺(人教版)(解析版)
第11章三角形学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.8【答案】D【解析】【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=3608 45︒=︒,∴这个正多边形的边数是8.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.2.如图,要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.1根B.2根C.3根D.4根【答案】A【解析】【分析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.【详解】解:根据三角形的稳定性可得,至少要再钉上1根木条.故选A .【点睛】此题主要考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.3.如图,△ABC 中,AE ⊥BC 于点E,AD 为BC 边上的中线,DF 为△ABD 中AB 边上的中线,已知AB=5cm,AC=3cm,△ABC 的面积为12cm 2.求△ABD 与△ACD 的周长的差( )A .3B .4C .2D .1【答案】C【解析】【分析】根据中线的性质得到BD=CD ,根据周长的计算公式计算即可;【详解】∵AD 为BC 边上的中线,∴BD=CD ,∴△ABD 与△ACD 的周长的差=(AB+AD+BD)−(AC+AD+CD)=AB −AC=2cm.故选择C.【点睛】本题考查三角形中线的性质,解题的关键是掌握三角形中线的性质.4.如图,在ABC ∆中,点,D E 分别为,BC AD 的中点,2EF FC =,若ABC ∆的面积为a ,则BEF ∆的面积为( )A .6aB .4aC .3aD .38a 【答案】C【解析】【分析】根据高相同,底成比例的两个三角形的面积也成比例即可得出答案.【详解】∵ABC ∆的面积为a ,D 为BC 的中点 ∴11S S S 22ABD ACD ABC a === ∵E 为AD 的中点 ∴11S S S 24ABE BED ABD a ===同理:11SSS 24ACE CED ACD a === ∴1S S S 2CBE BED CED a =+= ∵EF=2FC∴S2S BEF BFC = 即21S 33BEF BEC S a == 故答案选择C.【点睛】本题考查的是三角形的基本概念.5.下列命题中:①长为5cm 的线段AB 沿某一方向平移10cm 后,平移后线段AB 的长为10cm ;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两直线平行;⑤两个角的两边分别平行,则这两个角相等,真命题个数有()A.1B.2C.3D.4【答案】A【解析】【分析】利用平移的性质、三角形高的定义、多边形的外角与内角、平行线的性质分别判断出正确答案的个数,即可得出答案.【详解】①:平移不改变图形的形状和大小,故选项①错误;②:直角三角形的高在三角形的边上,钝角三角形的高在三角形的外面,故选项②错误;③:六边形的外角和360°,六边形的内角和720°,故选项③正确;④:平行于同一条直线的两条直线平行,故选项④正确;⑤:两个角的两边分别平行,则这两个角相等或互补,故选项⑤错误.因此正确的个数有两个,答案选择A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平移的性质、三角形的高的定义、多边形的外角与内角、平行线的性质等知识,难度不大.6.如图,在中,,是的角平分线交于点,于点,下列四个结论中正确的有()①②③④A.个B.个C.个D.个【答案】C【解析】【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,∴DE=DC,故①正确;又∵∠C=∠BEC=90°,BD=BD,∴Rt△BCD≌Rt△BED(HL),故④正确;∴BE=BC,故②正确;∵Rt△ADE中,AD>DE=CD,∴AD=DC不成立,故③错误;故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.等腰直角三角形的腰长为2,该三角形的重心到斜边的距离为()A.223B.23C.23D.13【答案】D【解析】【分析】作等腰直角三角形底边上的高并根据勾股定理求解,再根据三角形重心三等分中线的性质即可求出.【详解】如图,根据三线合一的性质,底边上的中线CD=2sin45°=1,∵三角形的重心到三角形顶点的距离等于中点距离的2倍,∴重心到AB 的距离=1×13=13. 故选D.【点睛】此题考查等腰直角三角形,三角形的重心,解题关键在于画出图形8.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°【答案】D【解析】【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠,∵AD CE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12【答案】B【解析】【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.一个四边形,截一刀后得到的新多边形的内角和将A .增加 180°B .减少 180°C .不变D .不变或增加 180°或减少 180°【答案】D【解析】【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 11.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°【答案】B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°.故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.12.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm 【答案】D【解析】【分析】先根据三角形的三边关系确定第三边的范围,再判断各选项即可.【详解】解:∵有两条线段长度分别为:2cm ,5cm ,∴设第三条边长为acm ,故5﹣2<a <5+2,则3<a <7,故再添加一条线段长为4cm 时,能构成一个三角形.故选D .【点睛】本题考查了三角形的三边关系,三角形的三边满足:任意两边之和大于第三边,任意两边之差小于第三边.二、填空题13.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分CAD ∠,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC ∠=︒;②AEF BEF ∠=∠;③BAE BEA ∠=∠;④2B AEF ∠=∠,其中正确的有_____.【答案】①③④【解析】【分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】由已知可知∠ADC=∠ADB=90°, ∵∠ACB =∠BAD∴90°-∠ACB=90°-∠BAD ,即∠CAD=∠B, ∵三角形ABC 的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE 平分∠CAD ,EF ∥AC ,∴∠CAE=∠EAD=∠AEF ,∠C=∠FEB=∠BAD ,②错误,∵∠BAE=∠BAD+∠DAE ,∠BEA=∠BEF+∠AEF,∴∠BAE =∠BEA ,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF ,④正确,故答案为:①③④.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.14.如图,E ∠是六边形ABCDE 的一个内角.若120E ∠=︒,则A B C D F ∠+∠+∠+∠+∠的度数为________.【答案】600︒【解析】【分析】根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720° ∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600° 故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°. 15.如图,直线12l l ,1110∠=︒,2130∠=︒,那么3∠的度数为___________度.【答案】60【解析】【分析】如图利用平行线的性质求出∠4,再根据三角形的外角的性质解决问题即可.【详解】解:∵l 1∥l 2,∴∠1+∠4=180°,∵∠1=110°,∴∠4=70°,∵∠2=∠3+∠4,∠2=130°,∴∠3=130°−70°=60°,故答案为60.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.,点E是AC中点,若△CDE面积为1,则△ABC的16.如图,△ABC中,点D在BC上,且BD2DC面积为____.【答案】6【解析】【分析】根据等底同高的两个三角形的面积公式得到△ADC的面积,然后根据△ABC与△ADC的底边的数量关系来求△ABC.【详解】∵△CDE面积为1,点E是AC中点,∴S△ADC=2S△CDE=2.又∵BD=2DC,∴S△ABC=3S△ADC=6.故答案是:6.【点睛】考查了三角形的面积,熟记等底同高、同底等高三角形面积间的数量关系即可解答.三、解答题17.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】【分析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB,再利用三角形内角和可求得∠A.(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC、∠ACB 的三等分线交于点E、D设∴∠=∠=∠=∠=∠=∠=;ABE EBD DBC x ACE ECD DCB y,, ∠ABC=3x,∠ACB=3y∴∠=∠=22EBC x ECB y∠∠+∠=∠+∠+∠=1+180,2180EBC DCB ECB DBC130+2x+y=180110+2y+x=180⎧∴⎨⎩①②①+②得:240°+3x+3y=360° 即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60° (2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;ABD DBE EBC x ACE DCB y ∴∠=∠=∠=∠=∠=设32ABC x ACB y ∴∠=∠=,710879=1209÷ 【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.18.如图是某厂生产的一块模板,已知该模板的边//AB CF ,//CD AE ,按规定AB ,CD 的延长线相交成70︒角,因交点不在模板上,不便测量,这时师傅规定徒弟只需测一个角,便知道AB ,CD 的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.【答案】测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,见解析.【解析】【分析】连接AF ,由AB ∥CF 可证明360BAE E EFC ∠+∠+∠=︒,设AB ,CD 延长线交于点M ,若∠M =70°,则在五边形AEFCM 中,∠C =540°-360°-70°=110°,即当∠C =110°时,可知AB ,CD 的延长线的夹角合乎规定,再按此思路整理写出即可.【详解】解:测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,即知模板中AB ,CD 的延长线的夹角是否符合规定,理由如下:连接AF .因为//AB CF ,所以180BAF AFC ∠+∠=︒.又因为180EAF E AFE ∠+∠+∠=︒,所以360BAE E EFC ∠+∠+∠=︒.若110C ∠=︒,则AB ,CD 延长线的夹角∠M 54036011070=︒-︒-︒=.即符合规定;同理,若连接CE ,当110A ∠=︒时,也可说明AB ,CD 延长线的夹角为70°,符合规定.【点睛】此题考查了多边形的内角和和平行线的性质的实际应用,解题的关键是通过连接AF 架起已知和所求的桥梁,进而解决问题.19.(1)如图,四边形ABCD 中,30A ∠=︒,60B ∠=︒,20C ∠=︒,则ADC ∠=________. (2)对于任意的凹四边形ABCD ,猜想A ∠,B ,C ∠与ADC ∠的大小关系,并证明.(3)一个零件的形状如图所示,按规定,A ∠应等于40︒,B 与C ∠应分别是70︒和25︒,工人检验140ADC ∠=︒,就断定这个零件不合格,请你运用上述结论,说明零件不合格的理由.【答案】(1)110︒;(2)ADC A B C ∠=∠+∠+∠,见解析;(3)见解析.【解析】【分析】(1)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ; (2)连接BD 并延长,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC.(3)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ,然后即可判断.【详解】(1)延长AD 交BC 于E ,∵∠A=30°,∠B=60°,∴∠AEC=∠A+∠B=30°+60°=90°,∵∠C=20°,∴∠ADC=∠C+∠AEC=20°+90°=110°. (2)ADC A B C ∠=∠+∠+∠.证明:连接BD 并延长,如图所示.在ABD △中,13∠=∠+∠A ,在BCD 中,24C ∠=∠+∠,1234A C ∴∠+∠=∠+∠+∠+∠,即ADC ABC A C ∠=∠+∠+∠.(3)延长AD 交BC 于E ,∵∠A=40°,∠B=70°,∴∠AEC=∠A+∠B=40°+70°=110°,∵∠C=25°,∴∠ADC=∠C+∠AEC=25°+110°=135°. 又∵∠ADC=140°,∴这个零件不合格.【点睛】此题考查多边形内角与外角了,三角形的外角性质,解题关键在于作辅助线.20.如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD= 度;(2)求∠CAE的度数.【答案】(1)40;(2)20°【解析】【分析】(1)直接根据三角形内角和定理求出∠BAD的度数;(2)先根据图形折叠的性质求出∠AED的度数,再由三角形外角的性质即可得出结论.【详解】(1)∵AD是BC边上的高,∠B=50°,∴∠BAD=180°-90°-50°=40°.故答案为40;(2)∵△AED是由△ABD折叠得到,∴∠AED=∠B=50°,∵∠AED是△ACE的外角,∴∠AED=∠CAE+∠C,∴∠CAE=∠AED-∠C=50°-30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S△ABE=S△BCE,∴S△ABD=S△BCE=12S△ABC=12×20=10(cm2).(2)△AOE与△BOD的面积相等,理由如下.根据(1)可得:S△ABE=S△ABD,∵S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,∴S△AOE=S△BOD.【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;22.如图为一个正n 边形的一部分,AB 和DC 延长后相交于点P ,若∠BPC=120°,求n .【答案】n=12.【解析】试题分析:因为是正多边形,所以外角相等,根据∠BPC =120°,利用三角形内角和可求出正多边形的外角,再利用多边形外角等于360°,即可求出正多边形的边数. 试题解析:∵PB =PC ,∠BPC =120°, ∴∠PBC =∠PCB =12(180°﹣∠BPC )=30°, 即正n 边形的一个外角为30°, ∴n =36030︒︒=12. 23.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【答案】(1)()6,4,0,4-;(2)2312x y -=;(3)不变,2OFC FCG OEC∠+∠=∠. 【解析】【分析】(14b -=0,可得,a b 的值,再根据AB=OC ,且C 在y 轴负半轴上,可得C 的坐标; (2)过点P 分别作P M ⊥x 轴于点M ,P N ⊥y 轴于点N ,连接OP ,根据BOC POB POC SS S =+,可得,x y 满足的关系式;(3)由//BC OA ,证明,AOB OBC ∠=∠结合已知条件可得,BOG CBO ∠=∠ 再利用三角形的外角的性质证明∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,得到∠OFC+∠FCG =2∠OEC ,从而可得结论.【详解】解:(1)∵ 40b -=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上,()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP .∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y -∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯=2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3) OFC FCG OEC∠+∠∠的值不变,值为2. 理由如下:∵线段OC 是由线段AB 平移得到,∴//,OA CB ,∴∠AOB=∠OBC ,又∵∠BOG=∠AOB ,∴∠BOG=∠OBC ,根据三角形外角性质,可得∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,,OEC FCG OBC ∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC ) =2∠OEC ,∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠; 所以:OFC FCG OEC ∠+∠∠的值不变,值为2.【点睛】本题属于几何变换综合题,主要考查了非负数的性质,坐标与图形,平行线的性质以及平移的性质,三角形的外角的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解. 24.已知a ,b ,c 分别为△ABC 的三条边,且满足23a b c +=-,26a b c -=-,a b >. (1)求c 的取值范围.(2)若ABC ∆的周长为12,求c 的值.【答案】(1)36c <<;(2)5c =.【解析】【分析】(1)根据三角形两边之和大于第三边,两边之差小于第三边即可求解;(2)根据23a b c +=-得三角形的周长为33-c 等于12,即可求出c 的值.【详解】解:(1)∵a ,b ,c 分别为ABC ∆的三条边,且23a b c +=-,26a b c -=-,∴23,26,c c c c ->⎧⎨-<⎩ 解得36c <<.故答案为:36c <<.(2)∵ABC ∆的周长为12,23a b c +=-,∴3312a b c c ++=-=,解得5c =.故答案为:5c =.【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.。
【期末复习】2020年八年级数学上册 期末复习专题 全等三角形解答题 专练(含答案)
【期末复习】2020年八年级数学上册期末复习专题全等三角形解答题专练1.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.2.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.3.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B4.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.5.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=1,求AD的长.6.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.7.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.8.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.9.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.10.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB和∠CAP的度数.11.如图,△ABC中,∠BAC=900,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.12.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.13.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.14.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.15.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.参考答案1.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.2.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE 所以:AE=CE 所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA 所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB 所以:△AEC≌△AGB所以:EC=BG=DG 所以:BD=2CE3.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD ∴AE=AB∵AD平分∠CAB ∴∠EAD=∠BAD∴AE=AB ∠EAD=∠BAD AD=AD ∴△ADE≌△ADB∴∠E=∠B 且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B4.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。
2022-2023学年人教版八年级数学上学期期末复习通关练第十一章 三角形(提高卷)(解析版)
2022-2023学年人教版八年级上册期末真题单元冲关测卷(提高卷)第十一章 三角形一.选择题(共7小题,满分14分,每小题2分)1.(2分)(2020春•雨花区期末)如图,已知CD 和BE 是ABC ∆的角平分线,60A ∠=︒,则(BOC ∠= )A .60︒B .100︒C .120︒D .150︒【解答】解:60A ∠=︒,18060120ABC ACB ∴∠+∠=︒-︒=︒, CD 和BE 是ABC ∆的角平分线, 111()60222OBC OCB ABC ACB ABC ACB ∴∠+∠=∠+∠=∠+∠=︒, 180()120BOC OBC OCB ∴∠=︒-∠+∠=︒,故选:C .2.(2分)(2020春•义乌市期末)如图,在ABC ∆中,B C α∠+∠=,按图进行翻折,使////B D C G BC '',//B E FG ',则C FE '∠的度数是( )A .2αB .902α︒- C .90α-︒ D .2180α-︒【解答】解:设ADB γ∠'=,AGC β∠'=,CEB y ∠'=,C FE x ∠'=,//B D C G '',B C γβα∴+=∠+∠=,//EB FG ',CFG CEB y ∴∠=∠'=,2180x y ∴+=︒①,2y B γ+=∠,2x C β+=∠,2y x γβα∴+++=,x y α∴+=②,②2⨯-①可得2180x α=-︒,2180C FE α∴∠'=-︒.故选:D .3.(2分)(2020春•海淀区校级期末)如图,在ABC ∆中,90ACB ∠=︒,//CD AB ,36ACD ∠=︒,那么B ∠的度数为( )A .144︒B .54︒C .44︒D .36︒【解答】解://AB CD , 36A ACD ∴∠=∠=︒,90ACB ∠=︒,903654B ∴∠=︒-︒=︒,故选:B .4.(2分)(2019秋•巴州区期末)若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为( )A .14或15B .13或14C .13或14或15D .14或15或16【解答】解:如图,n 边形,123n A A A A ⋯,若沿着直线13A A 截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线1A M 截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN 截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的四边形为13或14或15,故选:C .5.(2分)(2019秋•潮州期末)如图,在ABC ∆中,32B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .32︒B .45︒C .60︒D .64︒【解答】解:如图所示:由折叠的性质得:32D B ∠=∠=︒,根据外角性质得:13B ∠=∠+∠,32D ∠=∠+∠,1222264D B B ∴∠=∠+∠+∠=∠+∠=∠+︒,1264∴∠-∠=︒. 故选:D .6.(2分)(2019秋•兰州期末)ABC ∆的三个内角A ∠,B ∠,C ∠满足关系式3B C A ∠+∠=∠,则此三角形( )A .一定是直角三角形B .一定是钝角三角形C .一定有一个内角为45︒D .一定有一个内角为60︒【解答】解:180A B C ∠+∠+∠=︒又3B C A ∠+∠=∠,4180A ∴∠=∠︒,45A ∴∠=︒,ABC ∴∆一定有一个内角是45︒, 故选:C .7.(2分)(2019秋•义安区期末)如图,将ABC ∆沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,若1131∠=︒,则2∠的度数为( )A .49︒B .50︒C .51︒D .52︒【解答】解:由折叠得:HOG B ∠=∠,DOE A ∠=∠,EOF C ∠=∠,180A B C ∠+∠+∠=︒,180HOG DOE EOF ∴∠+∠+∠=︒,12360HOG DOE EOF ∠+∠+∠+∠+∠=︒,12180∴∠+∠=︒,1131∠=︒,218013149∴∠=︒-︒=︒,故选:A .二.填空题(共10小题,满分20分,每小题2分)8.(2分)(2020春•竞秀区期末)如图1,ABC ∆中,有一块直角三角板PMN 放置在ABC ∆上(P 点在ABC ∆内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .(1)若52A ∠=︒,则12∠+∠= 38 ︒;(2)如图2,改变直角三角板PMN 的位置;使P 点在ABC ∆外,三角板PMN 的两条直角边PM 、PN 仍然分别经过点B和点C,1∠的关系是.∠与A∠,2【解答】解:(1)52A∠=︒,∴∠+∠=︒-︒=︒,18052128ABC ACBP∠=︒,90∴∠+∠=︒,PBC PCB90ABP ACP∴∠+∠=︒-︒=︒,1289038即1238∠+∠=︒.故答案为:38;(2)2190A∠-∠=︒-∠.理由如下:在ABCABC ACB A∠+∠=︒-∠,∆中,180∠=︒,MPN90PBC PCB∴∠+∠=︒,90ABC ACB PBC PCB A∴∠+∠-∠+∠=︒-∠-︒,()()18090即90∠+∠+∠-∠-∠-∠=︒-∠,ABC ACP PCB ABP ABC PCB A∴∠-∠=︒-∠.ACP ABP A90即2190A∠-∠=︒-∠;故答案为:2190A∠-∠=︒-∠.9.(2分)(2020春•鼓楼区期末)如图,直线a、b、c、d互不平行,以下结论正确的是①②③.(只填序号)①125∠+∠=∠;②134∠+∠=∠;③1236∠+∠+∠=∠;④3425∠+∠=∠+∠.【解答】解:由三角形外角的性质可知:512∠=∠+∠,413∠=∠+∠,64235∠=∠+∠=∠+∠, 6123∴∠=∠+∠+∠,故①②③正确,故答案为①②③.10.(2分)(2020春•裕华区期末)(1)新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示 111.16910⨯ 元.(2)已知102m =,103n =,则210m n += .(3)在ABC ∆中,4A B ∠=∠,且60C B ∠-∠=︒,则B ∠的度数是 .(4)如图(1),在三角形ABC 中,38A ∠=,72C ∠=︒,BC 边绕点C 按逆时针方向旋转一周回到原来的位置(即旋转角0360)α︒︒,在旋转过程中(图2),当//CB AB '时,旋转角为 度;当CB 所在直线垂直于AB 时,旋转角为 度.【解答】解:(1)1169亿8116910=⨯元111.16910=⨯(元).故答案为111.16910⨯.(2)2222101010(10)(10)2318m n m n m n +=⨯=⨯=⨯=,故答案为18.(3)4A B ∠=∠,且60C B ∠-∠=︒,60C B ∴∠=︒+∠,460180B B B ∴∠+∠+︒+∠=︒,20B ∴∠=︒,故答案为20︒(4)在三角形ABC 中,38A ∠=︒,72C ∠=︒,180387270B ∴∠=︒-︒-︒=︒,如图1,当//CB AB '时,旋转角70B =∠=︒,当//CB AB ''时,38B CA A ∠''=∠=︒, ∴旋转角3603872250=︒-︒-︒=︒,综上所述,当//CB AB '时,旋转角为70︒或250︒;如图2,当CB AB '⊥时,907020BCB ∠''=︒-︒=︒,∴旋转角18020160=︒-︒=︒,当CB AB ''⊥时,旋转角180160340=︒+︒=︒,综上所述,当CB AB '⊥时,旋转角为160︒或340︒;故答案为:70或250;160或340.11.(2分)(2020春•雨花区期末)如图,若30A ∠=︒,105ACD ∠=︒,则EBC ∠= 105 ︒.【解答】解:ACD A ABC ∠=∠+∠,10530ABC ∴︒=︒+∠,75ABC ∴∠=︒,180105EBC ABC ∴∠=︒-∠=︒,故答案为105.12.(2分)(2015春•金牛区期末)如图,ABC ∆的外角平分线CP 和内角平分线BP 相交于点P ,若80BPC ∠=︒,则CAP ∠= 10︒ .【解答】解:延长BA ,作PN BD ⊥于点N ,PF BA ⊥于点F ,PM AC ⊥于点M , 设PCD x ∠=︒, CP 平分ACD ∠,ACP PCD x ∴∠=∠=︒,PM PN =, BP 平分ABC ∠,ABP PBC ∴∠=∠,PF PN =,PF PM ∴=,80BPC ∠=︒,(80)ABP PBC x ∴∠=∠=-︒,2(80)(80)160BAC ACD ABC x x x ∴∠=∠-∠=︒-︒-︒-︒-︒=︒, 20CAF ∴∠=︒,在Rt PFA ∆和Rt PMA ∆中,PA PA PM PF =⎧⎨=⎩, Rt PFA Rt PMA(HL)∴∆≅∆,10FAP PAC ∴∠=∠=︒.故答案为10︒.13.(2分)(2011春•成都校级期末)ABC ∆中,A x ∠=,B ∠、C ∠的角平分线的夹角为y ,则y 与x 之间的关系可以表示为 1902y x =︒+. . 【解答】解:PB 、PC 是B ∠、C ∠的角平分线,1122ABC ∴∠=∠=∠,1342ACB ∠=∠=∠, 11113()222ABC ACB ABC ACB ∴∠+=∠+∠=∠+∠, 180(13)y =︒-∠+∠,180ABC ACB x ∠+∠=︒-,11180(180)9022y x x ∴=︒-︒-=︒+. 故答案为1902y x =︒+.14.(2分)(2019春•崇川区校级期末)如图,在ABC ∆中,40BAC ∠=︒,60ACB ∠=︒,D 为ABC ∆形外一点,DA 平分BAC ∠,且50CBD ∠=︒,求DCB ∠= 60︒ .【解答】解:如图,延长AB 到P ,延长AC 到Q ,作DH AP ⊥于H ,DE AQ ⊥于E ,DF BC ⊥于F .4060100PBC BAC ACB ∠=∠+∠=︒+︒=︒,50CBD ∠=︒, DBC DBH ∴∠=∠,DF BC ⊥,DH BP ⊥,DF DH ∴=,又DA 平分PAQ ∠,DH PA ⊥,DE AQ ⊥, DE DH ∴=,DE DF ∴=,CD ∴平分QCB ∠,18060120QCB ∠=︒-︒=︒,60DCB ∴∠=︒,故答案为60︒.15.(2分)(2018秋•沈河区期末)已知如图,BQ 平分ABP ∠,CQ 平分ACP ∠,BAC α∠=,BPC β∠=,则BQC ∠= 1()2αβ+ .(用α,β表示)【解答】解:连接BC , BQ 平分ABP ∠,CQ 平分ACP ∠,132ABP ∴∠=∠,142ACP ∠=∠, 12180β∠+∠=︒-,2(34)(12)180α∠+∠+∠+∠=︒-,134()2βα∴∠+∠=-, 1180(12)(34)180(180)()2BQC ββα∠=︒-∠+∠-∠+∠=︒-︒---, 即:1()2BQC αβ∠=+. 故答案为:1()2αβ+.16.(2分)(2016秋•成都期末)如图,已知ABC ∆ 中,60A ∠=︒,BD AC ⊥于D ,CE AB ⊥于E ,BD 、CE 交于点F ,FBC ∠、FCB ∠的平分线交于点O ,则BOC ∠的度数为 150︒ .【解答】解:60A ∠=︒,BD AC ⊥于D ,CE AB ⊥于E ,30ACE ABD ∴∠=∠=︒,120ABC ACB ∠+∠=︒,60FBC FCB ∴∠+∠=︒,FBC ∠、FCB ∠的平分线交于点O ,30OBC OCB ∴∠+∠=︒,150BOC ∴∠=︒故答案为150︒.17.(2分)(2017春•高密市期末)如图,把一个三角尺的直角顶点D 放置在ABC ∆内,使它的两条直角边DE ,DF 分别经过点B ,C ,如果30A ∠=︒,则ABD ACD ∠+∠= 60︒ .【解答】解:30∠=︒,A∴∠+∠=︒,ABC ACB150∠=︒,D90∴∠+∠=︒,90DBC DCB∴∠+∠=︒-︒=︒.1509060DBA DCA故答案为:60︒.三.解答题(共12小题,满分66分)18.(4分)(2020春•惠安县期末)已知:如图1,在ABC∠=∠.∆中,CD是AB边上的高,A DCB(1)试说明90∠=︒;ACB(2)如图2,如果AE是角平分线,AE、CD相交于点F.那么CFE∠的大小相等吗?请说明理∠与CEF由.【解答】(1)解:CD是AB边上的高,∴∠=︒,CDA90∴∠+∠=︒,A ACD90∠=∠,A DCBACB ACD BCD ACD A∴∠=∠+∠=∠+∠=︒;90(2)解:CFE CEF∠=∠,理由是:AE平分CAB∠,∴∠=∠,CAE BAE90CDA BCA ∠=∠=︒,180()DFA CDA BAE ∠=︒-∠+∠,180()CEA BCA CAE ∠=︒-∠+∠, CEF DFA ∴∠=∠,DFA CFE ∠=∠,CFE CEF ∴∠=∠.19.(4分)(2020春•海州区期末)已知如图,90COD ∠=︒,直线AB 与OC 交于点B ,与OD 交于点A ,射线OE 与射线AF 交于点G .(1)若OE 平分BOA ∠,AF 平分BAD ∠,36OBA ∠=︒,则OGA ∠= 18 ︒.(2)若13GOA BOA ∠=∠,13GAD BAD ∠=∠,36OBA ∠=︒,则OGA ∠= ︒. (3)将(2)中的“36OBA ∠=︒”改为“OBA α∠=”,其它条件不变,求OGA ∠的度数.(用含α的代数式表示)(4)若OE 将BOA ∠分成1:4两部分,23GAD BAD ∠==∠,(1890)ABO αα∠=︒<<︒,求OGA ∠的度数.(用含α的代数式表示)【解答】解:(1)90BOA ∠=︒,36OBA ∠=︒,126BAD BOA ABO ∴∠=∠+∠=︒, AF 平分BAD ∠,OE 平分BOA ∠,90BOA ∠=︒,1632GAD BAD ∴∠=∠=︒,1452EOA BOA ∠=∠=︒, 634518OGA GAD EOA ∴∠=∠-∠=︒-︒=︒;故答案为:18︒;(2)90BOA ∠=︒,36OBA ∠=︒,126BAD BOA ABO ∴∠=∠+∠=︒,90BOA ∠=︒,13GOA BOA ∠=∠,13GAD BAD ∠=∠,42GAD ∴∠=︒,30EOA ∠=︒,423012OGA GAD EOA ∴∠=∠-∠=︒-︒=︒;故答案为12︒;(3)90BOA ∠=︒,OBA α∠=,90BAD BOA ABO α∴∠=∠+∠=︒+,90BOA ∠=︒,13GOA BOA ∠=∠,13GAD BAD ∠=∠, 1303GAD α∴∠=︒+,30EOA ∠=︒, 13OGA GAD EOA α∴∠=∠-∠=;(4)当:1:4EOD COE ∠∠=时,18EOD ∠=︒,90BAD ABO BOA α∠=∠+∠=+︒,23GAD BAD ∠=∠, 22(90)33FAD BAD α∴∠=∠=+︒, FAD EOD OGA ∠=∠+∠,218(90)3OGA α∴︒+∠=+︒, 解得2423OGA α∠=+︒; 当:4:1EOD COE ∠∠=时,72EOD ∠=︒, 同理可得2123OGA α∠=-︒; 综上所述,OGA ∠的度数为2423α+︒或2123α-︒.20.(4分)(2020春•淅川县期末)现有一张ABC ∆纸片,点D 、E 分别是ABC ∆边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则1∠=∠.∠的数量关系是12A∠与A研究(2):如果折成图②的形状,猜想12∠的数量关系是;∠+∠与A研究(3):如果折成图③的形状,猜想1∠的数量关系,并说明理由.∠和A∠、2【解答】解:(1)如图1,12A∠=∠,理由是:由折叠得:A DA A∠=∠',∠=∠+∠',1A DA A∴∠=∠;12A故答案为:12A∠=∠;(2)如图2,猜想:122A∠+∠=∠,理由是:由折叠得:ADE A DE∠=∠',AED A ED∠=∠',∠+∠=︒,ADB AEC360∴∠+∠=︒-∠-∠'-∠-∠'=︒-∠-∠,ADE A DE AED A ED ADE AED 1236036022∴∠+∠=︒-∠-∠=∠;ADE AED A122(180)2故答案为:122A∠+∠=∠;(3)如图3,212DAE∠-∠=∠,理由是:AFE A∠=∠'+∠,∠=∠+∠,12AFE DAE∴∠=∠'+∠+∠,A DAE21∠=∠',DAE A∴∠=∠+∠,221DAE∴∠-∠=∠.212DAE故答案为:(1)12A∠=∠;(2)122A∠+∠=∠.21.(4分)(2020春•马山县期末)如图,在三角形ABC中,AD BC∠,点E是⊥于点D,且AD平分BACBA的延长线上任一点,过点E作EF BC⊥于点F,与AC交于点G.(1)求证://AD EF.(2)若36∠的度数.∠=︒,求BCGF(3)猜想E∠与AGE∠的大小关系,并证明你的猜想.【解答】(1)证明:AD BC⊥,⊥,EF BCADC EFC∴∠=∠=︒,90∴;//AD EF(2)//AD EF,36∠=︒,CGFCGF CAD∴∠=∠=︒,36AD平分BAC∠,∴∠=∠=︒,36BAD CAD∴∠=︒-∠-∠=︒;B BAD BDA18054(3)E AGE∠=∠,证明:理由是://AD EF,∴∠=∠,AGE CADE BAD∠=∠,∠=∠,BAD CAD∴∠=∠.E AGE22.(5分)(2020春•赣榆区期末)[问题背景](1)如图1的图形我们把它称为“8字形”,请说理证明A B C D ∠+∠=∠+∠.[简单应用](可直接使用问题(1)中的结论)(2)如图2,AP 、CP 分别平分BAD ∠、BCD ∠,①若28ABC ∠=︒,20ADC ∠=︒,求P ∠的度数;②D ∠和B ∠为任意角时,其他条件不变,试直接写出P ∠与D ∠、B ∠之间数量关系.[问题探究](3)如图3,直线BP 平分ABC ∠的邻外角FBC ∠,DP 平分ADC ∠的邻补角ADE ∠, ①若30A ∠=︒,18C ∠=︒,则P ∠的度数为 24︒ ;②A ∠和C ∠为任意角时,其他条件不变,试直接写出P ∠与A ∠、C ∠之间数量关系.[拓展延伸](4)在图4中,若设C x ∠=,B y ∠=,14CAP CAB ∠=∠,14CDP CDB ∠=∠,试问P ∠与C ∠、B ∠之间的数量关系为 ;(用x 、y 的代数式表示)P ∠(5)在图5中,直线BP 平分ABC ∠,DP 平分ADC ∠的外角ADE ∠,猜想P ∠与A ∠、C ∠的关系,直接写出结论 .【解答】解:(1)如图1中,180A B AOB ∠+∠+∠=︒,180C D COD ∠+∠+∠=︒,AOB COD ∠=∠, A B C D ∴∠+∠=∠+∠;(2)如图2中,设BAP PAD x ∠=∠=,BCP PCD y ∠=∠=,则有x B y P x P y D +∠=+∠⎧⎨+∠=+∠⎩, B P P D ∴∠-∠=∠-∠,11()(2820)2422P B D ∴∠=∠+∠=︒+︒=︒;(3)①如图3中,设CBJ JBF x ∠=∠=,ADP PDE y ∠=∠=.则有18021802P x A y A x C y∠+=∠+⎧⎨∠+︒-=∠+︒-⎩, 2P A C ∴∠=∠+∠,1(3018)242P ∴∠=︒+︒=︒; 故答案为:24︒;②设CBJ JBF x ∠=∠=,ADP PDE y ∠=∠=.则有18021802P x A y A x C y ∠+=∠+⎧⎨∠+︒-=∠+︒-⎩, 2P A C ∴∠=∠+∠;(4)如图4中,设CAP α∠=,CDP β∠=,则3PAB α∠=,3PDB β∠=,则有33P C P B βααβ∠+=∠+⎧⎨∠+=∠+⎩, 43P C B ∴∠=∠+∠,1(3)4P x y ∴∠=+, 故答案为1(3)4P x y ∠=+. (5)如图5中,延长AB 交PD 于J ,设PBJ x ∠=,ADP PDE y ∠=∠=.则有21802A x C y ∠+=∠+︒-,190()2x y C A ∴+=︒+∠-∠, 180P x A y ∠++∠+=︒,119022P C A ∴∠=︒-∠-∠. 故答案为119022P C A ∠=︒-∠-∠.23.(5分)(2020春•西城区期末)在ABC ∆中,BD 是ABC ∆的角平分线,点E 在射线DC 上,EF BC ⊥于点F ,EM 平分AEF ∠交直线AB 于点M .(1)如图1,点E 在线段DC 上,若90A ∠=︒,M α∠=.①AEF ∠= 1802α︒- ;(用含α的式子表示)②求证://BD ME ;(2)如图2,点E 在DC 的延长线上,EM 交BD 的延长线于点N ,用等式表示BNE ∠与BAC ∠的数量关系,并证明.【解答】解:(1)①90A ∠=︒,M α∠=,1809090AEM αα∴∠=︒-︒-=︒-, EM 平分AEF ∠,21802AEF AEM α∴∠=∠=︒-,故答案为:1802α︒-;②证明:EF BC ⊥,90EFC ∴∠=︒,90A ∠=︒,90C ABC ∴∠+∠=︒,CEF ABC ∴∠=∠,1802AEF α∠=︒-,2CEF α∴∠=,2ABC α∴∠=, BD 是ABC ∆的角平分线,12ABD ABC α∴∠=∠=, ABD M ∴∠=∠,//BD ME ∴;(2)290BNE BAC ∠=︒+∠,证明:BD 平分ABC ∠,EM 平分AEF ∠,设ABD x ∠=,AEM y ∠=,2ABC x ∴∠=,2AEF y ∠=,180ABD BAD ADB ∠+∠=︒-∠,180NED END NDE ∠+∠=︒-∠,ADB NDE ∠=∠,ABD BAD NED END ∴∠+∠=∠+∠,x BAD y END ∴+∠=+∠,x y END BAD ∴-=∠-∠,同理,ABC BAC FEC EFC ∠+∠=∠+∠,22x BAC y EFC ∴+∠=+∠,22x y EFC BAC ∴-=∠-∠,EF BC ⊥,90EFC ∴∠=︒,2()90x y BAC ∴-=︒-∠,2()90END BAD BAC ∴∠-∠=︒-∠,即2()90BNE BAC BAC ∠-∠=︒-∠,290BNE BAC ∴∠=︒+∠.24.(5分)(2020春•润州区期末)已知ABC ∆中,90ABC ∠=︒,BD 是AC 边上的高,AE 平分BAC ∠,分别交BC 、BD 于点E 、F .求证:BFE BEF ∠=∠.【解答】证明:AE 平分BAC ∠,BAE CAE ∴∠=∠,BD AC ⊥,90ABC ∠=︒,90BAE BEF CAE AFD ∴∠+∠=∠+∠=︒,BEF AFD ∴∠=∠,BFE AFD ∠=∠(对顶角相等), BEF BFE ∴∠=∠25.(6分)(2019秋•市中区期末)已知将一块直角三角板DEF 放置在ABC ∆上,使得该三角板的两条直角边DE ,DF 恰好分别经过点B 、C .(1)DBC DCB ∠+∠= 90 度;(2)过点A 作直线//MN DE ,若20ACD ∠=︒,试求CAM ∠的大小.【解答】解:(1)在DBC ∆中,180DBC DCB D ∠+∠+∠=︒,而90D ∠=︒,90DBC DCB ∴∠+∠=︒;故答案为90;(2)在ABC ∆中,180ABC ACB A ∠+∠+∠=︒,即180ABD DBC DCB ACD BAC ∠+∠+∠+∠+∠=︒,而90DBC DCB ∠+∠=︒,90ABD ACD BAC ∴∠+∠=︒-∠,9070ABD BAC ACD ∴∠+∠=︒-∠=︒.又//MN DE ,ABD BAN ∴∠=∠.而180BAN BAC CAM ∠+∠+∠=︒,180ABD BAC CAM ∴∠+∠+∠=︒,180()110CAM ABD BAC ∴∠=︒-∠+∠=︒.26.(7分)(2019秋•揭阳期末)探究与发现:如图①,在ABC ∆中,45B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,且ADE AED ∠=∠,连接DE .(1)当60BAD ∠=︒时,求CDE ∠的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想BAD ∠与CDE ∠的数量关系,并说明理由.(3)深入探究:如图②,若B C ∠=∠,但45C ∠≠︒,其他条件不变,试探究BAD ∠与CDE ∠的数量关系.【解答】解:(1)ADC ∠是ABD ∆的外角,105ADC BAD B ∴∠=∠+∠=︒,30DAE BAC BAD ∠=∠-∠=︒,75ADE AED ∴∠=∠=︒,1057530CDE ∴∠=︒-︒=︒;(2)2BAD CDE ∠=∠,理由如下:设BAD x ∠=,45ADC BAD B x ∴∠=∠+∠=︒+,90DAE BAC BAD x ∠=∠-∠=︒-,902x ADE AED ︒+∴∠=∠=, 9014522x CDE x x ︒+∴∠=︒+-=, 2BAD CDE ∴∠=∠;(3)设BAD x ∠=,ADC BAD B B x ∴∠=∠+∠=∠+,1802DAE BAC BAD C x ∠=∠-∠=︒-∠-,12ADE AED C x ∴∠=∠=∠+, 11()22CDE B x C x x ∴∠=∠+-∠+=, 2BAD CDE ∴∠=∠.27.(7分)(2020春•泰州期末)已知在四边形ABCD 中,A x ∠=,C y ∠=,(0180,0180)x y ︒<<︒︒<<︒.(1)ABC ADC ∠+∠= 360x y ︒-- (用 含x 、y 的代数式直接填空) ;(2) 如图 1 ,若90x y ==︒.DE 平分ADC ∠,BF 平分CBM ∠,请写出DE 与BF 的位置关系, 并说明理由;(3) 如图 2 ,DFB ∠为四边形ABCD 的ABC ∠、ADC ∠相邻的外角平分线所在直线构成的锐角 . ①若120x y +=︒,20DFB ∠=︒,试求x 、y .②小明在作图时, 发现DFB ∠不一定存在, 请直接指出x 、y 满足什么条件时,DFB ∠不存在 .【解答】解: (1)360A ABC C ADC ∠+∠+∠+∠=︒,A x ∠=,C y ∠=,360ABC ADC x y ∴∠+∠=︒--.故答案为:360x y ︒--.(2)DE BF ⊥.理由: 如图 1 ,DE 平分ADC ∠,BF 平分MBC ∠,12CDE ADC ∴∠=∠,12CBF CBM ∠=∠, 又180180(180)CBM ABC ADC ADC ∠=︒-∠=︒-︒-∠=∠,CDE CBF ∴∠=∠,又DGC BGE ∠=∠,90BEG C ∴∠=∠=︒,DE BF ∴⊥;(3)①由 (1) 得:360(360)CDN CBM x y x y ∠+∠=︒-︒--=+, BF 、DF 分别平分CBM ∠、CDN ∠,1()2CDF CBF x y ∴∠+∠=+, 如图 2 ,连接DB ,则180CBD CDB y ∠+∠=︒-,111180()180222FBD FDB y x y y x ∴∠+∠=︒-++=︒-+, 112022DFB y x ∴∠=-=︒, 解方程组:120112022x y y x +=︒⎧⎪⎨-=︒⎪⎩, 可得:4080x y =︒⎧⎨=︒⎩; ②当x y =时,1118018022FBD FDB y x ∠+∠=︒-+=︒, ABC ∴∠、ADC ∠相邻的外角平分线所在直线互相平行,此时,DFB ∠不存在 .28.(7分)(2019秋•辽阳期末)已知如图①,BP 、CP 分别是ABC ∆的外角CBD ∠、BCE ∠的角平分线,BQ 、CQ 分别是PBC ∠、PCB ∠的角平分线,BM 、CN 分别是PBD ∠、PCE ∠的角平分线,BAC α∠=.(1)当40α=︒时,BPC ∠= 70 ︒,BQC ∠= ︒;(2)当α= ︒时,//BM CN ;(3)如图②,当120α=︒时,BM 、CN 所在直线交于点O ,求BOC ∠的度数;(4)在60α>︒的条件下,直接写出BPC ∠、BQC ∠、BOC ∠三角之间的数量关系: .【解答】解:(1)DBC A ACB ∠=∠+∠,BCE A ABC ∠=∠+∠,180220DBC BCE A ∴∠+∠=︒+∠=︒, BP 、CP 分别是ABC ∆的外角CBD ∠、BCE ∠的角平分线,1()1102CBP BCP DBC BCE ∴∠+∠=∠+∠=︒, 18011070BPC ∴∠=︒-︒=︒, BQ 、CQ 分别是PBC ∠、PCB ∠的角平分线,12QBC PBC ∴∠=∠,12QCB PCB ∠=∠, 55QBC QCB ∴∠+∠=︒,18055125BQC ∴∠=︒-︒=︒;(2)//BM CN ,180MBC NCB ∴∠+∠=︒, BM 、CN 分别是PBD ∠、PCE ∠的角平分线,BAC α∠=, ∴3()1804DBC BCE ∠+∠=︒, 即3(180)1804α︒+=︒, 解得60α=︒;(3)120α=︒,33()(180)22544MBC NCB DBC BCE α∴∠+∠=∠+∠=︒+=︒, 22518045BOC ∴∠=︒-︒=︒;(4)60α>︒,1902BPC α∠=︒-、 11354BQC α∠=︒-、 3454BOC α∠=-︒. BPC ∠、BQC ∠、BOC ∠三角之间的数量关系:113(90)(135)(45)180244BPC BQC BOC ααα∠+∠+∠=︒-+︒-+-︒=︒. 故答案为:70,125;60;180BPC BQC BOC ∠+∠+∠=︒.29.(8分)(2019秋•长白县期末)Rt ABC ∆中,90C ∠=︒,点D 、E 分别是ABC ∆边AC 、BC 上的点,点P 是一动点.令1PDA ∠=∠,2PEB ∠=∠,DPE α∠=∠.(1)若点P 在线段AB 上,如图(1)所示,且50α∠=︒,则12∠+∠= 140 ︒;(2)若点P 在边AB 上运动,如图(2)所示,则α∠、1∠、2∠之间有何关系?(3)若点P 在Rt ABC ∆斜边BA 的延长线上运动()CE CD <,则α∠、1∠、2∠之间有何关系?猜想并说明理由.【解答】解:(1)如图,连接PC ,由三角形的外角性质,1PCD CPD ∠=∠+∠,2PCE CPE ∠=∠+∠,12PCD CPD PCE CPE DPE C ∴∠+∠=∠+∠+∠+∠=∠+∠,50DPE α∠=∠=︒,90C ∠=︒,125090140∴∠+∠=︒+︒=︒,故答案为:140︒;(2)连接PC ,由三角形的外角性质,1PCD CPD ∠=∠+∠,2PCE CPE ∠=∠+∠, 12PCD CPD PCE CPE DPE C ∴∠+∠=∠+∠+∠+∠=∠+∠, 90C ∠=︒,DPE α∠=∠,1290α∴∠+∠=︒+∠;(3)如图1,由三角形的外角性质,21C α∠=∠+∠+∠, 2190α∴∠-∠=︒+∠;如图2,0α∠=︒,2190∠=∠+︒;如图3,21C α∠=∠-∠+∠,1290α∴∠-∠=∠-︒.。
高考数学解三角形专题复习100题(含答案详解)
⾼考数学解三⾓形专题复习100题(含答案详解)2018年⾼考数学解三⾓形专题复习100题1.如图在△ABC中,D是边AC上的点,且AB=AD,,BC=2BD.(1)求的值;(2)求sinC的值.2.△ABC中,⾓A,B,C所对的边分别为a,b,c.已知 .求sinA和c的值.3.△ABC的内⾓A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上⼀点,且AD AC,求△ABD的⾯积.4.在中,内⾓A,B,C所对的边分别为a,b,c,.(1)若,求c的值;(2)若,求的⾯积.5.的内⾓A,B,C的对边分别为a,b,c,已知,,.(1)求c;(2)设为边上⼀点,且,求的⾯积.6.在△ABC中, =60°,c= a.(Ⅰ)求sinC的值;(Ⅱ)若a=7,求△ABC的⾯积.7.△ABC的三个内⾓A,B,C所对的边分别为a,b,c,asin Asin B+bcos2A= a.(1)求;2228.△ABC的内⾓A,B,C的对边分别为、、,且.(1)若,求的值;(2)若,求的值.9.的内⾓A,B,C的对边分别为a,b,c,其中,且,延长线段到点,使得.(Ⅰ)求证:是直⾓;(Ⅱ)求的值.10.在△ABC中,内⾓A,B,C的对边分别为a,b,c,且.(1)求⾓A的值;(2)若的⾯积为,△ABC的周长为,求边长a.11.为绘制海底地貌图,测量海底两点C,D间的距离,海底探测仪沿⽔平⽅向在A,B两点进⾏测量,A,B,C,D在同⼀个铅垂平⾯内. 海底探测仪测得同时测得海⾥。
(1)求AD的长度;(2)求C,D之间的距离.12.在中,⾓A,B,C对边分别为a,b,c,⾓,且.(1)证明:;(2)若⾯积为1,求边c的长.(Ⅰ)求B0的值;(Ⅱ)当B=B0,a=1,c=3,D为AC的中点时,求BD的长.14.△ABC的内⾓A,B,C的对边分别为a,b,c,已知.(Ⅰ)求⾓C;(Ⅱ)若c=,△ABC的⾯积为,求△ABC的周长.15.在中,⾓,,的对边分别是,,,已知,.(Ⅰ)求的值;(Ⅱ) 若⾓为锐⾓,求的值及的⾯积.16.在△ABC中,已知.(1)求的长;(2)求的值.17.△ABC的内⾓A,B,C所对的边分别为a,b,c,向量与平⾏.(I)求A;(II)若,求△ABC的⾯积.18.的内⾓A,B,C的对边分别为a,b,c,已知的⾯积为.(1)求;(2)若,,求的周长.20.在△ABC中,⾓的对边分别为a,b,c, ,c=,⼜△ABC的⾯积为,求:(1)⾓的⼤⼩;(2)的值.21.在△ABC中,⾓A,B,C所对的边分别为a,b,c,且cos2﹣sinB?sinC=.(1)求A;(2)若a=4,求△ABC⾯积的最⼤值.22.在△ABC中,已知⾓A,B,C的对边分别是a,b,c,且.(I)求⾓C的⼤⼩;(II)如果,,求实数m的取值范围.23.已知向量=(2cosx,sinx),=(cosx,2cosx),函数f(x)=?﹣1.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在锐⾓△ABC中,内⾓A.B、C的对边分别为a,b,c,tanB=,对任意满⾜条件的A,求fA.的取值范围.24.设△ABC的内⾓A,B,C的对边分别为,且.(Ⅰ)求B;(Ⅱ)若,求C.25.在△ABC中,a、b、c分别为内⾓A.B、C的对边,且2sinAcosC=2sinB﹣sinC.(1)求∠A的⼤⼩;(2)在锐⾓△ABC中,a=,求c+b的取值范围.26.在ABC中,(I)求的⼤⼩(II)求的最⼤值27.设函数,其中向量,,.(Ⅰ)求的最⼩正周期与单调递减区间;(Ⅱ)在△ABC中,a、b、c分别是⾓A.B、C的对边,已知fA.=2,b=1,△ABC的⾯积为,求的值.28.△ABC中,⾓A,B,C的对边分别是a,b,c,已知(2a+b)sinA+(2b+a)sinB=2csinC.(Ⅰ)求C的⼤⼩;(Ⅱ)若,求△ABC周长的最⼤值.29.已知A .B 、C 是△ABC 的三内⾓,向量m=(-1,3),n=(cosA ,sinA),且m ·n=1.(1)求⾓A ;(2)若3)4tan(-=+B π,求tanC.30.在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且C=(Ⅱ)若△ABC 的⾯积为3,求c 的值.31.在△ABC 中,a,b,c 分别为内⾓A,B,C 的对边,且(Ⅰ)求A 的⼤⼩;(Ⅱ)求的最⼤值.32.△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c ,已知2cosC (acosB+bcosA )=c .(Ⅰ)求C ;(Ⅱ)若c=,△ABC 的⾯积为,求△ABC 的周长.33.在△ABC 中,⾓A ,B ,C 所对的边分别是a ,b ,c ,且。
2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)
2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)1.某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°,已知原楼梯长为5米,调整后的楼梯会加长()(参考数据:sin37°≈,cos37°≈,tan37°≈).A.6米B.3米C.2米D.1米2.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是()A.(10+20)m B.(10+10)m C.20m D.40m3.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.4.如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有()A.h1=h2 B.h1<h2 C.h1>h2 D.以上都有可能5.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan ∠OBD的值是()A.B.2C.D.6.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B 的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米7.构建几何图形解决代数问题是“数形结合”思想的重要应用,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A.+1B.﹣1C.D.8.已知,在△ABC中,∠A=45°,AB=4,BC=5,则△ABC的面积为.9.数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为米.10.如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P 的距离为海里(结果保留根号).11.如图,某活动小组利用无人机航拍校园,已知无人机的飞行速度为3m/s,从A处沿水平方向飞行至B处需10s.同时在地面C处分别测得A处的仰角为75°,B处的仰角为30°,则这架无人机的飞行高度大约是m(≈1.732,结果保留整数).12.如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,≈1.73)13.如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)14.2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O 处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D 在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果保留整数,参考数据:≈1.732,≈1.414)15.小宸想利用测量知识测算湖中小山的高度.他站在湖边看台上,清晰地看到小山倒映在平静的湖水中,如图所示,他在点O处测得小山顶端的仰角为45°,小山顶端A在水中倒影A′的俯角为60°.已知:点O到湖面的距离OD=3m,OD⊥DB,AB⊥DB,A、B、A′三点共线,A'B=AB,求小山的高度AB.(光线的折射忽略不计;结果保留根号)16.某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?17.如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)18.如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)19.王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).20.一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).21.小明和小华约定一同去公园游玩,公园有南北两个门,北门A在南门B的正北方向,小明自公园北门A处出发,沿南偏东30°方向前往游乐场D处;小华自南门B处出发,沿正东方向行走150m到达C处,再沿北偏东22.6°方向前往游乐场D处与小明汇合(如图所示),两人所走的路程相同.求公园北门A与南门B之间的距离.(结果取整数.参考数据:sin22.6°≈,cos22.6°≈,tan22.6°≈,≈1.732)22.小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)23.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.24.在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由A地出发,途经B地去往C地,如图.当他由A地出发时,发现他的北偏东45°方向有一信号发射塔P.他由A地沿正东方向骑行4km到达B地,此时发现信号塔P在他的北偏东15°方向,然后他由B地沿北偏东75°方向骑行12km到达C地.(1)求A地与信号发射塔P之间的距离;(2)求C地与信号发射塔P之间的距离.(计算结果保留根号)25.某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?26.如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.参考答案1.解:在Rt△BAD中,AB=5米,∠BAD=37°,则BD=AB•sin∠BAD≈5×=3(米),在Rt△BCD中,∠C=30°,∴BC=2BD=6(米),则调整后的楼梯会加长:6﹣5=1(米),故选:D.2.解:过D作DF⊥BC于F,DH⊥AB于H,∴DH=BF,BH=DF,∵斜坡的斜面坡度i=1:,∴=1:,设DF=xm,CF=xm,∴CD==2x=20m,∴x=10,∴BH=DF=10m,CF=10m,∴DH=BF=(10+30)m,∵∠ADH=30°,∴AH=DH=×(10+30)=(10+10)m,∴AB=AH+BH=(20+10)m,故选:A.3.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故选:B.4.解:如图,分别作出△ABC底边BC上的高为AD即h1,△PQR底边QR上的高为PE 即h2,在Rt△ADC中,h1=AD=5×sin55°,在Rt△PER中,h2=PE=5×sin55°,∴h1=h2,故选:A.5.解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.故选:A.6.解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).故选:A.7.解:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,∴tan22.5°===﹣1,故选:B.8.解:过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,∴BD=AD=4,在Rt△BDC中,BC=4,∴CD==5,①△ABC是钝角三角形时,AC=AD﹣CD=1,∴S△ABC=AC•BD==2;②△ABC是锐角三角形时,AC=AD+CD=7,∴S△ABC=AC•BD=×7×4=14,故答案为:2或14.9.解:在Rt△APO中,OP=15米,∠APO=30°,∴OA=OP•tan30°=(米),在Rt△POB中,OP=15米,∠OPB=60°,∴OB=(米),∴AB=OA+OB=20(米),故答案为:20.10.解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.11.解:过A点作AH⊥BC于H,过B点作BD垂直于过C点的水平线,垂足为D,如图,根据题意得∠ACD=75°,∠BCD=30°,AB=3×10=30m,∵AB∥CD,∴∠ABH=∠BCD=30°,在Rt△ABH中,AH=AB=15m,∵tan∠ABH=,∴BH===15,∵∠ACH=∠ACD﹣∠BCD=75°﹣30°=45°,∴CH=AH=15m,∴BC=BH+CH=(15+15)m,在Rt△BCD中,∵∠BCD=30°,∴BD=BC=≈20(m).答:这架无人机的飞行高度大约是20m.故答案为20.12.解:如图,过点B、C分别作AE的垂线,垂足分别为M、N,过点C作CD⊥BM,垂足为D,在Rt△ABM中,∵∠BAE=60°,AB=16,∴BM=sin60°•AB=×16=8(cm),∠ABM=90°﹣60°=30°,在Rt△BCD中,∵∠DBC=∠ABC﹣∠ABM=50°﹣30°=20°,∴∠BCD=90°﹣20°=70°,又∵BC=8,∴BD=sin70°×8≈0.94×8=7.52(cm),∴CN=DM=BM﹣BD=8﹣7.52≈6.3(cm),即点C到AE的距离约为6.3cm,故答案为:6.3.13.解:过点A作AD⊥BC于D,如图所示:由题意得:∠ABC=180°﹣75°﹣45°=60°,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∠DAB=90°﹣60°=30°,AD=AB•sin∠ABD=80×sin60°=80×=40(海里),∵∠CAB=30°+45°=75°,∴∠DAC=∠CAB﹣∠DAB=75°﹣30°=45°,∴△ADC是等腰直角三角形,∴AC=AD=×40=40(海里).答:货船与港口A之间的距离是40海里.14.解:由题意得,AD=4000米,∠ADO=30°,CD=460米,∠BCO=45°,在Rt△AOD中,∵AD=4000米,∠ADO=30°,∴OA=AD=2000(米),OD=AD=2000(米),在Rt△BOC中,∠BCO=45°,∴OB=OC=OD﹣CD=(2000﹣460)米,∴AB=OB﹣OA=2000﹣460﹣2000≈1004(米),∴火箭的速度为1004÷3≈335(米/秒),答:火箭的速度约为335米/秒.15.解:过点O作OE⊥AB于点E,则BE=OD=3m,设AE=xm,则AB=(x+3)m,A′E=(x+6)m,∵∠AOE=45°,∴OE=AE=xm,∵∠A′OE=60°,∴tan60°==,即=,解得x=3+3,∴AB=3+3+3=(6+3)m.16.解:(1)过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=30°,∠PBC=45°,AB=20,设PC=x,则BC=x,在Rt△P AC中,∵tan30°===,∴x=10+10,∴P A=2x=20+20,答:A,P之间的距离AP为(20+20)海里;(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.17.解:过B作BM⊥水平地面于M,BN⊥AC于N,如图所示:则四边形AMBN是矩形,∴AN=BM,BN=MA,∵斜坡AB=105米,坡度i=1:2=,∴设BM=x米,则AM=2x米,∴AB===x=105,∴x=21,∴AN=BM=21(米),BN=AM=42(米),在Rt△BCN中,∠CBN=α=45°,∴△BCN是等腰直角三角形,∴CN=BN=42(米),∴AC=AN+CN=21+42=63≈141.1(米),答:观光电梯AC的高度约为141.1米.18.解:∵CM=3m,OC=5m,∴OM==4(m),∵∠CMO=∠BDO=90°,∠COM=∠BOD,∴△COM∽△BOD,∴,即,∴BD==2.25(m),∴tan∠AOD=tan70°=,即≈2.75,解得:AB=6m,∴汽车从A处前行约6米才能发现C处的儿童.19.解:(1)过点D作DH⊥CE于点H,由题意知CD=2米,∵斜坡CF的坡比为i=1:3,∴,设DH=x米,CH=3x米,∵DH2+CH2=DC2,∴,∴x=2,∴DH=2(米),CH=6(米),答:王刚同学从点C到点D的过程中上升的高度为2米;(2)过点D作DG⊥AB于点G,设BC=a米,∵∠DHB=∠DGB=∠ABC=90°,∴四边形DHBG为矩形,∴DH=BG=2米,DG=BH=(a+6)米,∵∠ACB=45°,∴BC=AB=a(米),∴AG=(a﹣2)米,∵∠ADG=30°,∴,∴,∴a=6+4,∴AB=(6+4)(米).答:大树AB的高度是(6+4)米.20.解:过A作AC⊥PQ,交PQ的延长线于C,如图所示:设AC=x米,由题意得:PQ=5米,∠APC=30°,∠BQC=45°,在Rt△APC中,tan∠APC==tan30°=,∴PC=AC=x(米),在Rt△BCQ中,tan∠BQC==tan45°=1,∴QC=BC=AC+AB=(x+3)米,∵PC﹣QC=PQ=5米,∴x﹣(x+3)=5,解得:x=4(+1),∴BC=4(+1)+3=4+7≈14(米),答:无人机飞行的高度约为14米.21.解:作DE⊥AB于E,CF⊥DE于F,∵BC⊥AB,∴四边形BCFE是矩形,∴BE=CF,EF=BC=150 m,设DF=xm,则DE=(x+150)m,在Rt△ADE中,∠BAD=30°,∴AD=2DE=2(x+150)m,在Rt△DCF中,∠FCD=22.6°,∴CD=≈=xm,∵AD=CD+BC,∴2(x+150)=+150,解得x=250(m),∴DF=250 m,∴DE=250+150=400 m,∴AD=2DE=800 m,∴CD=800﹣150=650 m,由勾股定理得AE===400m,BE=CF===600 m,∴AB=AE+BE=400+600≈1293(m),答:公园北门A与南门B之间的距离约为1293 m.22.解:过D作DM⊥AC于M,设MD=x,在Rt△MAD中,∠MAD=45°,∴△ADM是等腰直角三角形,∴AM=MD=x,∴AD=x,在Rt△MCD中,∠MDC=63.4°,∴MC≈2MD=2x,∵AC=600+600=1200,∴x+2x=1200,解得:x=400,∴MD=400m,∴AD=MD=400,过B作BN⊥AE于N,∵∠EAB=45°,∠EBC=75°,∴∠E=30°,在Rt△ABN中,∠NAB=45°,AB=600,∴BN=AN=AB=300,∴DN=AD﹣AN=400﹣300=100,在Rt△NBE中,∠E=30°,∴NE=BN=×300=300,∴DE=NE﹣DN=300﹣100≈580(m),即D处学校和E处图书馆之间的距离约是580m.23.解:(1)∵AC⊥BD,cos∠ABC==,BC=8,∴AB=10,在Rt△ACB中,由勾股定理得,AC===6,即AC的长为6;(2)如图,连接CF,过F点作BD的垂线,垂足E,∵BF为AD边上的中线,即F为AD的中点,∴CF=AD=FD,在Rt△ACD中,由勾股定理得,AD===2,∵三角形CFD为等腰三角形,FE⊥CD,∴CE=CD=2,在Rt△EFC中,EF===3,∴tan∠FBD===.解法二:∵BF为AD边上的中线,∴F是AD中点,∵FE⊥BD,AC⊥BD,∴FE∥AC,∴FE是△ACD的中位线,∴FE=AC=3,CE=CD=2,∴在Rt△BFE中,tan∠FBD===.24.解:(1)依题意知:∠P AB=45°,∠PBG=15°,∠GBC=75°,过点B作BD⊥AP于D点,∵∠DAB=45°,,∴AD=BD=4,∵∠ABD=∠GBD=45°,∠GBP=15°,∴∠PBD=60°,∵BD=4,∴,∴P A=(4+4)(km);(2)∵∠PBD=60°,BD=4,∴PB=8,过点P作PE⊥BC于E,∵∠PBG=15°,∠GBC=75°,∴∠PBE=60°,∵PB=8,∴BE=4,,∵BC=12,∴CE=8,∴PC==4(km).25.解:过点C作CD⊥BA的延长线于点D,如图.由题意可得:∠CAD=60°,∠CBD=30°=∠DCA,∴∠BCA=∠CAD﹣∠CBD=60°﹣30°=30°.即∠BCA=∠CBD,∴AC=AB=200(海里).在Rt△CDA中,CD=sin∠CAD×AC==100(海里).在Rt△CDB中,CB=2CD=200(海里).故位于A处的济南舰距C处的距离200海里,位于B处的西安舰距C处的距离200海里.26.解:(1)如图,过点C作CE⊥AB于点E,根据题意可知:∠ACE=∠CAE=45°,AC=25海里,∴AE=CE=25(海里),∵∠CBE=30°,∴BE=25(海里),∴BC=2CE=50(海里).答:观测点B与C点之间的距离为50海里;(2)如图,作CF⊥DB于点F,∵CF⊥DB,FB⊥EB,CE⊥AB,∴四边形CEBF是矩形,∴FB=CE=25(海里),CF=BE=25(海里),∴DF=BD+BF=30+25=55(海里),在Rt△DCF中,根据勾股定理,得CD===70(海里),∴70÷42=(小时).答:救援船到达C点需要的最少时间是小时.。
八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案
《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
第1章三角形的证明 期末复习综合训练1-2020-2021学年北师大版八年级数学下册
2021学年北师大版八年级数学下册《第1章三角形的证明》期末复习综合训练1(附答案)1.如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°2.如图,在Rt△ABC中,∠C=90°,作AB的垂直平分线,交AB于点D,交AC于点E,若BC=4,CE=3,则AE的长是()A.3B.4C.5D.63.已知等腰三角形的两边长分别为a、b,且a、b满足|2a﹣3b﹣7|+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7B.11或7C.11D.7或104.如图,CD垂直平分线段AB,交AB于D,∠EAC=∠CAD,且CE⊥AE,CD=1,AE =2,则BC+CE的值为()A.1+B.2﹣1C.3D.45.如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°6.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF ⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB =90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个7.如图,已知△ABC中,AC=BC,且点D在△ABC外,且点D在AC的垂直平分线上,连接BD,若∠DBC=30°,∠ACD=13°,则∠A=度.8.如图所示,Rt△ABC中,CF是斜边AB上的高,角平分线BD交CF于点G,DE⊥AB 于点E,则下列结论:①∠A=∠BCF;②CD=CG;③AD=BD;④BC=BE.正确结论的序号.9.已知△ABC的某两个内角的比是4:7且AB=AC,BD⊥AC于D,BE平分∠ABC交AC 于E,则∠EBD的大小是或.10.如图,三角形ABC中,BD平分∠ABC,AD垂直于BD,三角形BCD的面积为45,三角形ADC的面积为20,则三角形ABD的面积等于.11.已知在有一角为30°的直角三角形中,30°角所对的边是斜边的一半,若在等腰三角形ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.12.在△ABC中,AB=AC,且过△ABC某一顶点的直线可将△ABC分成两个等腰三角形,则各内角的度数为.13.如图,在△ABC中,AB=AC,AE⊥BC于点E.在BC上取点D,使CD=CA.若AD =BD,则∠DAE=.14.在△ABC中,AB=5,AD是BC边上的高,且AD=3,∠ABC=2∠DAC,则BC=.15.平面直角坐标系中,已知A(﹣5,0),点P在第二象限,△AOP是以OA为腰的等腰三角形,且面积为10,则满足条件的P点坐标为.16.如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为.17.如图,在△ABC中,AB=AC,AB的中垂线交AB于点D,交BC的延长线于点E,交AC于点F,若∠A=50°,AB+BC=6,则△BCF的周长=,∠EFC=度.18.如图,在△ABC中,AB=BC,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1,则CD的长度为.19.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.20.如图,在△ABC中,AB=AC,点D和E分别是边BC和AC上的点,且满足DB=DA =DE,∠CDE=50°,则∠BAC=°.21.如图,△ABC中,AB=AC,DE垂直平分AB,D为垂足交AC于E.(1)若∠A=50°,求∠EBC的度数.(2)若AB=8,△BEC的周长是11,求△ABC的周长.22.如图△ABC中,AD平分∠BAC,AD的垂直平分线交AB于E,交AC于F求证:AF =ED.23.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.24.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.25.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)求证:BD=CE;(2)若AD=BD=DE,求∠BAC的度数.26.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.27.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=BF.28.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B出发以2cm/s 的速度向点A运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AP、AQ的长;(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?(3)当t为何值时,PQ∥BC?参考答案1.解:∵AB=AD=DC,∠BAD=α,∴∠B=∠ADB,∠C=∠CAD=β,∵DE⊥AD,∴∠ADE=90°,∴∠CAD+∠AED=90°,∵∠CDE=γ,∠AED=∠C+∠CDE,∴∠AED=γ+β,∴2β+γ=90°,故选:D.2.解:在Rt△BCE中,∠C=90°,∴BE===5,∵DE是线段AB的垂直平分线,∴AE=BE=5,故选:C.3.解:∵|2a﹣3b﹣7|+(2a+3b﹣13)2=0,∴,解得:,当a为底时,三角形的三边长为1,1,5,由于1+1<5,故不等构成三角形;当b为底时,三角形的三边长为1,5,5,则周长为11,∴等腰三角形的周长为11,故选:C.4.解:∵CE⊥AE,CD⊥AB,∠EAC=∠CAD,∴CE=CD=1,在Rt△ACE中,∴AC===,∵CD垂直平分线段AB,∴BC=AC=,∴BC+CE=1+,故选:A.5.解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵BC=BD,∴AB=BD,∴∠BAD=∠ADB=20°,∴∠ABD=140°,∴∠CBD=80°,又∵BC=BD,∴∠BCD=50°=∠BDC,故选:A.6.解:(1)证明:作PH⊥AB于H,∵AP是∠CAB的平分线,∴∠PAE=∠PAH,在△PEA和△PHA中,,∴△PEA≌△PHA(AAS),∴PE=PH,∵BP平分∠ABD,且PH⊥BA,PF⊥BD,∴PF=PH,∴PE=PF,∴(1)正确;(2)与(1)可知:PE=PF,又∵PE⊥OC于E,PF⊥OD于F,∴点P在∠COD的平分线上,∴(2)正确;(3)∵∠O+∠OEP+∠EPF+∠OFP=360°,又∵∠OEP+∠OFP=90°+90°=180°,∴∠O+∠EPF=180°,即∠O+∠EPA+∠HPA+∠HPB+∠FPB=180°,由(1)知:△PEA≌△PHA,∴∠EPA=∠HPA,同理:∠FPB=∠HPB,∴∠O+2(∠HPA+∠HPB)=180°,即∠O+2∠APB=180°,∴∠APB=90°﹣,∴(3)错误;故选:C.7.解:如图,过C作CM⊥BD,交BD的延长线于M,过D作DN⊥AC于N,∵点D在AC的垂直平分线上,∴DN是AC的垂直平分线,∴NC=AC,∵AC=BC,∴NC=BC,在Rt△BMC中,∠DBC=30°,∴CM=BC,∴CM=CN,在Rt△DNC和Rt△DMC中,∵,∴Rt△DNC和Rt△DMC(HL),∴∠DCM=∠DCN=13°,∵∠DBC=30°,∴∠MCB=60°,∴∠ACB=60°﹣26°=34°,又∵AC=BC,∴∠A=(180°﹣34°)=73°,故答案为:73.8.解:∵Rt△ABC中,CF是斜边AB上的高,∴∠A+∠ABC=∠BCF+∠ABC=90°,∴∠A=∠BCF;故①正确;∵∠CDG+∠CBD=90°,∠BGF+∠ABD=90°,且BD是△ABC的角平分线,∴∠CDG=∠BGF,∵∠BGF=∠CGD,∴∠CDG=∠CGD,∴CD=CG,故②正确;无法求得∠A的度数,即∠A不一定等于∠ABD,故AD不一定等于BD,故③错误.∵Rt△ABC中,∠ACB=90°,角平分线BD交CF于点G,DE⊥AB,∴CD=DE,∠CDB=∠EDB,∴BC=BE,故④正确;故答案为:①②④.9.解:①如图1,当三个内角的比为:4:4:7时,三个内角分别是48°,48°,84°.∵BE平分∠ABC,BD⊥AC,∠A=84°,∴∠ABE=∠ABC=24°,∠ABD=90°﹣84°=6°,∴∠EBD=∠ABE﹣∠ABD=24°﹣6°=18°.②如图2,当三个内角的比为:4:7:7时,三个内角分别是40°,70°,70°.∵BE平分∠ABC,BD⊥AC,∠A=40°,∴∠ABE=∠ABC=35°,∠ABD=90°﹣40°=50°,∴∠EBD=∠ABD﹣∠ABE=50°﹣35°=15°.故答案为:18°,15°10.解:延长AD交BC于E,如图所示:∵BD平分∠ABC,AD垂直于BD,∴∠ABD=∠EBD,∠ADB=∠EDB=90°,在△ABD和△EBD中,,∴△ABD≌△EBD(ASA),∴AD=ED,∴△ABD的面积=△EBD的面积,△CDE的面积=△ACD的面积=20,∴△ABD的面积=△EBD的面积=△BCD的面积﹣△CDE的面积=45﹣20=25.故答案为:25.11.解:分为三种情况:①如图,△ABC中,AB=AC,AD=BC,∵AB=AC,AD⊥BC,∴BD=DC=BC,∴AD=BD=DC,∴△BAC是等腰直角三角形,∴∠B=∠C=45°;②如图,△ABC中,AC=BC,∵AD=BC,AD⊥BC,∴∠D=90°,AD=AC,∴∠ACD=30°,∵AC=BC,∴∠B=∠BAC,∵∠B+∠BAC=∠ACD,∴∠B=∠BAC=15°,③如图,AD=BC,∠C=30°,∵AC=BC,∴∠B=∠BAC=75°;故答案为:45°、45°或15°、15°或75°、75°.12.解:①如图①,∵AB=AC,BD=CD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∠C=45°,∠BAC=90°.②如图②,∵AB=AC,AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∠C=36°,∠BAC=108°.③如图③,∵AB=AC,AD=BD=BC,∴∠B=∠C,∠A=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠A,∴∠ABC=∠C=2∠A,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°,∠C=72°,∠ABC=72°.④如图④,∵AB=AC,AD=BD,CD=BC,∴∠ABC=∠C,∠A=∠ABD,∠CDB=∠CBD,∵∠BDC=∠A+∠ABD=2∠A,∴∠ABC=∠C=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=()°,∠C=()°,∠ABC=()°.故答案为:(45°、45°、90°),(36°、36°、108°),(36°、72°、72°),(、、).13.解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠DAB=∠B=x,∵△CAD中,CA=CD,∴∠CAD=(180°﹣∠C)=90°﹣,∵△ABC中,∠B+∠C+∠BAC=180°,∴x+x+x+90°﹣=180°,∴x=36°,∴∠DAE=∠BAE﹣∠BAD=(90°﹣36°)﹣36°=18°.故答案为:18°.14.解:如图1中,当高AD在△ABC内部时,作∠ABC的角平分线交AD于O,交AC于H.∵∠ABH=∠CBH,∠ABC=2∠DAC,∴∠OAH=∠OBD,∵∠AOH=∠BOD,∴∠AHO=∠ODB=90°,∴∠BHA=∠BHC=90°,∵∠ABH+∠BAH=90°,∠HBC+∠C=90°,∴∠BAH=∠C,∴BC=BA=5.如图2中,当高在△ABC外时,延长CD到O,使得DO=DC,作∠ABC的角平分线BH 交AO于H.∵AD⊥CO,CD=DO,∴AC=AO,∴∠DAC=∠DAO,∵∠ABC=2∠DAC,∴∠ABC=2∠DAO,由图1可知,AB=AO=5,在Rt△ABD中,BD===4,∴OD=CD=OB﹣BD=1,∴BC=BD﹣CD=4﹣1=3,综上所述,BC的长为5或3.故答案为:5或3.15.解:设P(m,n).∵A(﹣5,0),∴OA=5,=10,∵S△POA∴×5×n=10,∴n=4,当OP=OA=5时,m2+42=52,∴m=±3,∵m<0,∴m=﹣3,∴P(﹣3,4),当AP′=5时,(m+5)2+42=52,∴m=﹣2或﹣8,∴P′(﹣8,4)或(﹣2,4).故答案为(﹣3.4)或(﹣8,4)或(﹣2,4).16.解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.17.解:如图:已知DF垂直且平分AB⇒AF=BF,AD=BD,∠A=∠ABF=50°,∠ADF =90°∠EFC=180°﹣∠A﹣∠ADF=40°(对角相等)因为AB+BC=6,AB=AC=BF+FC故周长△BCF=FC+BF+BC=6.故填6;40°.18.解:∵BD⊥BC,∴∠CBD=90°,∴∠ABD=∠ABC﹣∠CBD=120°﹣90°=30°,∵AB=BC,∠ABC=120°,∴∠A=∠C=30°,∴∠A=∠ABD,∴DB=AD=1,在Rt△CBD中,∵∠C=30°,∴CD=2BD=2.故答案为2.19.解:∵△ABC是等边三角形,∴∠C=∠A=60°,∵CG=CD,∴∠GDC=30°,∵DF=DE,∴∠E=15°.故答案为:15.20.解:∵AB=AC,∴∠B=∠C,设∠B=∠C=α,∵DB=DA=DE,∴∠DAB=∠B=α,∠DAE=∠DEA,∵∠DEA=∠CDE+∠C=50°+α,∴∠DAE=50°+α,∴∠BAC=∠DAE+∠DAB=50°+2α,∵∠BAC+∠B+∠C=180°,∴50°+2α+α+α=180°,解得α=32.5°,∴∠BAC=50°+2×32.5°=115°,故答案为115.21.解:(1)∵AB=AC,∠A=50°,∴∠ABC=∠C=65°.∵DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=50°.∴∠EBC=15°.(2)∵AE=BE,AB=8,∴BE+CE=8.∵△BEC的周长是11,∴BC=3,∴△ABC的周长是8+8+3=19.22.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AD的垂直平分线交AB于点E,交AC于点F,∴AE=DE,∠AOE=∠AOF=90°,∴∠AEF=∠AFE,∴AE=AF,∴AF=ED.23.解:(1)∵AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,∴AE=BE,AN=CN,∵BC=12,∴△AEN周长l=AE+EN+AN=BE+EN+NC=BC=12;(2)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AE=BE,AN=CN,∴∠BAE=∠CAN=30°,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN=60°;(3)∵∠AEN=∠B+∠BAE=60°,∠ANE=∠C+∠CAN=60°,∴△AEN为等边三角形.24.解:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.25.解:(1)过点A作AF⊥BC于F.∵AB=AC,AD=AE.∴BF=CF,DF=EF,∴BD=CE.(2)∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=∠ADE=60°.∵AD=BD,∴∠DAB=∠DBA.∴∠DAB=∠ADE=30°.同理可求得∠EAC=30°,∴∠BAC=120°.26.(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,AD平分线段EC,即直线AD是线段CE的垂直平分线.27.解:(1)△DBC是等腰直角三角形,理由:∵∠ABC=45°,CD⊥AB,∴∠BCD=45°,∴BD=CD,∴△DBC是等腰直角三角形;(2)∵BE⊥AC,∴∠BDC=∠BEC=90°,∵∠BFD=∠CFE,∴∠DBF=∠ACD,在△BDF与△CDA中,,∴△BDF≌△CDA,∴BF=AC;(3)∵BE是AC的垂直平分线,∴CE=AC,∴CE=BF.28.解:(1)∵Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°.又∵AB=12cm,∴AC=6cm,BP=2t,AP=AB﹣BP=12﹣2t,AQ=t;(2)∵△APQ是以PQ为底的等腰三角形,∴AP=AQ,即12﹣2t=t,∴当t=4时,△APQ是以PQ为底边的等腰三角形;(3)当PQ⊥AC时,PQ∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵PQ∥BC,∴∠QPA=30°∴AQ=AP,∴t=(12﹣2t),解得t=3,∴当t=3时,PQ∥BC.。
2021-2022学年华师大版八年级数学上册《第13章全等三角形》期末复习解答题专题训练(附答案)
2021-2022学年华师大版八年级数学上册《第13章全等三角形》期末复习解答题专题训练(附答案)1.如图,点E,C,F,B在同一条直线上,EC=BF,AC∥DF,∠A=∠D.求证:AB=DE.2.已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.(1)求证:△ADE≌△ABC;(2)求证:AE=CE.3.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.5.已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.6.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.7.如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.8.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,求△ACD的周长.9.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点G,BD=DC,DF∥BC交AB于点F,连接FG.求证:(1)△DAB≌△DGC;(2)CG=FB+FG.10.如图,在△ABC中,∠A=60°,BE,CD是△ABC的角平分线,BE与CD相交于点P.(1)求∠BPC的度数;(2)求证:BC=BD+CE.11.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.12.如图,BD为△ABC的角平分线,且BD=BC,E在BD的延长线上,连接AE,∠BAE =∠BEA,连接CE.求证:(1)△ABD≌△EBC;(2)∠BCE+∠BCD=180°.13.如图,已知点A,B,C,D在同一条直线上,AB=DC,AF=DE,CF=BE.求证:AF ∥DE.14.如图,∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE;(2)若OM平分∠EOF,求证:OM⊥EF.15.如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.16.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.17.如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE、CE,过点D作DF ⊥AE,DG⊥CE,垂足分别是F、G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.18.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.19.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.20.如图,△AOC和△BOD中,OA=OC,OB=OD,∠AOC=∠BOD=α(0<α<90°),AD与BC交于点P.(1)求证:△AOD≌△COB;(2)求∠APC(用含α的式子表示);(3)过点O分别作OM⊥AD,ON⊥BC,垂足分别为点M、N,请直接写出OM和ON 的数量关系.参考答案1.证明:∵EC=BF,∴EC+CF=BF+CF,即EF=BC,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.2.(1)证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA);(2)证明:由(1)得△ABC≌△ADE,∴AE=AC,∵∠2=60°,∴△ACE是等边三角形,∴AE=CE.3.证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).4.证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵∠ACB=65°,AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,∵∠ABD=∠ACD,∠AOB=∠COD,∴∠BDC=∠BAC=50°.5.证明:(1)∵AF=CD,∴AF+FC=CD+FC即AC=DF.∵AB∥DE,∴∠A=∠D.∵AB=DE,∴在△ABC和△DEF中.∴△ABC≌△DEF(SAS).(2)∵△ABC≌△DEF(已证),∴∠ACB=∠DFE.∴EF∥BC.6.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.7.解:(1)∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD,∵D是EF的中点,∴ED=FD,在△BED与△CFD中,,∴△BED≌△CFD(ASA),∴CD=BD;(2)由(1)得:CF=EB=6,∵AF=CF,∴AF=6,∵D是EF的中点,∴DF=DE=3,∴AD=9,∴△ACD的面积:AD•CF=×9×6=27.8.(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7,∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13,∴△ACD的周长为:5+12+13=30,故答案为:30.9.证明:(1)∵BD⊥AC,CE⊥AB,∴∠ABD+∠A=90°,∠ACE+∠A=90°,∴∠ABD=∠ACE,在△DAB和△DGC中,,∴△DAB≌△DGC(ASA);(2)∵△DAB≌△DGC,∴AB=CG,DA=DG,∵BD=CD.∠BDC=90°,∴∠DBC=∠DCB=45°,∵DF∥BC,∴∠FDA=∠FDG=45°,在△DF A和△DFG中,,∴△DF A≌△DFG(SAS),∴F A=FG.∴CG=AB=FB+F A=FB+FG.10.解:(1)∵BE,CD是△ABC的角平分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∵∠A=60°,∴∠BPC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°;(2)证明:在BC上取点G使得CG=CE,∵∠BPC=120°,∴∠BPD=∠CPE=60°,在△CPE和△CPG中,,∴△CPE≌△CPG(SAS),∴∠CPG=∠CPE=60°,∴∠BPG=120°﹣60°=60°=∠BPD,在△BPD和△BPG中,,∴△BPD≌△BPG(ASA),∴BD=BG,∴BD+CE=BG+CG=BC.11.(1)证明:∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等),在△ADC与△CEB中∴△ADC≌△CEB(AAS);(2)解:由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.12.证明:(1)∵∠BAE=∠BEA,∴BA=BE,∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS);(2)由(1)得:△ABD≌△EBC,∴∠ADB=∠BCE,∵BD=BC,∴∠BDC=∠BCD,又∵∠ADB+∠BDC=180°,∴∠BCE+∠BCD=180°.13.证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACF和△DBE中,,∴△ACF≌△DBE(SSS),∴∠A=∠D,∴AF∥DE.14.证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)由(1)得:Rt△ABF≌Rt△DCE,∴∠AFB=∠DEC,∴OE=OF,∵OM平分∠EOF∴OM⊥EF.15.证明:连接AC,在△AEC与△AFC中,∴△AEC≌△AFC(SSS),∴∠CAE=∠CAF,∵∠B=∠D=90°,∴CB=CD.16.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL);(2)∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=217.证明:(1)∵BD是∠ABC的平分线,∴∠ABE=∠CBE,在△ABE和△CBE中,∴△ABE≌△CBE(SAS);(2)∵△ABE≌△CBE,∴∠AEB=∠CEB,∴∠AED=∠CED,∵DF⊥AE,DG⊥CE,∴FD=DG.18.(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA),(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.19.证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.20.解:(1)∵∠AOC=∠BOD,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠COB,在△AOD和△COB中,,∴△AOD≌△COB(SAS);(2)由(1)可知△AOD≌△COB,∴∠OAD=∠OCB,令AD与OC交于点E,则∠AEC=∠OAD+∠AOC=∠OCB+∠APC,∴∠AOC=∠APC,∵∠AOC=α,∴∠APC=α;(3)∵△AOD≌△COB,∴∠P AO=∠BCO,即∠MAO=∠NCO,∵OM⊥AD,ON⊥BC,∴∠AMO=∠CNO=90°,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OM=ON.。
高三复习:三角函数模型及解三角形应用举例(含解析答案)
§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?题型二测量角度问题例2如图,在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.题型三利用三角函数模型求最值例3如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中y>x>0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少?变式如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面间的距离为h.(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒后到达OB,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.2.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 3.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.4.8三角函数模型及解三角形应用举例作业1.如图为一半径是3m的水轮,水轮的圆心O距离水面2m.已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间x(s)满足函数关系y=A sin(ωx+φ)+2(ω>0,A>0),则ω=________,A=________.2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.3.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在点C处测得塔顶A的仰角为60°,求塔高AB.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°,距离为10nmile的C处,并测得渔船正沿方位角为105°的方向,以10nmile/h的速度向某小岛B靠拢,我海军舰艇立即以103nmile/h的速度前去营救,求舰艇的航向和靠近渔船所需的时间.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示); (2)当t 最小时,C 点应设计在AB 的什么位置?6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? (1)答案 30+30 3解析 在△P AB 中,∠P AB =30°,∠APB =15°,AB =60,sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=22×32-22×12=6-24,由正弦定理得PB sin30°=ABsin15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin45°=30(6+2)×22=(30+303)m.(2)解 ①在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1040m.②假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.③由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在⎣⎡⎦⎤125043,62514(单位:m/min)范围内. 题型二 测量角度问题例2 如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.思维点拨 设缉私船t 小时后在D 处追上走私船,确定出三角形,先利用余弦定理求出BC ,再利用正弦定理求出时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t (海里),BD =10t (海里),在△ABC 中,由余弦定理,有 BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =(3-1)2+22-2(3-1)·2·cos120°=6. ∴BC =6(海里).又∵BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin120°103t =12.∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴D =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15(分钟). ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟. 思维升华 测量角度问题的一般步骤(1)在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离; (2)用正弦定理或余弦定理解三角形;(3)将解得的结果转化为实际问题的解.题型三 利用三角函数模型求最值例3 如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中y >x >0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少? 思维点拨 由题图可得:x =cos θ,y =sin θ.列出面积函数后,利用三角函数性质求解,注意θ的范围. 解 (1)设S 为十字形的面积,则S =2xy -x 2=2sin θcos θ-cos 2θ (π4<θ<π2);(2)S =2sin θcos θ-cos 2θ=sin2θ-12cos2θ-12=52sin(2θ-φ)-12,其中tan φ=12, 当sin(2θ-φ)=1,即2θ-φ=π2时,S 最大.所以,当θ=π4+φ2(tan φ=12)时,S 最大,最大值为5-12.思维升华 三角函数作为一类特殊的函数,可利用其本身的值域来求函数的最值.变式 如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h . (1)求h 与θ间关系的函数解析式; (2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的平面直角坐标系,则以Ox为始边,OB 为终边的角为θ-π2,故点B 的坐标为(4.8cos(θ-π2),4.8sin(θ-π2)), ∴h =5.6+4.8sin ⎝⎛⎭⎫θ-π2. (2)点A 在圆上转动的角速度是π30弧度/秒,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin ⎝⎛⎭⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4米.由sin ⎝⎛⎭⎫π30t -π2=1,得π30t -π2=π2,∴t =30秒, ∴缆车到达最高点时,用的最少时间为30秒.课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.答案 π2解析 ∵S =1-12×1×sin α-12×1×cos α-12(1-cos α)(1-sin α)=12-12sin αcos α =12-14sin2α. ∴当α=π2时,S 取到最大值.3.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 答案 3或2 3解析 如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°, 由余弦定理得(3)2=x 2+32-2x ·3·cos30°,整理,得x 2-33x +6=0,解得x =3或2 3.4.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.答案 2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos120°=2800,所以BC =207. 由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos30°-sin ∠ACB sin30°=2114.4.8 三角函数模型及解三角形应用举例作业1.如图为一半径是3m 的水轮,水轮的圆心O 距离水面2m .已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2(ω>0,A >0),则ω=________,A =________.答案 2π153 解析 每分钟转4圈,每圈所需时间T =604=15. 又T =2πω=15,∴ω=2π15,A =3. 2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.答案 203米、4033米 解析 如图,依题意有甲楼的高度为AB =20·tan60°=203(米),又CM=DB =20(米),∠CAM =60°,所以AM =CM ·1tan60°=2033(米),故乙楼的高度为CD =203-2033=4033(米). 3.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30m ,并在点C 处测得塔顶A 的仰角为60°,求塔高AB .解 在△BCD 中,∠CBD =180°-15°-30°=135°,由正弦定理,得BC sin ∠BDC =CD sin ∠CBD,所以BC =30sin30°sin135°=15 2 (m). 在Rt △ABC 中,AB =BC ·tan ∠ACB =152tan60°=15 6 (m).所以塔高AB 为156m.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离为10nmile 的C 处,并测得渔船正沿方位角为105°的方向,以10nmile/h 的速度向某小岛B 靠拢,我海军舰艇立即以103nmile/h 的速度前去营救,求舰艇的航向和靠近渔船所需的时间.解 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t .在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC ·cos120°,可得:(103t )2=102+(10t )2-2×10×10t cos120°.整理得:2t 2-t -1=0,解得t =1或t =-12(舍去). 所以舰艇需1小时靠近渔船,此时AB =103,BC =10. 在△ABC 中,由正弦定理得:BC sin ∠CAB =AB sin120°, 所以sin ∠CAB =BC ·sin120°AB =10×32103=12. 所以∠CAB =30°.所以舰艇航行的方位角为75°.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示);(2)当t 最小时,C 点应设计在AB 的什么位置?解 (1)在△BCD 中,∵∠BCD =θ,∠B =π3,BD =l , ∴BC =l sin (2π3-θ)sin θ,CD =3l 2sin θ, ∴AC =AB -BC =l -l sin (2π3-θ)sin θ, 则t =AC 3v +CD v =l 3v -l sin (2π3-θ)3v sin θ+3l 2v sin θ(π3<θ<2π3). (2)t =l 6v (1-3cos θsin θ)+3l 2v sin θ=l 6v +3l 6v ·3-cos θsin θ. 令m (θ)=3-cos θsin θ,θ∈(π3,2π3),则m ′(θ)=1-3cos θsin 2θ. 令m ′(θ)=0,得cos θ=13,设cos θ0=13,θ0∈(π3,2π3), 则θ∈(π3,θ0)时,m ′(θ)<0;当θ∈(θ0,2π3)时,m ′(θ)>0,∴当cos θ=13时,m (θ)取得最小值22,此时BC =6+48l . 故当BC =6+48l 时货物运行时间最短. 6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.规范解答解 (1)设相遇时小艇的航行距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[4分] 故当t =13时,S min =103,v =10313=30 3.[6分] 即小艇以303海里/小时的速度航行,相遇小艇的航行距离最小.[7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t2.[9分] ∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.[10分] 又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.[12分] 此时,在△OAB 中,有OA =OB =AB =20.故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]。
苏科版数学七年级下期末复习提优专题三角形word版含解析
本文由一线教师精心整理/word可编辑初一期末复习专题-三角形模块一:三角形三边关系1.如果一个三角形的两边长分别是1cm,2cm,那么这个三角形第三边长可能是()A.1cm B.2.5cm C.3cm D.4cm【解答】解:设第三边长为x,则由三角形三边关系定理得2﹣1<x<2+1,即 1<x<3.故选:B.2.如果三角形的两边长分别为5 和 7,第三边长为偶数,那么这个三角形的周长可以是A.10 B.11 C.16 D.26【解答】解:设第三边为acm,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则 a 可以为 4cm 或 6cm 或 8cm 或 10cm.∴三角形的周长是5+7+4=16cm或5+7+6=18cm或5+7+8=20cm或5+7+10=22cm.故选:C.3.一个等腰三角形的边长分别是4cm 和 7cm,则它的周长是 15cm 或 18cm .【解答】解:①当腰是4cm,底边是 7cm 时,能构成三角形,则其周长=4+4+7=15cm;②当底边是 4cm,腰长是 7cm 时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm 或 18cm.4.一个三角形的三边长分别是 xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,则 x 的取值范围是()A.x≤133B.1< x≤133C.D.1< x≤73【解答】解:∵三角形的三边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,∴x+2<x+x+1,x+x+1+x+2≤10,解得:x>1,,所以 x 的取值范围是 1<x≤73,故选:D.5.一个三角形的三边长分别为 xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则 x 的取值范围是 2<x≤11 .【解答】解:∵一个三角形的3 边长分别是 xcm,(x+2)cm,(x+4)cm,它的周长不超过 39cm,解得 2<x≤11.故答案为:2<x≤11.6.已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L 的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m 的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选:B.7.现有长为 57cm 的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm 的整数,如果其中任意 3 小段都不能拼成三角形,则n 的最大值为 8 .【解答】解:因为 n 段之和为定值 57cm,故欲 n 尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意 3 段都不能拼成三角形,因此这些小段的长度只可能分别是 1,1,2,3,5,8,13,21,34,55,但 1+1+2+3+5+8+13+21=54<57,1+1+2+3+5+8+13+21+34=88>57,所以 n 的最大值为 8.故答案为 8.模块二:三角形中求角度8.如图,△A BC 的角平分线AD 交 BD 于点D,∠1=∠B,∠C=66°,则∠BAC 的度数是 76° .【解答】解:∵△ABC 的角平分线 AD 交 BD 于点 D,∴∠C AD=∠1=1∠BAC,2∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC 中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°9.将一副直角三角板如图放置,使含 30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 75 度.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.10.在锐角△ABC 中,三条高交于点H,若∠BHC=110°,则∠BAC= 70 °.【解答】解:如图所示,∵CF⊥AB,B E⊥AC,∴∠AFC=∠AEB=90°,∵∠E HF=∠BHC=110°,∴∠A=360°﹣∠AFC﹣∠AEB﹣∠EHF=360°﹣90°﹣90°﹣110°=70°.故答案为:70.11.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∥CD,则∠1+∠2= 75° .【解答】解:连接 AC,∵A B∥CD,∴∠BAC+∠ACD=180°.∵∠BAG=30°,∠EC D=60°,∴∠E AC+∠ACE=180°﹣30°﹣60°=90°.∵∠CE D=60°,∴∠GEF=180°﹣90°﹣60°=30°.同理∠E GF=180°﹣∠1﹣90°=90°﹣∠1,∠GFE=180°﹣45°﹣∠2=135°﹣∠2,∵∠GEF+∠EGF+∠GFE=180°,即30°+90°﹣∠1+135°﹣∠2=180°,解得∠1+∠2=75°.故答案为:75°.12.如图,方格中的点A,B 称为格点(格线的交点),以AB 为一边画△A BC,其中是直角三角形的格点 C 的个数为()A.3 B.4 C.5 D.6【解答】解:如图所示:以AB 为一边画△A BC,其中是直角三角形的格点C 共有 4 个,故选:B.13.我们都知道“三角形的一个外角等于与它不相邻的两个内角的和”,据此,请你叙述四边形的一个外角与它不相邻的三个内角的数量关系与它不相邻的三个内角的和减去180° .【解答】解:四边形的一个外角与相邻的内角互补,而四个内角的和是360 度,则四边形的一个外角等于:与它不相邻的三个内角的和减去180°.故答案是:与它不相邻的三个内角的和减去180°.模块三:三角形模型14.已知△A BC 中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+12α ;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于 O 1、O 2,则∠BO 2C= 60°+23α ;请你猜想,当∠B 、∠C 同时 n 等分时,(n ﹣1)条等分角线分别对应交于 O 1、 O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C= (用含 n 和α的代数式表 示).【解答】解:在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O 2B 和 O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC+∠O 2CB=23(∠ABC+∠ACB )=23(180°﹣α)=120°﹣23α; ∴∠BO 2C=180°﹣(∠O 2BC+∠O 2CB )=180°﹣(120°﹣23α)=60°+23α;在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O n ﹣1B 和 O n ﹣1C 分别是∠B 、∠C 的 n 等分线,∴ ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB= 1n n -( ∠ ABC+ ∠ ACB ) = 1n n-( 180 ° ﹣ α ) = 0180(1)n n -﹣(1)n nα-. ∴ ∠ BO n ﹣ 1C=180 ° ﹣ ( ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB ) =180 ° ﹣ (0180(1)n n -﹣(1)n nα- )故答案为:60°+23 α;(1)n nα-+0180n 15.如图,在△ABC 中,∠A =m°,∠ABC 和∠ACD 的平分线交于点 A 1,得∠A 1;∠A 1BC 和 ∠A 1CD 的平分线交于点 A 2,得∠A 2;…∠A 2021BC 和∠A 2021CD 的平分线交于点 A 2021,则∠ A 2021= 20132m度.【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD , ∵∠A 1CD=∠A 1+∠A 1BC , 即12∠ACD=∠A 1+12∠ABC , ∴∠A 1=12(∠ACD ﹣∠ABC ), ∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD ﹣∠ABC ,∴∠A 1=12∠A , ∴∠A 1=12m °, ∵∠A 1=12∠A ,∠A 2=12∠A 1=212∠A, 以此类推∠A 2021=201312∠A=20132m °. 故答案为:20132m.16.如图,在△ABC 中,∠A=40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC= 110° .【解答】解:∵D点是∠ABC 和∠ACB 角平分线的交点,∴∠C BD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.模块四:多边形17.在一个 n(n>3)边形的 n 个外角中,钝角最多有()A.2 个B.3 个C.4 个D.5 个【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.18.若 n 边形的内角和是它外角和的2 倍,则 n= 6 .【解答】解:设所求多边形边数为n,则(n﹣2)•180°=360°×2,解得 n=6.19.如图是由射线 AB、BC、CD、DE、EA 组成的图形,∠1+∠2+∠3+∠4+∠5=360° .【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.20.一个多边形的内角和等于1080°,这个多边形是 8 边形.【解答】解:设所求正n 边形边数为 n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.模块五:面积问题21.如图,△A BC 三边的中线 AD、BE、CF 的公共点为 G,若 S△ABC=12,则图中阴影部分的面积是 4 .【解答】方法 1解:∵△ABC 的三条中线 AD、BE,CF 交于点 G,∴S△CGE=S△AGE=13S△A CF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC =12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为 4.方法 2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG 的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得: S1=S2 , S3=S4 , S5=S6 , S1+S2+S3=S4+S5+S6 ①,S2+S3+S4=S1+S5+S6②由①﹣②可得 S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.22.如图,A、B、C 分别是线段 A1B,B1C,C1A 的中点,若△A BC 的面积是 1,那么△A1B1C1的面积 7 .【解答】解:如图,连接AB1,BC1,CA1,∵A、B 分别是线段 A1B,B1C 的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1 的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.23.如图,在△ABC 中,C1,C2 是 AB 边上的三等分点,A1,A2,A3 是 BC 边上的四等分点,AA1 与 CC1 交于点 B1,CC2 与 C1A2 交于点 B2,记△AC1B1,△C1C2B2,△C2BA3 的面积为 S1,S2,S3.若 S1+S3=9,S2= 4 .【解答】解:根据图形和已知条件发现:S1=12S△ACC1,S2=13S△CC1C2,S3=14S△CC2B,S△ACC1=S△CC1C2=S△CC2B,∴S1=32S2,S3=34S2,若 S1+S3=9,S2=4.24.(1)如图①,AD 是△ABC 的中线,△A BD 与△A CD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S,例如:△ABC 的面积记为 S△ABC,如图②,已知S△ABC=1,△ABC 的中线 AD 、CE 相交于点 O ,求四边形 BDOE 的面积. 小华利用(1)的结论,解决了上述问题,解法如下:连接 BO ,设 S △BEO =x ,S △BDO =y , 由(1)结论可得:1122BCE ABD ABC S S S ∆∆∆===, S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x .则有BEO BCO BCE BAO BDO BADS S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即122122x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. 所以13x y +=. 即 四边形 BDOE 的面积为13请仿照上面的方法,解决下列问题:①如图③,已知 S △ABC =1,D 、E 是 BC 边上的三等分点,F 、G 是 AB 边上的三等分点,AD 、 CF 交于点 O ,求四边形 BDOF 的面积.②如图④,已知 S △ABC =1,D 、E 、F 是 BC 边上的四等分点,G 、H 、I 是 AB 边上的四等分 点,AD 、CG 交于点 O ,则四边形 BDOG 的面积为110. 【解答】解:(1)S △ABD =S △ACD .∵AD 是△A BC 的中线∴BD=CD ,又∵△ABD 与△A CD 高相等,∴S △ABD =S △ACD .(2)①如图 3,连接 BO ,设 S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =13S △ABC =13S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有BFO BCO BCF BDO BAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩即133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. , 所以 x+y=16,即四边形 BDOF 的面积为16; ②如图,连接 BO ,设 S △BDO =x ,S △BGO =y ,,S △BCG =S △ABD =14S △ABC =14, S △BCO =4S △BDO =4x ,S △BAO =4S △BGO =4y .则有BGO BCO BCG BDOBAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即144144x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 所以 x+y=110,即四边形 BDOG 的面积为110, 故答案为:110. 模块六:综合题25.证明:三角形三个内角的和等于180°. 已知: △A BC .求证: ∠BAC+∠B+∠C =180° .【解答】解:已知:△ABC , 求证:∠BAC+∠B+∠C =180°, 证明:过点 A 作 EF ∥BC ,∵E F ∥B C ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°. 即知三角形内角和等于 180°. 故答案为:△ABC ;∠BAC+∠B+∠C =180°.26.如图①,在 Rt△ABC 中,∠ACB=90°,D 是 AB 上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC 的平分线分别交 BC,CD 于点 E,F,求证:∠AEC=∠C FE.【解答】(1)证明:∵∠ACB=∠ACD+∠BCD=90°,∠B=∠ACD,∴∠B+∠BCD=90°,又∵∠CDB+∠B+∠BCD=180°,∴∠C DB=90°,∴CD⊥AB;(2)在△A CE 中,∠AEC+∠C AE=90°,在△AFD 中,∠FAD+∠AFD=90°,∵AE 平分∠BAC,∴∠C AE=∠FAD,∴∠AEC=∠AFD,又∵∠CFE=∠AFD,∴∠AEC=∠C FE.27.在△ABC 中,点 D、E 分别在边 AC、BC 上(不与点 A、B、C 重合),点 P 是直线 AB 上的任意一点(不与点A、B 重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点 P 在线段 AB 上运动,且 n=90°时①若PD∥BC,PE∥AC,则m= 90° ;②若 m=50°,求 x+y 的值.(2)当点 P 在直线 AB 上运动时,直接写出x、y、m、n 之间的数量关系.【解答】解:(1)①如图1,∵PD∥B C,PE∥AC,∴四边形 DPEC 为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠C DP=180°﹣x,∠CEP=180°﹣y,∵∠C+∠C DP+∠DPE+∠CE P=360°,∠C=90°,∠DPE=50°,∴90°+180°﹣x+50°+180°﹣y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为 360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.。
浙教版九年级下《第一章解直角三角形》期末复习试卷(含解析)
期末复习:浙教版九年级数学学下册第一章解直角三角形一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,如果AB=6,BC=3,那么cosB的值是()A. √32B. √55C. √33D. 122.已知tanA=1,则锐角A的度数是A. 30°B . 45° C.60° D.75°3.在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为( )A. √55B. 2√55C. 12D. 24.如图,其中A,B,C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C 地在A地北偏东75°方向.且BD=BC=30cm.从A地到D地的距离是()A. 30 √3 mB. 20 √5m C. 30 √2m D. 15 √6 m5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=2,BC=1,则sin∠ACD=()A. √53B. 2√55C. √52D. 236.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海里C到航线AB的距离CD是()A. 20海里B. 40海里 C. 20√3海里 D. 40√3海里7.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. msin35°B. mcos35°C. msin35°D. mcos35°8.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是()A. 24°B . 34° C.44° D.46°,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的9.如图,在△ABC中,∠B=90°,tan∠C= 34速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm210.如图,已知mm是△mmm的角平分线,mm是mm的垂直平分线,∠mmm=90°,mm=3,则mm的长为()A. 6B. 5C. 4D. 3√3二、填空题(共8题;共24分)11.计算:3tan30°+sin45°=________.)﹣2﹣|1﹣√3 |﹣(π﹣2015)0﹣2sin60°+ √12 =________.12.计算:(12,那么∠A=________゜.13.如果∠A是锐角,且sinA= 1214.B在A北偏东30°方向(距A)2千米处,C在B的正东方向(距B)2千米处,则C和A之间的距离为________ 千米.15.如图,在平面直角坐标系xOy内有一点Q(3,4),那么射线OQ与x轴正半轴的夹角α的余弦值是________,则BC的长是________16.如图,在△ABC中,∠C=90°,AB=8,sinA=3417.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是________.x于点B1, B2,18.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y= √32x于点B3,…,按过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y= √32照此规律进行下去,则点A n的横坐标为________.三、解答题(共9题;共66分)19.计算:√12−|−2|+(1−√3)0−9tan30°20.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?21.某游乐场一转角滑梯如图所示,滑梯立柱mm,mm均垂直于地面,点m在线段mm上.在m点测得点m的仰角为300,点m的俯角也为300,测得m,m间的距离为10米,立柱mm高30米.求立柱mm 的高(结果保留根号).22.小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(B,F,D在同一条直线上)。
2021年3月新高考数学复习资料§5.4解三角形及其综合应用试题及参考答案
§5.4解三角形及其综合应用基础知识专题固本夯基【基础训练】考点一正弦定理和余弦定理1.在△ABC中,角A,B,C的对边分别为a,b,c,若sin A=3sin B,c=√5,且cos C=56,则a=() A.2√2 B.3 C.3√2 D.4【参考答案】B2.若△ABC的内角A,B,C所对的边分别为a,b,c,已知bsin 2A=asin B,且c=2b,则ab等于()A.32B.43C.√2D.√3【参考答案】D3.在△ABC中,三内角A,B,C的对边分别为a,b,c,且b2+c2-√3bc=a2,bc=√3a2,则角C的大小是()A.π6或2π3B.π3C.2π3D.π6【参考答案】A4.若△ABC的面积为√34(a2+c2-b2),且∠C为钝角,则∠B=;ca的取值范围是.【参考答案】π3;(2,+∞)5.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b+c)sin B+(2c+b)·sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.【试题解析】(1)由已知,结合正弦定理,得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.又a2=b2+c2-2bccos A,所以bc=-2bccos A,即cos A=-12.由于A为三角形的内角,所以A=2π3.(2)已知2asin A=(2b+c)sin B+(2c+b)sin C,结合正弦定理,得2sin2A=(2sin B+sin C)sin B+(2sin C+sin B)sin C,即sin2A=sin2B+sin2C+sin Bsin C=sin22π3=34.又由sin B+sin C=1,得sin2B+sin2C+2sin Bsin C=1, 解得sin B=sin C=12,因为0<B<π,0<C<π,0<B+C<π,所以B =C =π6,所以△ABC 是等腰三角形.考点二 解三角形及其综合应用6.在△ABC 中,三边长分别为a,a+2,a+4,最小角的余弦值为1314,则这个三角形的面积为( )A.15√34B.154C.21√34D.35√34【参考答案】A7.如图所示,为了测量A,B 两处岛屿间的距离,小张以D 为观测点,测得A,B 分别在D 处的北偏西30°、北偏东30°方向,再往正东方向行驶40海里到C 处,测得B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A,B 两处岛屿间的距离为( )A.20√3 海里B.40√3 海里C.20(1+√3)海里D.40海里 【参考答案】B8.设锐角△ABC 的三个内角A,B,C 的对边分别为a,b,c,且c =1,A =2C,则△ABC 周长的取值范围为( ) A.(0,2+√2) B.(0,3+√3) C.(2+√2,3+√3) D.(2+√2,3+√3] 【参考答案】C9.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD = m.【参考答案】100√6综合篇知能转换【综合集训】考法一 利用正、余弦定理解三角形1.(2019湖南四校调研联考,10)△ABC 的内角A,B,C 的对边分别为a,b,c,且sinA sinB+sinC +ba+c=1,则C =( )A.π6B.π3C.2π3D.5π6【参考答案】B2.(2020届福建建瓯芝华中学高三暑假学习效果检测,7)△ABC 的内角A,B,C 的对边分别为a,b,c,若△ABC 的面积为a 2+b 2-c 24,则C=( )A.π2 B.π3 C.π4 D.π6【参考答案】C3.(2019上海金山二模,7)已知△ABC 中,tan A =14,tan B =35,AB =√17.求: (1)角C 的大小;(2)△ABC 中最短边的边长.【试题解析】(1)tan C =tan[π-(A+B)]=-tan(A+B)=-tanA+tanB1-tanAtanB =-14+351-14×35=-1,所以C =3π4.(2)因为tan A<tan B,所以最小角为A. 又因为tan A =14,所以sin A =√1717.又BC sinA =ABsinC, 所以BC =AB ·sinAsinC√17×√1717√22√2.故△ABC 中最短边的边长为√2.考法二 三角形形状的判断4.(2020届山东济宁二中10月月考,8)在△ABC 中,若sin A =2sin Bcos C,a 2=b 2+c 2-bc,则△ABC 的形状是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形 【参考答案】A5.(2018湖南师大附中12月月考,6)在△ABC 中,内角A,B,C 的对边分别是a,b,c,若bcosC ccosB =1+cos2C1+cos2B,则△ABC 的形状是( )A.等腰三角形B.直角三角形C.钝角三角形D.等腰三角形或直角三角形 【参考答案】D6.(2018江西南城一中期中,6)在△ABC 中,内角A,B,C 的对边分别为a,b,c,若tanA -tanB tanA+tanB =c -bc,则这个三角形必含有()A.90°的内角B.60°的内角C.45°的内角D.30°的内角 【参考答案】B考法三 与三角形的面积、范围有关的问题7.(2020届内蒙古杭锦后旗奋斗中学第一次月考,18)在△ABC 中,∠A =60°,c =37a. (1)求sin C 的值;(2)若a =7,求△ABC 的面积.【试题解析】(1)在△ABC 中,因为∠A =60°,c =37a,所以由正弦定理得sin C =csinA a =37×√32=3√314. (2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2cbcos A 得72=b 2+32-2b×3×12,得b =8或b =-5(舍).所以△ABC 的面积S =12bcsin A =12×8×3×√32=6√3.8.(2019江西临川一中12月月考,17)在△ABC 中,角A,B,C 的对边分别是a,b,c,且2csin B =3atan A. (1)求b 2+c 2a 2的值; (2)若a =2,求△ABC 的面积的最大值.【试题解析】(1)2csin B =3atan A ⇒2csin Bcos A =3asin A ⇒2bc ·cos A =3a 2,即2bc ·b 2+c 2-a 22bc=3a 2,∴b 2+c 2=4a 2, 则b 2+c 2a 2=4. (2)∵a =2,∴b 2+c 2=16,∴cos A =b 2+c 2-a 22bc =6bc. 又b 2+c 2≥2bc,即8≥bc,当且仅当b =c 时,取等号, ∴cos A ≥68=34. 由cos A =6bc 得bc =6cosA, 则A ∈(0,π2),∴S △ABC =12bcsin A =3tan A.∵1+tan 2A =1+sin 2A cos 2A =cos 2A+sin 2A cos 2A =1cos 2A, ∴tan A =√1cos 2A -1≤√169-1=√73, ∴S △ABC =3tan A ≤√7,故△ABC 的面积的最大值为√7.考法四 解三角形的实际应用9.(2018福建莆田月考,8)A 在塔底D 的正西面,在A 处测得塔顶C 的仰角为45°,B 在塔底D 的南偏东60°处,在塔顶C 处测得B 的俯角为30°,A 、B 间距84米,则塔高为( ) A.24米 B.12√5 米 C.12√7 米 D.36米 【参考答案】C10.(2018河北石家庄摸底考试,17)某学校的平面示意图如图中的五边形区域ABCDE,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB,BC,CD,DE,EA,BE 为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km. (1)求道路BE 的长度;(2)求生活区△ABE 的面积的最大值.【试题解析】(1)如图,连接BD,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CDcos ∠BCD =27100,∴BD =3√310(km).∵BC =CD,∠BCD =2π3,∴∠CBD =∠CDB =π-23π2=π6.又∠CDE =2π3,∴∠BDE =π2. ∴在Rt △BDE 中,BE =√BD 2+DE 2=(3√310)2(910)23√35km.故道路BE 的长度为3√35km. (2)设∠ABE =α,∵∠BAE =π3, ∴∠AEB =2π3-α. 在△ABE 中,AB sin ∠AEB =AE sin ∠ABE =BE sin ∠BAE =3√35sinπ3=65, ∴AB =65sin (2π3-α)km,AE =65sin α km. ∴S △ABE =12AB ·AEsin π3=9√325sin (2π3-α)sin α=9√325·[12sin (2α-π6)+14]km 2. ∵0<α<2π3, ∴-π6<2α-π6<7π6, ∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为9√325×(12+14)=27√3100, 故生活区△ABE 面积的最大值为27√3100km 2.【5年高考】考点一 正弦定理和余弦定理1.(2018课标Ⅱ,6,5分)在△ABC 中,cos C 2=√55,BC =1,AC =5,则AB =( )A.4√2B.√30C.√29D.2√5 【参考答案】A2.(2016天津,3,5分)在△ABC 中,若AB =√13,BC =3,∠C =120°,则AC =( )A.1B.2C.3D.4 【参考答案】A3.(2016课标Ⅲ,8,5分)在△ABC 中,B =π4,BC 边上的高等于13BC,则cos A =( )A.3√1010B.√1010C.-√1010D.-3√1010【参考答案】C4.(2017山东,9,5分)在△ABC 中,角A,B,C 的对边分别为a,b,c.若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C+cos Asin C,则下列等式成立的是( ) A.a =2b B.b =2a C.A =2B D.B =2A 【参考答案】A5.(2016课标Ⅱ,13,5分)△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A =45,cos C =513,a =1,则b = . 【参考答案】21136.(2018浙江,13,6分)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a =√7,b =2,A =60°,则sin B = ,c = . 【参考答案】√217;37.(2019浙江,14,6分)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD = ,cos ∠ABD = . 【参考答案】12√25;7√2108.(2019课标Ⅰ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c.设(sin B-sin C)2=sin 2A-sin Bsin C.(1)求A;(2)若√2a+b =2c,求sin C.【试题解析】本题主要考查学生对正弦定理、余弦定理以及三角恒等变换的掌握;考查了学生的运算求解能力;考查的核心素养是逻辑推理与数学运算.(1)由已知得sin 2B+sin 2C-sin 2A =sin Bsin C,故由正弦定理得b 2+c 2-a 2=bc.由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A<180°,所以A =60°.(2)由(1)知B =120°-C,由题设及正弦定理得√2sin A+sin(120°-C)=2sin C, 即√62+√32cos C+12sin C =2sin C,可得cos(C+60°)=-√22.由于0°<C<120°,所以sin(C+60°)=√22,故sin C =sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)·sin 60°=√6+√24.思路分析 (1)先借助正弦定理将角化为边,然后利用余弦定理求出角A 的余弦值,进而得出角A.(2)利用正弦定理将已知等式中的边化为角,利用三角恒等变换将原式化为含有角C 的正弦、余弦的等式,利用角度变换求出sin C. 9.(2018课标Ⅰ,17,12分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB; (2)若DC =2√2,求BC.【试题解析】(1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB. 由题设知,5sin45°=2sin ∠ADB,所以sin ∠ADB =√25.由题设知,∠ADB<90°,所以cos ∠ADB =√1-225=√235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =√25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2·BD ·DC ·cos ∠BDC =25+8-2×5×2√2×√25=25.所以BC =5.10.(2019天津,15,13分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c =2a,3csin B =4asin C. (1)求cos B 的值; (2)求sin (2B +π6)的值.【试题解析】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. (1)在△ABC 中,由b sinB =csinC ,得bsin C =csin B,又由3csin B =4asin C,得3bsin C =4asin C,即3b =4a. 又因为b+c =2a,得到b =43a,c =23a. 由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得sin B =√1-cos 2B =√154,从而sin 2B =2sin Bcos B =-√158,cos 2B =cos 2B-sin 2B =-78,故sin (2B +π6)=sin 2Bcos π6+cos 2Bsin π6=-√158×√32-78×12=-3√5+716. 思路分析 (1)由已知边角关系:3csin B =4asin C 利用正弦定理,得三边比例关系,根据余弦定理即可求出cos B. (2)由(1)利用同角三角函数基本关系式,求出sin B,再由二倍角公式求出sin 2B 、cos 2B,代入两角和的正弦公式即可求出sin (2B +π6)的值.11.(2019北京,15,13分)在△ABC 中,a =3,b-c =2,cos B =-12. (1)求b,c 的值; (2)求sin(B-C)的值.【试题解析】本题主要考查正弦、余弦定理,同角三角函数的基本关系式,两角差的正弦公式等知识点,考查学生的运算能力. (1)由余弦定理b 2=a 2+c 2-2accos B,得b 2=32+c 2-2×3×c×(-12).因为b =c+2,所以(c+2)2=32+c 2-2×3×c×(-12).解得c =5.所以b =7. (2)由cos B =-12得sin B =√32.由正弦定理得sin C =c b sin B =5√314. 在△ABC 中,∠B 是钝角,所以∠C 为锐角. 所以cos C =√1-sin 2C =1114. 所以sin(B-C)=sin Bcos C-cos Bsin C =4√37. 12.(2019江苏,15,14分)在△ABC 中,角A,B,C 的对边分别为a,b,c. (1)若a =3c,b =√2,cos B =23,求c 的值; (2)若sinA a =cosB2b,求sin (B +π2)的值.【试题解析】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力. (1)因为a =3c,b =√2,cos B =23, 由余弦定理得cos B =a 2+c 2-b 22ac ,得23=(3c)2+c 2-(√2)22×3c×c, 即c 2=13.所以c =√33.(2)因为sinA a =cosB2b, 由a sinA =b sinB ,得cosB 2b =sinB b,所以cos B =2sin B.从而cos 2B =(2sin B)2,即cos 2B =4(1-cos 2B), 故cos 2B =45.因为sin B>0,所以cos B =2sin B>0,从而cos B =2√55. 因此sin (B +π2)=cos B =2√55. 考点二 解三角形及其综合应用13.(2019课标Ⅱ,15,5分)△ABC 的内角A,B,C 的对边分别为a,b,c.若b =6,a =2c,B =π3,则△ABC 的面积为 . 【参考答案】6√314.(2015课标Ⅰ,16,5分)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【参考答案】(√6-√2,√6+√2)15.(2017浙江,14,6分)已知△ABC,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD,则△BDC 的面积是 ,cos ∠BDC = . 【参考答案】√152;√10416.(2017课标Ⅰ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c.已知△ABC 的面积为a 23sinA. (1)求sin Bsin C;(2)若6cos Bcos C =1,a =3,求△ABC 的周长.【试题解析】本题考查正弦定理、余弦定理以及三角恒等变换,考查学生利用三角形面积公式进行运算求解的能力.(1)由题设得12acsin B =a 23sinA ,即12csin B =a3sinA. 由正弦定理得12sin Csin B =sinA3sinA. 故sin Bsin C =23.(2)由题设及(1)得cos Bcos C-sin Bsin C =-12, 即cos(B+C)=-12.所以B+C =2π3,故A =π3. 由题设得12bcsin A =a 23sinA,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b+c)2-3bc =9,得b+c =√33. 故△ABC 的周长为3+√33.思路分析 (1)首先利用三角形的面积公式可得12acsin B =a 23sinA,然后利用正弦定理,把边转化成角的形式,即可得出sin Bsin C的值;(2)首先利用sin Bsin C 的值以及题目中给出的6cos Bcos C =1,结合两角和的余弦公式求出B+C,进而得出A,然后利用三角形的面积公式和a 的值求出bc 的值,最后利用余弦定理求出b+c 的值,进而得出△ABC 的周长. 17.(2016课标Ⅰ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c. (1)求C;(2)若c =√7,△ABC 的面积为3√32,求△ABC 的周长.【试题解析】(1)由已知及正弦定理得,2cos C(sin Acos B+sin Bcos A)=sin C,(2分) 2cos Csin(A+B)=sin C. 故2sin Ccos C =sin C.(4分) 可得cos C =12,所以C =π3.(6分) (2)由已知,得12absin C =3√32. 又C =π3,所以ab =6.(8分)由已知及余弦定理得,a 2+b 2-2abcos C =7.故a 2+b 2=13,从而(a+b)2=25.∴a+b =5.(10分)所以△ABC 的周长为5+√7.(12分)18.(2018北京,15,13分)在△ABC 中,a =7,b =8,cos B =-17. (1)求∠A; (2)求AC 边上的高.【试题解析】(1)在△ABC 中,因为cos B =-17,所以sin B =√1-cos 2B =4√37. 由正弦定理得sin A =asinB b =√32. 由题设知π2<∠B<π,所以0<∠A<π2.所以∠A =π3. (2)在△ABC 中,因为sin C =sin(A+B)=sin Acos B+cos Asin B =3√314, 所以AC 边上的高为asin C =7×3√314=3√32. 方法总结 处理解三角形相关的综合题目时,首先,要掌握正弦定理、余弦定理,其次,结合图形分析哪些边、角是已知的,哪些边、角是未知的,然后将方程转化为只含有边或角的方程,最后通过解方程求出边或角.19.(2018天津,15,13分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsin A =acos (B -π6). (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A-B)的值.【试题解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力. (1)在△ABC 中, 由a sinA =b sinB,可得bsin A =asin B,又由bsin A =acos (B -π6),得asin B =acos (B -π6), 即sin B =cos (B -π6),可得tan B =√3. 又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有b 2=a 2+c 2-2accos B =7,故b =√7.由bsin A =acos (B -π6),可得sin A =√3√7.因为a<c,故cos A =√7.因此sin 2A =2sin Acos A =4√37,cos 2A =2cos 2A-1=17.所以,sin(2A-B)=sin 2Acos B-cos 2Asin B =4√37×12-17×√32=3√314. 解题关键 (1)利用正弦定理合理转化bsin A =acos (B -π6)是求解第(1)问的关键; (2)由余弦定理及已知条件求得sin A,利用a<c 确定cos A>0是求解第(2)问的关键.教师专用题组考点一 正弦定理和余弦定理1.(2015天津,13,5分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c =2,cos A =-14,则a 的值为 . 【参考答案】82.(2015广东,11,5分)设△ABC 的内角A,B,C 的对边分别为a,b,c.若a =√3,sin B =12,C =π6,则b = . 【参考答案】13.(2015重庆,13,5分)在△ABC 中,B =120°,AB =√2,A 的角平分线AD =√3,则AC = . 【参考答案】√64.(2015北京,12,5分)在△ABC中,a=4,b=5,c=6,则sin2AsinC=. 【参考答案】15.(2016北京,15,13分)在△ABC中,a2+c2=b2+√2ac.(1)求∠B的大小;(2)求√2cos A+cos C的最大值.【试题解析】(1)由余弦定理及题设得cos B=a2+c2-b22ac =√2ac2ac=√22.又因为0<∠B<π,所以∠B=π4.(2)由(1)知∠A+∠C=3π4,∴∠C=3π4-∠A.∴√2cos A+cos C=√2cos A+cos(3π4-A)=√2cos A-√22cos A+√22sin A=√22cos A+√22sin A=cos(A-π4).因为0<∠A<3π4,所以当∠A=π4时,√2cos A+cos C取得最大值1.6.(2015安徽,16,12分)在△ABC中,∠A=3π4,AB=6,AC=3√2,点D在BC边上,AD=BD,求AD的长.【试题解析】设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bccos∠BAC=(3√2)2+62-2×3√2×6×cos3π4=18+36-(-36)=90,所以a=3√10.又由正弦定理得sin B=bsin∠BACa3√10√10 10,由题设知0<B<π4,所以cos B=√1-sin2B=√1-110=3√1010.在△ABD中,由正弦定理得AD=AB·sinBsin(π-2B)=6sinB2sinBcosB=3cosB=√10.7.(2015课标Ⅱ,17,12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求sin∠Bsin∠C;(2)若AD=1,DC=√22,求BD和AC的长.【试题解析】(1)S△ABD=12AB·ADsin∠BAD,S△ADC=12AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得sin∠Bsin∠C =ACAB=12.(2)因为S △ABD ∶S △ADC =BD∶DC,所以BD =√2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BDcos ∠ADB,AC 2=AD 2+DC 2-2AD ·DCcos ∠ADC. 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1)知AB =2AC,所以AC =1.8.(2011课标,17,12分)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,acos C+√3asin C-b-c =0. (1)求A;(2)若a =2,△ABC 的面积为√3,求b,c.【试题解析】(1)由acos C+√3asin C-b-c =0及正弦定理得sin Acos C+√3sin Asin C-sin B-sin C =0. 因为B =π-A-C,所以√3sin Asin C-cos Asin C-sin C =0. 由于sin C ≠0,所以sin (A -π6)=12. 又0<A<π,故A =π3.(2)△ABC 的面积S =12bcsin A =√3,故bc =4.又a 2=b 2+c 2-2bccos A,故b 2+c 2=8.解得b =c =2.评析 本题考查了正、余弦定理和三角公式,考查了方程的思想.灵活运用正、余弦定理是求解关键.正确的转化是本题的难点.考点二 解三角形及其综合应用9.(2014课标Ⅱ,4,5分)钝角三角形ABC 的面积是12,AB =1,BC =√2,则AC =( ) A.5 B.√5 C.2 D.1 【参考答案】B10.(2014课标Ⅰ,16,5分)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,a =2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC 面积的最大值为 . 【参考答案】√311.(2011课标,16,5分)在△ABC 中,B =60°,AC =√3,则AB+2BC 的最大值为 . 【参考答案】2√712.(2017天津,15,13分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a>b,a =5,c =6,sin B =35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.【试题解析】本小题主要考查同角三角函数的基本关系,二倍角的正弦、余弦公式,两角和的正弦公式以及正弦定理、余弦定理等基础知识.考查运算求解能力.(1)在△ABC 中,因为a>b,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2accos B =13,所以b =√13.由正弦定理a sinA =b sinB,得sin A =asinB b =3√1313. 所以,b 的值为√13,sin A 的值为3√1313. (2)由(1)及a<c,得cos A =2√1313,所以sin 2A =2sin Acos A =1213,cos 2A =1-2sin 2A =-513.故sin (2A +π4)=sin 2Acos π4+cos 2Asin π4=7√226. 方法总结 1.利用正、余弦定理求边或角的步骤:(1)根据已知的边和角画出相应的图形,并在图中标出;(2)结合图形选择用正弦定理或余弦定理求解;(3)在运算和求解过程中注意三角恒等变换和三角形内角和定理的运用.2.解决三角函数及解三角形问题的满分策略:(1)认真审题,把握变形方向;(2)规范书写,合理选择公式;(3)计算准确,注意符号. 13.(2016浙江,16,14分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c =2acos B. (1)证明:A =2B;(2)若△ABC 的面积S =a 24,求角A 的大小.【试题解析】(1)由正弦定理得sin B+sin C =2sin Acos B, 故2sin Acos B =sin B+sin(A+B)=sin B+sin Acos B+cos Asin B, 于是sin B =sin(A-B). 由已知得cos B>0,则B ∈(0,π2). 又A ∈(0,π),故-π2<A-B<π. 所以,B =π-(A-B)或B =A-B, 因此A =π(舍去)或A =2B, 所以,A =2B.(2)由S =a 24得12absin C =a 24,故有sin Bsin C =12sin 2B =sin Bcos B, 因sin B ≠0,得sin C =cos B. 又B ∈(0,π2),C ∈(0,π),所以C =π2±B. 当B+C =π2时,A =π2;当C-B =π2时,A =π4. 综上,A =π2或A =π4.评析 本题主要考查三角函数及其变换、正弦定理和三角形面积公式等基础知识,同时考查运算求解能力. 14.(2016山东,16,12分)在△ABC 中,角A,B,C 的对边分别为a,b,c.已知2(tan A+tan B)=tanA cosB +tanBcosA. (1)证明:a+b =2c; (2)求cos C 的最小值. 【试题解析】(1)由题意知2(sinA cosA +sinB cosB )=sinA cosAcosB +sinBcosAcosB, 化简得2(sin Acos B+sin Bcos A)=sin A+sin B, 即2sin(A+B)=sin A+sin B. 因为A+B+C =π,所以sin(A+B)=sin(π-C)=sin C. 从而sin A+sin B =2sin C. 由正弦定理得a+b =2c. (2)由(1)知c =a+b2, 所以cos C =a 2+b 2-c 22ab =a 2+b 2-(a+b 2)22ab=38(a b +b a )-14≥12,当且仅当a =b 时,等号成立. 故cos C 的最小值为12.评析 本题考查了三角恒等变换、正弦定理和余弦定理及基本不等式,综合性较强,重点考查了化归与转化的思想方法,属中档题. 15.(2015浙江,16,14分)在△ABC 中,内角A,B,C 所对的边分别是a,b,c.已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.【试题解析】(1)由b 2-a 2=12c 2及正弦定理得sin 2B-12=12sin 2C,所以-cos 2B =sin 2C.又由A =π4,即B+C =34π,得-cos 2B =sin 2C =2sin Ccos C, 解得tan C =2.(2)由tan C =2,C ∈(0,π)得sin C =2√55,cos C =√55. 又因为sin B =sin(A+C)=sin (π4+C), 所以sin B =3√1010. 由正弦定理得c =2√23b, 又因为A =π4,12bcsin A =3,所以bc =6√2,故b =3.评析 本题主要考查三角函数及三角恒等变换、正弦定理等基础知识,同时考查运算求解能力.16.(2015陕西,17,12分)△ABC 的内角A,B,C 所对的边分别为a,b,c.向量m =(a,√3b)与n =(cos A,sin B)平行. (1)求A;(2)若a =√7,b =2,求△ABC 的面积.【试题解析】(1)因为m ∥n ,所以asin B-√3bcos A =0, 由正弦定理,得sin Asin B-√3sin Bcos A =0, 又sin B ≠0,从而tan A =√3, 由于0<A<π,所以A =π3.(2)解法一:由a 2=b 2+c 2-2bccos A 及a =√7,b =2,A =π3,得7=4+c 2-2c,即c 2-2c-3=0,因为c>0,所以c =3. 故△ABC 的面积为12bcsin A =3√32. 解法二:由正弦定理,得√7sin π3=2sinB , 从而sin B =√217,又由a>b,知A>B,所以cos B =2√77.故sin C =sin(A+B)=sin (B +π3) =sin Bcos π3+cos Bsin π3=3√2114. 所以△ABC 的面积为12absin C =3√32. 17.(2015湖南,17,12分)设△ABC 的内角A,B,C 的对边分别为a,b,c,a =btan A,且B 为钝角. (1)证明:B-A =π2;(2)求sin A+sin C 的取值范围.【试题解析】(1)证明:由a =btan A 及正弦定理, 得sinA cosA =a b =sinAsinB, 所以sin B =cos A,即sin B =sin (π2+A). 又B 为钝角,因此π2+A ∈(π2,π),故B =π2+A,即B-A =π2. (2)由(1)知,C =π-(A+B)=π-(2A +π2)=π2-2A>0, 所以A ∈(0,π4).于是sin A+sin C =sin A+sin (π2-2A)=sin A+cos 2A =-2sin 2A+sin A+1=-2(sinA -14)2+98.因为0<A<π4,所以0<sin A<√22,因此√22<-2(sinA -14)2+98≤98.由此可知sin A+sin C 的取值范围是(√22,98].18.(2015四川,19,12分)如图,A,B,C,D 为平面四边形ABCD 的四个内角. (1)证明:tan A 2=1-cosAsinA; (2)若A+C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D 2的值.【试题解析】(1)证明:tan A 2=sin A2cos A 2=2sin 2A22sin A 2cosA 2=1-cosAsinA . (2)由A+C =180°,得C =180°-A,D =180°-B. 由(1),有tan A2+tan B 2+tan C 2+tan D 2=1-cosA sinA +1-cosB sinB +1-cos(180°-A)sin(180°-A)+1-cos(180°-B)sin(180°-B)=2sinA +2sinB.连接BD.在△ABD 中,有BD 2=AB 2+AD 2-2AB ·ADcos A, 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CDcos C, 所以AB 2+AD 2-2AB ·ADcos A =BC 2+CD 2+2BC ·CDcos A.则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD+BC ·CD)=62+52-32-422×(6×5+3×4)=37.于是sin A =√1-cos 2A =√1-(37)2=2√107. 连接AC.同理可得 cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC+AD ·CD)=62+32-52-422×(6×3+5×4)=119,于是sin B =√1-cos 2B =√1-(119)2=6√1019. 所以,tan A2+tan B 2+tan C 2+tan D 2=2sinA +2sinB 2√10+6√104√103. 评析 本题主要考查二倍角公式、诱导公式、余弦定理、简单的三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化等数学思想.19.(2013课标Ⅰ,17,12分)如图,在△ABC 中,∠ABC =90°,AB =√3,BC =1,P 为△ABC 内一点,∠BPC =90°. (1)若PB =12,求PA;(2)若∠APB =150°,求tan ∠PBA.【试题解析】(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×√3×12cos 30°=74.故PA =√72.(2)设∠PBA =α,由已知得∠PAB =30°-α,PB =sin α. 在△PBA 中,由正弦定理得√3sin150°=sinαsin(30°-α),化简得√3cos α=4sin α.所以tan α=√34,即tan ∠PBA =√34.思路分析 (1)由已知求出∠PBA,在△PAB 中利用余弦定理求解PA;(2)设∠PBA =α,则∠PAB =30°-α,在Rt △PBC 中求得PB =sin α,然后在△PBA 中利用正弦定理求得tan α.20.(2013课标Ⅱ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知a =bcos C+csin B. (1)求B;(2)若b =2,求△ABC 面积的最大值.【试题解析】(1)由已知及正弦定理得sin A =sin Bcos C+sin C ·sin B.① 又A =π-(B+C),故sin A =sin(B+C)=sin Bcos C+cos Bsin C.② 由①②和C ∈(0,π)得sin B =cos B. 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12acsin B =√24ac.由已知及余弦定理得4=a 2+c 2-2accos π4.又a 2+c 2≥2ac,故ac ≤2-√2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为√2+1.方法总结 求三角形面积的最值时,常利用基本不等式求两边之积的最值,从而确定面积的最值.【三年模拟】一、单项选择题(每题5分,共35分)1.(2019北京朝阳综合练习,4)在△ABC 中,B =π6,c =4,cos C =√53,则b =( )A.3√3B.3C.32D.43【参考答案】B2.(2020届黑龙江双鸭山一中开学考,3)在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A.15 B.59 C.35D.1 【参考答案】B3.(2019上海嘉定(长宁)二模,16)对于△ABC,若存在△A 1B 1C 1,满足cosA sin A 1=cosB sin B 1=cosCsin C 1=1,则称△ABC 为“V 类三角形”.“V 类三角形”一定满足( )A.有一个内角为30°B.有一个内角为45°C.有一个内角为60°D.有一个内角为75° 【参考答案】B4.(2018河北衡水中学4月模拟,11)已知△ABC 的内角A,B,C 的对边分别为a,b,c,且acos B+√3asin B =b+c,b =1,点D 是△ABC 的重心,且AD =√73,则△ABC 的外接圆的半径为( )A.1B.2C.3D.4 【参考答案】A5.(2018山东济宁二模,12)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,且acos B-bcos A =23c,则tan(A-B)的最大值为( )A.2√55B.√55C.√33D.√3【参考答案】A6.(2019河南六市3月联考,10)在△ABC 中,A,B,C 的对边分别为a,b,c,若2a -c b =cosCcosB,b =4,则△ABC 的面积的最大值为( )A.4√3B.2√3C.3√3D.√3 【参考答案】A7.(2019湘东六校3月联考,5)若△ABC 的三个内角满足6sin A =4sin B =3sin C,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能 【参考答案】C二、多项选择题(每题5分,共10分)8.(改编题)在△ABC 中,角A,B,C 所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是( ) A.sin A∶sin B∶sin C =4∶5∶6 B.△ABC 是钝角三角形C.△ABC 的最大内角是最小内角的2倍D.若c =6,则△ABC 外接圆的半径为8√77【参考答案】ACD9.(改编题)在△ABC 中,根据下列条件解三角形,其中有两解的是( ) A.b =10,A =45°,C =70° B.b =45,c =48,B =60° C.a =14,b =16,A =45° D.a =7,b =5,A =80° 【参考答案】BC三、填空题(每题5分,共10分)10.(2019安徽合肥二模,15)在锐角△ABC 中,BC =2,sin B+sin C =2sin A,则中线AD 的长的取值范围是 . 【参考答案】[√3,√132)11.(2020届黑龙江双鸭山一中开学考,15)已知A 船在灯塔C 的北偏东85°方向且A 到C 的距离为2 km,B 船在灯塔C 的北偏西65°方向且B 到C 的距离为√3 km,则A,B 两船的距离为 . 【参考答案】√13 km四、解答题(共60分)12.(2020届山东夏季高考模拟,18)在△ABC 中,∠A =90°,点D 在BC 边上.在平面ABC 内,过D 作DF ⊥BC 且DF =AC. (1)若D 为BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC; (2)若∠ABC =45°,且BD =3CD,求cos ∠CFB. 【试题解析】(1)因为CD =BD,所以CD =12BC. 由题设知DF =AC,12CD ·DF =12AB ·AC, 因此CD =AB.所以AB =12BC,因此∠ABC =60°. (2)不妨设AB =1,由题设知BC =√2. 由BD =3CD 得BD =3√24,CD =√24. 由勾股定理得CF =3√24,BF =√344. 由余弦定理得cos ∠CFB =98+178-2×3√24×√3445√1751. 13.(2020届山东济宁二中10月月考,19)在△ABC 中,a,b,c 分别是角A,B,C 的对边,已知cos 2A-3cos(B+C)=1. (1)求角A 的大小;(2)若a =√21,b+c =9,求△ABC 的面积.【试题解析】(1)在△ABC 中,cos(B+C)=cos(π-A)=-cos A, 则由cos 2A-3cos(B+C)=1,得2cos 2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0, 解得cos A =12或cos A =-2(舍去).∵0<A<π,∴A =π3.(2)由余弦定理,得a 2=b 2+c 2-2bccos π3,∵a =√21,b+c =9,∴21=b 2+c 2-bc =(b+c)2-3bc,即21=81-3bc, 解得bc =20.∴S △ABC =12bcsin A =12×20×√32=5√3.14.(2019上海浦东二模,18)已知向量m =(2sin ωx ,cos 2ωx),n =(√3cos ωx,1),其中ω>0,若函数f(x)=m ·n 的最小正周期为π. (1)求ω的值;(2)在△ABC 中,若f(B)=-2,BC =√3,sin B =√3sin A,求BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值. 【试题解析】(1)f(x)=m ·n =√3sin 2ωx+cos 2ωx =2sin (2ωx +π6),∵f(x)的最小正周期为π,∴T =2π2ω=π,∴ω=1. (2)设△ABC 中角A,B,C 所对的边分别是a,b,c. ∵f(B)=-2,∴2sin (2B +π6)=-2, 即sin (2B +π6)=-1,解得B =2π3. ∵BC =√3,∴a =√3,∵sin B =√3sin A, ∴b =√3a,∴b =3,由3sin 2π3=√3sinA 得sin A =12,∵0<A<π3,∴A =π6,则C =π6,∴a =c =√3, ∴BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =cacos B =-32. 15.(2020届湖南长沙一中第一次月考,17)已知△ABC 的内角A,B,C 的对边分别为a,b,c,满足cosA cosB +a b =2cb且b =4.(1)求角B;(2)求△ABC 周长的最大值. 【试题解析】(1)由cosA cosB +a b =2c b 及正弦定理,得cosAsinB+cosBsinA cosBsinB =2sinCsinB, 即sin(A+B)cosBsinB =2sinCsinB,∵sin(A+B)=sin C ≠0,sin B ≠0,∴cos B =12, ∵B∈(0,π),∴B =π3.(2)在△ABC 中,由余弦定理得b 2=a 2+c 2-2accos B =a 2+c 2-ac =16.∴(a+c)2=16+3ac ≤16+3(a+c 2)2. 即a+c ≤8,当且仅当a =c 时取等号. ∴△ABC 的周长=a+b+c ≤12,∴△ABC 周长的最大值为12.16.(2020届黑龙江哈师大附中9月月考,20)已知△ABC 的内角A,B,C 的对边分别为a,b,c,asin A+C2=bsin A. (1)求B;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【试题解析】(1)由asinA+C2=bsin A 及正弦定理可得sin Acos B 2=sin Bsin A,∵sin A ≠0,∴cos B 2=sin B =2sin B 2cos B 2⇒sin B 2=12(0<B<π), ∴B =π3.(2)解法一:由a sinA =c sinC得a =c sinC sin (2π3-C), ∴S △ABC =12a√32=√34(√32tanC+12)=38·1tanC +√38, 由△ABC 为锐角三角形可得{0<C <π2,0<2π3-C <π2⇒π6<C<π2⇒0<1tanC <√3, 所以△ABC 面积的取值范围为(√38,√32).解法二:由余弦定理得b =√a 2-a +1, 由题意得{a 2+1>b 2,a 2+b 2>1,b 2+1>a 2⇒12<a<2.则S =12a√32=√34a ∈(√38,√32). 即△ABC 面积的取值范围为(√38,√32).应用专题知行合一【应用集训】1.(2020届湖南长沙一中第一次月考,15)秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积”.如果把以上这段文字写成公式就是S =√14[a 2c 2-(a 2+c 2-b 22)2],其中a,b,c 是△ABC 的内角A,B,C 的对边.若sin C =2sin Acos B,且b 2,2,c 2成等差数列,则△ABC 面积S 的最大值为 . 【参考答案】2√552.(2020届宁夏银川第一次月考,18)如图,在平面直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2).将角α的终边按逆时针方向旋转π3,交单位圆于点B.记A(x 1,y 1),B(x 2,y 2). (1)若x 1=14,求x 2;(2)分别过A,B 作x 轴的垂线,垂足依次为C,D.设△AOC 的面积为S 1,△BOD 的面积为S 2若S 1=2S 2,求角α的值.21【试题解析】(1)由三角函数的定义,得x 1=cos α,x 2=cos (α+π3),因为α∈(π6,π2),cos α=14,则sin α=√1-cos 2α=√1-(14)2=√154.∴x 2=cos (α+π3)=12cos α-√32sin α=12 ×14-√32×√154=1-3√58.(2)由已知,得y 1=sin α,y 2=sin (α+π3),∴S 1=12x 1·y 1=12cos α·sin α=14sin 2α,S 2=12|x 2|·|y 2|=12[-cos (α+π3)·sin (α+π3)]=-14sin (2α+2π3).由S 1=2S 2,得sin 2α=-2sin (2α+2π3)⇒cos 2α=0.又α∈(π6,π2),∴2α∈(π3,π),∴2α=π2⇒α=π4.。
【新华东师大版】九年级数学上册:24《解直角三角形》章末复习学案(含答案)
第24章知识升华一、知识脉络:二、典例分析:例1 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D ,求∠BCD 的四个三角函数值.【分析】求∠BCD 的四个三角函数值,关键要弄清其定义,由于∠BCD 是在Rt △BCD 中的一个内角,根据定义,仅一边BC 是已知的,此时有两条路可走,一是设法求出BD 和CD ,二是把∠BCD 转化成∠A ,显然走第二条路较方便,因为在Rt △ABC 中,三边均可得出,利用三角函数定义即可求出答案.【解】 在Rt △ABC 中,∵ ∠ACB =90°∴∠BCD +∠ACD =90°,∵CD ⊥AB ,∴∠ACD +∠A =90°,∴∠BCD =∠A .在Rt △ABC 中,由勾股定理得,AB =22AC BC =10,∴sin ∠BCD =sinA =BC AB =45 ,cos ∠BCD =cosA =AC AB =35 ,tan ∠BCD =tanA =BC AC =43 ,cot ∠BCD =cotA =AC BC =34.【说明】本题主要是要学生了解三角函数定义,把握其本质,应强调转化的思想,即本题中角的转换.例2 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪离AB为1.5米,求拉线CE的长.(结果保留根号)【分析】求CE的长,此时就要借助于另一个直角三角形,故过点A作AG⊥CD,垂足为G,在Rt△ACG中,可求出CG,从而求得CD,在Rt△CED中,即可求出CE的长.【解】过点A作AG⊥CD,垂足为点G,在Rt△ACG中,∵∠CAG=30°,BD=6,∴tan30°=CGAG,∴CG=6×33=2 3 ,∴CD=2 3 +1.5,在Rt△CED中,sin60°=CDEC,∴EC=CDsin60°=23+1.53=4+ 3 .答:拉线CE的长为4+ 3 米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键,在复习过程中应加以引导和总结.例3 如图,某县为了加固长90米,高5米,坝顶宽为4米的迎水坡和背水坡,它们是坡度均为1∶0.5,橫断面是梯形的防洪大坝,现要使大坝顺势加高1米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形ADNM的面积,在此问题中,主要抓住坡度不变,即MA与AB的坡度均为1∶0.5.【解】⑴∵i=tanB,即tanB=10.5=2,∴∠B=63.43°.⑵过点M、N分别作ME⊥AD,NF⊥AD,垂足分别为E、F.由题意可知:ME=NF=5,∴MEAE=10.5,∴AE=DF=2.5,∵AD=4,∴MN=EF=1.5,∴S梯形ADNM=12(1.5+4)×1=2.75.∴需要土方为2.75×90=247.5 (m3) .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度=垂直高度水平距离 =坡角的正切值.例4 某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 间距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离.(结果精确到1米,参考数据:sin 32°≈0.5299,cos 32°≈0.8480,tan s 32°≈0.6249,cot 32°≈1.600)【分析】本题涉及到方位角的问题,要解出AB 的长,只要去解Rt △ADC 和Rt △BDC 即可. 【解】过点C 作CD ⊥AB ,垂足为D .由题知:∠α=45°,∠β=32°.在Rt △BDC 中,sin 32°=BD BC ,∴BD =100sin 32°≈52.99.cos 32°=CDBC,∴CD =100 cos 32°≈84.80.在Rt △ADC 中,∵∠ACD =45°,∴AD =DC =84.80. ∴AB =AD +BD ≈138米.答:AB 间距离约为138米.【说明】本题中涉及到方位角的问题,画图是本题的难点,找到两个直角三角形的公共边是解题的关键,在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形.例5 在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/ 时的速度向西偏北25°的PQ 的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈,3 1.73≈).【分析】先要计算出OH 和PH 的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与OH 比较即可.【解】⑴100; (6010)t +.⑵作OH ⊥PQ 于点H ,可算得1002141OH =(千米),设经过t 小时时,台风中心从P 移动到H ,则201002PH t ==,算得52t =(小时),此时,受台风侵袭地区的圆的半径为:601052130.5+⨯≈(千米)<141(千米).∴城市O 不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.第24章测试题设计一、选择题:1、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B .83米C .833米 D .433米 2、如图,ABC △中BC 边上的高为1h ,DEF △中DE 边上的高为2h ,下列结论正确的是( ) A .12h h >B .12h h <C .12h h =D .无法确定3、已知在ABC △中,90C ∠=,设sinB n =,当B ∠是最小的内角时,n 的取值范围是 A .202n <<B .102n << C .303n << D .302n << 4、如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( )A .aB .a 54C .a 22D . a 23 5、已知α为锐角,则m =sinα+cosα的值( ) A .m >1B .m =1C .m <1D .m ≥16、如果方程2430x x -+=的两个根分别是Rt△ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为( ). A、34或13B 、24C 、13D 、13或247、已知α为锐角,且cos (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75° 8、如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠tan 的值为( ).A 、32 B 、34 C 、12D 、139、在△ABC 中,AB =8,∠ABC =30°,AC =5,那么BC 的长等于( )A 、43B 、43+3C 、43-3D 、43+3或43-3 10、如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(5332+)m B .(3532+)m C . 53m D .4m二、填空题:11、如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)12、长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .13、如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .14、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡度为_________.15、如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .16、如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.17、如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示).18、水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 .19、如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB = .20、若等腰梯形ABCD 的上、下底之和为4,并且两条对角线所夹锐角为60,则该等腰梯形的面积为 (结果保留根号的形式). 三、解答题:21、计算:(1)1sin 60cos302⋅-; (233602cos 458-+;22、一种千斤顶利用了四边形的不稳定性. 如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变ADC ∠的大小(菱形的边长不变),从而改变千斤顶的高度(即A 、C 之间的距离).若AB=40cm ,当ADC ∠从60︒变为120︒时,千斤顶升高了多少?2 1.414,3 1.732,结果保留整数)23、某大草原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙两个医疗站,如图,在A地北偏东45°、B地北偏西60°方向上有一牧民区C.一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I:从A地开车沿公路到离牧民区C最近的D 处,再开车穿越草地沿DC方向到牧民区C.方案II:从A地开车穿越草地沿AC方向到牧民区C.已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD.(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.1,参考数据:3取1.73,2取1.41)24、如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ 延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)25、某大学计划为新生配备如图(1)所示的折叠椅.图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm ,∠DOB =100°,那么椅腿的长AB 和篷布面的宽AD 各应设计为多少cm ?(结果精确到0.1cm )26、路边的路灯的灯柱BC 垂直于地面,灯杆BA 的长为2米,灯杆与灯柱BC 成120°角,锥形灯罩的轴线AD 与灯杆AB 垂直,且灯罩轴线AD 正好通过道路里面的中心线(D 在中心线上),已知C 点与D 点之间的距离为12米,求灯柱BC 的高(结果保留根号)27、如图,家住江北广场的小李经西湖桥到教育局上班,路线为A →B →C →D .因西湖桥维修封桥,他只能改道经临津门渡口乘船上班,路线为A →F →E →D .已知BC EF ∥,BF CE ∥,AB BF ⊥,CD DE ⊥,200AB =米,100BC =米,37AFB ∠=°,53DCE ∠=°.请你计算小李上班的路程因改道增加了多少?(结果保留整数)温馨提示:sin370.60cos370.80tan370.75︒°≈,≈,°≈.28、如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参考数据:(42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒).参考答案:一、选择题: 1、C 2、C 3、A 4、C 5、A 6、D 7、B 8、A 9、D 10、A二、填空题:11、3.512、2(32)- 13、33 14、1:215、tan tan m n αα-⋅ 16、1217、325018、π21 19、1∶2 20、43或433 三、解答题:21、(1)14;(2)2.5 22、解: 连结AC ,与BD 相交于点O ,四边形ABCD 是菱形,AC BD ,ADB =CDB ,AC =2AO , 当ADC =60时,△ADC 是等边三角形,AC =AD =AB =40 . 当ADC =120时,ADO =60,AO =AD sinADO =40×32=203,AC =403 ,因此增加的高度为40340=400.73229(cm )23、解:(1)设CD 为x 千米,由题意得,∠CBD=30°,∠CAD=45°,∴AD=CD=x.在Rt △BCD 中,tan30°=BDx ,所以BD=3x. ∵AD +DB=AB=40,∴x +3x=40.解得 x ≈14.7,所以,牧民区到公路的最短距离CD 为14.7千米.(2)设汽车在草地上行驶的速度为v ,则在公路上行驶的速度为3v ,在Rt △ADC 中,∠CAD=45°,∴AC=2CD ,方案I 用的时间t 1=v CD v CD AD v CD v AD 34333=+=+;方案II 用的时间t 2=v CD v AC 2=; 所以t 1-t 2=v CD v CD 342-=vCD 3)423(-.因为32-4>0,所以t 1-t 2>0.所以方案I 用的时间少,方案I 比较合理.24、解:(1) 在Rt△BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ =103,又在Rt△APQ 中,∠PAB =45°,则AQ =cot45°×PQ =10, 即:AB =(103+10)(米);(2) 过A 作AE ⊥BC 于E ,在Rt△ABE 中,∠B =30°,AB =103+10,∴ AE =sin30°×AB =12(103+10)=53+5,∵∠CAD =75°,∠B =30°,∴ ∠C =45°,在Rt△CAE 中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米)25、解:连接AC ,BD , ∵OA=OB=OC=OB ,∴四边形ACBD 为矩形∵∠DOB=100º, ∴∠ABC=50º,由已知得AC=32,在Rt △ABC 中,sin∠ABC=AB AC,∴AB=ABC AC ∠sin =︒50sin 32≈41.8(cm ),tan∠ABC=BC AC ,∴BC=ABC AC ∠tan =︒50tan 32≈26.9(cm ),∴AD=BC =26.9 (cm )答:椅腿AB 的长为41.8cm ,篷布面的宽AD 为26.9cm .26、解:设灯柱BC 的长为h 米,过点A 作AD ⊥CD 于点H ,过B 作BE ⊥AH 于点E ,∴四边形BCHE 为矩形,∵∠ABC =120°,∴∠ABE =30°,又∵∠BAD =∠BCD =90°,∴∠ADC =60°,在Rt △AEB 中,∴AE =AB sin30°=1,BE =AB cos303∴CH 3,又CD =12,∴DH =123,在Rt △AHD 中,tan ∠ADH =AH HD 3123=-h =3-4(米),∴灯柱BC 的高为(34)米.27、解:在Rt ABF △中, 37200333sin 37AB AFB AB AF ∠===°,,≈,°267tan 37AB BF =≈°, BC EF BF CE ∴∥,∥,四边形BCEF 为平行四边形.267CE BF ∴==,100BC EF ==.在Rt CDE △中,53DCE ∠=°,CD DE ⊥,37CED ∴∠=°,cos37214DE CE =≈·°,sin37160CD CE =︒≈·,∴ 增加的路程∴ =()()AF EF DE AB BC DC ++-++(333100214)++≈-(200100160)187++=(米).28、解:由题意可知,AD =(40+10)×30=1500(米)过点D 作DH ⊥BA ,交BA 延长线于点H. 在Rt △DAH 中,DH =AD ·sin60°=1500×23=7503(米).AH =AD ·cos60°=1500×21=750(米).在Rt △DBH 中, BH =DH ·cos15°=7503×(2+3)=(15003+2250)(米),∴BA =BH -AH =15003+2250-750=1500(3+1)(米).答:热气球升空点A 与着火点B 的距离为1500(3+1)(米)。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)
人教版八年级数学上册期末复习:全等三角形常考基础专题复习一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=度.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.参考答案与试题解析部分一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,故选:B.2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;C、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;故选:D.5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF【分析】根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC ≌△DEF.【解答】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD,又∵AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB=6cm,∴△DBE的周长=6cm.故选:A.9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm【分析】过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知P A=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,P A⊥ON,∴PQ=P A=2,故选:B.二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是18.【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB 的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC=∠DCB,BC=CB,①AB=CD,根据SAS可以判定△ABC≌△DCB.②AC=DB,无法判断△ABC≌△DCB.③∠A=∠D,根据AAS可以判定△ABC≌△DCB.④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.故答案为:①③④.16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=3cm.【分析】易证△ABC≌△CED,可得AB=CE,BC=DE,可以求得BE的值.【解答】解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=100°.【分析】根据全等三角形的性质求出∠B,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35°.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=90°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=90°,可得∠1+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,故答案为:90°.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=30度.【分析】根据△ABC≌△ADE,可得∠CAB=∠EAD,由于∠EAB是公共角,可得∠EAC =∠BAD,即可得解.【解答】解:∵△ABC≌△ADE,∵∠EAB是公共角,∴∠CAB﹣∠EAB=∠EAD﹣∠EAB,即∠EAC=∠BAD,已知∠EAC=30°,∴∠BAD=30°.故答案填:30.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【分析】(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.【解答】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD=AB•DE=×10×3=1524.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.【分析】(1)根据角平分线的性质得到CD=DE,根据全等三角形的判定和性质即可得到结论;(2)根据角平分线的定义可得∠CAD=∠BAD,根据等边对等角可得∠B=∠BAD,再根据三角形的内角和定理列出方程求解即可.【解答】证:(1)∵DE⊥AB于E,∠C=90°,AD是△ABC的角平分线,∴CD=DE,在Rt△ACD与Rt△AED中,∴Rt△ACD≌Rt△AED,∴AC=AE,∵AC=BE,∴AE=BE,∴AD=BD;(2)∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵AD=BD,∴∠B=∠BAD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴∠CAD+∠BAD+∠B=90°,∴∠B=30°.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB×DE=×10×4=20cm2.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.【分析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.【解答】证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠F AP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【分析】利用平行线的性质可得∠ABE=∠BED,根据等式的性质可得EF=BC,然后利用ASA判定△ABC≌△DEF即可.【解答】解:∵AB∥ED∴∠ABE=∠BED,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,即∠OCB=∠OBC,所以有OB=OC.【解答】证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.【分析】欲证BD、CE两边相等,只需证明这两边所在的△ABD与△ACE全等,这两个三角形,有一对直角相等,公共角∠A,AB=AC,所以两三角形全等.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【分析】要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.。
北京市部分区2020届九年级数学期末试卷精选汇编:解三角形专题(含答案)
三角形专题西城区19.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD .(1)求证:△ABE ∽△ACD ;(2)若BD =1,CD =2,求AE AD的值.19.(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD . ∵ BE =BD ,∴∠BED =∠BDE . ∴∠AEB =∠ADC . ∴△ABE ∽△ACD .(2)解:∵ △ABE ∽△ACD ,∴AE BEAD CD=. ∵ BE =BD =1,CD = 2,∴12AE AD =. ········································································································ 5分海淀区18. 如图,在ABC △与ADE △中,AB ACAD AE=,且=EAC DAB ∠∠. 求证:ABC ADE △∽△.18.证明:∵EAC DAB ∠=∠,∴EAC BAE DAB BAE ∠+∠=∠+∠.∴BAC DAE ∠=∠. ∵AB AC AD AE=, ∴ABC △∽ADE △.BCEDA23. 如图,90ABC ∠=︒,2,8AB BC ==,射线CD ⊥BC 于点C ,E 是线段BC 上一点,F 是射线CD上一点,且满足90AEF ∠=︒. (1)若3BE =,求CF 的长;(2)当BE 的长为何值时,CF 的长最大,并求出这个最大值.23. 解:(1)如图,∵90ABC AEF ∠=∠=︒, ∴2+2190BAE ∠∠=∠+∠=︒,∴1BAE ∠=∠. ∵CD BC ⊥, ∴90ECF ∠=︒. ∴ABE ECF ∠=∠,可知ABE ECF △∽△. ∴AB BEEC CF=. ∵2AB =,8BC =,3BE =, ∴5EC =. ∴235CF=. ∴152CF =.(2)设BE 为x ,则8EC x =-.∵(1)可得AB BEEC CF=, ∴28x x CF=-. ∴()28CF x x =-.∴22114(4)822CF x x x =-+=--+.∴当4BE =时,CF 的最大值为8.朝阳区ED FCBAFB A18.如图,在△ABC中,∠B=30°,tan C=43,AD⊥BC于点D. 若AB=8,求BC的长.19. 如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.19. 如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.昌平区18.如图,在Rt △ABC 中,∠C =90°,A tan =31,BC =2,求AB 的长.18.解:∵在Rt △ABC 中,∠C =90°,∴tan A =BC AC =13. …………………………………2分 ∵BC =2, ∴2AC =13,AC =6. …………………… 4分 ∵2AB =22AC BC2AB =40∴AB = ………………… 5分22.课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图所示,分别为Rt △ABC 和Rt △DEF ,其中∠A =∠D =90°,AC =DE =2cm . 当边AC 与DE 重合,且边AB 和DF 在同一条直线上时:22.(1)补全图形如图: 情况Ⅰ:45°FABC30°……… 1分情况Ⅱ:45°FABC30°… 2分(2)情况Ⅰ:45°FABC30°解:∵在Rt △ACF 中,∠F =∠ACF =45°∴AF =AC =2cm .∵在Rt △ACB 中,∠B =30°,∴BC =4,AB= …………………3分 ∴BF =(2)cm . ……4分情况Ⅱ:45°FABC30°解:∵在Rt △ACF 中,∠F =∠ACF =45°∴AF =AC =2cm .∵在Rt △ACB 中,∠B =30°, ∴BC =4,AB=∴BF =(2)cm . ………………………………… 5分房山区19. 如图,Rt △ABC 中,∠C=90°,AC=32,BC= 6,解这个直角三角形.19. ∵∠C=90°,AC=32,BC= 6∴AB=34=6+3222)( …………………2分∴33=632=BC AC =tanB …………………3分 ∴∠B=30° …………………4分 ∴∠A=60° …………………5分 ∴∠A=60°;∠B=30°;AB=3421.如图,胡同左右两侧是竖直的墙,一架23米长的梯子斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B 恰巧与墙壁顶端重合. 因梯子阻碍交通,故将梯子底端向右移动一段距离到达D 处,此时测得梯子AD 与地面的夹角为60°,问:胡同左侧的通道拓宽了多少米(保留根号)?20. ⸪∠AEB=90°,∠BAE=45°,AB=23 ⸪AE=BE=3=22•23=45sin •23 …………2分⸪∠BCE=60° ⸪3=33=tan60BE =CE …………4分⸪3-3=CE -AE =AC …………5分 即胡同左侧的通道拓宽了)(3-3米.门头沟区平谷区20.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交边AB 、BC 于点D 、E ,连结AE . (1)如果∠B =25°,求∠CAE 的度数; (2)如果CE =2,2sin 3CAE ∠=,求tan B 的值.A20.解:(1)∵DE 垂直平分AB ,∴EA = EB , ··············································································· 1 ∴∠EAB =∠B =25°. ∴∠CAE =40°. ··········································································· 2 (2)∵∠C =90°,∴2sin 3CE CAE AE ∠==. ∵CE =2, ∴AE =3. (3)∴AC (4)∵EA = EB =3, ∴BC=5.∴222AC CE AE +=,∴tan AC B BC ==. (5)A23.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D 处,无人机测得操控者A 的俯角为37°,测得点C 处的俯角为45°.又经过人工测量操控者A 和教学楼BC 距离为57米,求教学楼BC 的高度.(注:点A ,B ,C ,D 都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.解:过点D 作DE ⊥AB 于点E ,过点C 作CF ⊥DE 于点F . ···························· 1 由题意得,AB =57,DE =30,∠A =37°,∠DCF =45°. 在Rt △ADE 中,∠AED =90°, ∴tan37°=DEAE≈0.75. ∴AE =40. ································· 2 ∵AB =57, ∴BE =17. ································· 3 ∵四边形BCFE 是矩形, ∴CF=BE =17.在Rt △DCF 中,∠DFC =90°, ∴∠CDF =∠DCF =45°. ∴DF=CF =17. ··························· 4 ∴BC=EF =30-17=13.················· 5 答:教学楼BC 高约13米.石景山21. 在直角三角形中,除直角外的5个元素中,已知2个元素(其中至少有1个是边), 就可以求出其余的3个未知元素.对于任意三角形,我们需要知道几个元素就可以 求出其余的未知元素呢? 思考并解答下列问题:(1)观察图①~图④,根据图中三角形的已知元素,可以求出其余未知元素的 序号是.737°83°60°37°1237°60°1037°60°① ② ③ ④DCBA37°(2)如图⑤,在ABC △中,已知37A ∠=°,12AB =,10AC =,能否求出BC 的 长度?如果能,请求出BC 的长度;如果不能,请说明理由. (参考数据:sin370.60≈°,cos370.80≈°,tan370.75≈°)21.解:(1)③,④;2分 (2)过点C 作CD AB ⊥于点D ,如图. ………………………… 3分 在ADC Rt △中,37A ∠=°, ∴sin 100.606CD AC A =⨯≈⨯=, cos 100.808AD AC A =⨯≈⨯=. ∴1284BD AB AD =-=-=. ∴在CDB Rt △中,BC ==.即BC 的长度为 ………………………… 5分顺义区21.如图,一艘海轮位于灯塔P 的南偏东30°方向,距离灯塔100海里的A 处,它计划沿正北方向航行,去往位于灯塔P 的北偏东45°方向上的B 处. (1)问B 处距离灯塔P 有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB 上,距离灯塔150海里的点O 处.圆形暗礁区域的半径为60海里,进入这个区域,就有触礁的危险.请判断海轮到达B 处是否有触礁的危险?如果海伦从B 处继续向正北方向航行,是否有触礁的危险?并说明理由.1.732≈≈)21.解:(1)过点P 作PD ⊥AB 于点D . …………………………………… 1分依题意可知,P A=100,∠APD=60°,∠BPD=45°. ∴∠A =30°. ∴PD=50. ………………………………… 2分 在△PBD 中,50BD PD ==,∴70.771PB =≈≈.答:B 处距离灯塔P 约71海里. …………… 3分B北45°30°B APD 北45°30°BAPD 北45°30°BP(2)依题意知:OP=150,OB=150-71=79>60.∴海轮到达B处没有触礁的危险.…………4分(3)海伦从B处继续向正北方向航行,有触礁的危险.………………………………………………5分密云区21.已知:在△ABC中,AB=AC,AD BC于点D,分别过点A和点C作BC、AD边的平行线交于点E.(1)求证:四边形ADCE是矩形;(2)连结BE,若,AD=BE的长.21.(1)证明:∵AE // BC,CE // AD∴四边形ADCE是平行四边形…………………………1分∵AD BC,∴∠ADC=90°,∴平行四边形ADCE是矩形…………2分(2)解:在Rt△ABD中,∠ADB =90°∵∴12BDAB=∴设BD=x,AB=2x∴∵AD=∴x=2∴BD=2 …………4分∵AB=AC,AD BC∴BC=2BD=4∵矩形ADCE中,EC=AD=∴BE=…………5分燕山区19.如图,Rt△ABC中,∠B=90°,点D在边AC上,且DE⊥AC交BC于点E.(1) 求证:△CDE∽△CBA;(2) 若AB=3,AC=5,E是BC中点,求DE的长.19.(1)证明:∵DE⊥AC,∠B=90°,∴∠CDE=∠B=90°.……1分⊥1cos2ABD∠=⊥1cos2ABD∠=⊥EDAB C又∵∠C =∠C ,∴△CDE ∽△CBA . …………2分(2)解:Rt △ABC 中,∠B =90°,AB =3,AC =5,∴BC =4.∵E 是BC 中点,∴CE =2. …………………3分∵△CDE ∽△CBA , ∴DE CE AB AC=, …………4分 即CE AB DE AC=g . ∵AB =3,AC =5,CE =2, ∴235DE ⨯==65. ………5分 22.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC 是可伸缩的,其转动点A 距离地面BD 的高度AE 为3.5m .当AC 长度为9m ,张角∠CAE 为112°时,求云梯消防车最高点C 距离地面的高度CF .(结果精确到0.1m ) 参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.22.解:如图,作AG ⊥CF 于点G , ………………………1分∵∠AEF =∠EFG =∠FGA =90°,∴四边形AEFG 为矩形, ………………………2分 ∴FG =AE =3.5m ,∠EAG =90°,∴∠GAC =∠EAC -∠EAG =112°-90°=22°, ………………………3分 在Rt △ACG 中,sin ∠CAG =CG AC, ∴CG =AC ·sin ∠CAG =9sin22°≈9×0.37=3.33m , ………………………4分 ∴CF =CG +GF =3.33+3.5≈6.8m . ………………………5分 通州区18.如图,在中,于点.若,求的值.图1 图2F D A C E B18. ·····5分22. 将矩形纸片沿翻折,使点落在线段上,对应的点为,若,求的长.22. ①·····1分②·····2分③设,则···3分④·····4分⑤······5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形-复习1 如图,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,求AD 的长度.训练1 如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,CD =2,cos ∠ADC =17. (1)求sin ∠BAD ; (2)求BD ,AC 的长.2 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.训练2 在△ABC 中,cos A 2= 1+cos B 2,判断△ABC 的形状.3 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 的面积的最大值.训练3 在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .三、提升训练1.在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形2.在△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积为( )A.2 3B.3C.2 3 或4 3D. 3 或2 33.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3B.5 3C.6 3D.7 34.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ) A.⎝⎛⎭⎫152,+∞ B.(10,+∞) C.(0,10) D.⎝⎛⎦⎤0,403 5.海上一观测站A 测得南偏西60°的方向上有一艘停止待维修的商船D ,在商船D的正东方有一艘海盗船B 正向它靠近,速度为每小时90海里,此时海盗船B 距观测站107海里,20分钟后测得海盗船B 位于距观测站20海里的C 处,再经 分钟海盗船B 到达商船D 处.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C .(1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c .7.如图,在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点。
(1)若AD =2,S△DAC =23,求DC 的长;(2)若AB =AD ,试求△ADC 的周长的最大值.解三角形-复习:答案1 如图,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,求AD 的长度. 解 在△ABC 中,∵AB =AC =2,BC =23,由余弦定理,得cos C =BC 2+AC 2-AB 22BC ×AC =32, ∴sin C =12. 在△ADC 中,由正弦定理,得AD sin C =AC sin ∠ADC, ∴AD =222×12= 2. 训练1 如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,CD =2,cos ∠ADC =17. (1)求sin ∠BAD ;(2)求BD ,AC 的长.解 (1)在△ADC 中,因为cos ∠ADC =17, 所以sin ∠ADC =437. 所以sin ∠BAD =sin(∠ADC -B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314. (2)在△ABD 中,由正弦定理,得BD =AB sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ×BC ×cos B =82+52-2×8×5×12=49, 所以AC =7.2 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )],∴2b 2sin A cos B =2a 2cos A sin B ,即a 2cos A sin B =b 2sin A cos B .方法一 由正弦定理知a =2R sin A ,b =2R sin B ,∴sin 2A cos A sin B =sin 2B sin A cos B ,又sin A sin B ≠0,∴sin A cos A =sin B cos B ,∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形.方法二 由正弦定理、余弦定理,得a 2b ×b 2+c 2-a 22bc =b 2a ×a 2+c 2-b 22ac , ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0,∴a 2-b 2=0或a 2+b 2-c 2=0.即a =b 或a 2+b 2=c 2.∴△ABC 为等腰三角形或直角三角形.训练2 在△ABC 中,cos A 2= 1+cos B 2,判断△ABC 的形状. 解 由已知得cos 2A 2=1+cos B 2, ∴2cos 2A 2-1=cos B ,∴cos A =cos B , 又0<A ,B <π,∴A =B ,∴△ABC 为等腰三角形.3 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 的面积的最大值.解 (1)由正弦定理知a =2R sin A ,b =2R sin B ,c =2R sin C ,得2R sin A =2R sin B cos C +2R sin C sin B ,即sin A =sin B cos C +sin C sin B .又A =π-(B +C ),∴sin[π-(B +C )]=sin(B +C )=sin B cos C +sin C sin B ,即sin B cos C +cos B sin C =sin B cos C +sin C sin B ,∴cos B sin C =sin C sin B .∵sin C ≠0,∴cos B =sin B 且B 为三角形内角,∴B =π4. (2)S △ABC =12ac sin B =24ac , 由正弦定理,得a =b sin A sin B =222×sin A =22sin A , 同理,得c =22sin C ,∴S △ABC =24×22sin A ×22sin C =22sin A sin C=22sin A sin ⎝⎛⎭⎫3π4-A =22sin A ⎝⎛⎭⎫sin 3π4cos A -cos 3π4sin A =2(sin A cos A +sin 2A )=sin 2A +1-cos 2A=2sin ⎝⎛⎭⎫2A -π4+1, ∴当2A -π4=π2,即A =3π8时, S △ABC 有最大值2+1.训练3 在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 因为cos B =2cos 2 B 2-1=35, 故B 为锐角,所以sin B =45, 所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =sin 3π4cos B -cos 3π4sin B =7210. 由正弦定理,得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87. 三、提升训练1.在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 答案 B解析 由正弦定理及已知条件,得sin 2B sin 2C =sin B sin C ·cos B cos C .∵sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0,即cos A =0,∵0°<A <180°,∴A =90°,故△ABC 是直角三角形.∴bc =40.③由①②③可知a =7.2.在△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积为( ) A.2 3 B.3 C.2 3 或4 3 D. 3 或2 3答案 D解析 方法一 如图,AD =AB sin B =3<2,故△ABC 有两解,且BC =2,BC ′=4,S △ABC =12BC ×AD =3,S△ABC ′=12BC ′×AD =2 3.方法二 如图,设BC =x ,由余弦定理可得22=(23)2+x 2-2x ×23×cos 30°,解得x =2或x =4,故△ABC 有两解,S △ABC =12BC ×AB ×sin B=12×23×2×sin 30°=3,或S △ABC =12BC ×AB ×sin B=12×23×4×sin 30°=2 3.3.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于() A. 3 B.5 3 C.6 3 D.7 3答案 B解析 连接BD ,四边形面积可分为△ABD 与△BCD 两部分面积的和,由余弦定理,得BD =23,S △BCD =12BC ×CD sin 120°=3, ∠ABD =120°-30°=90°,∴S △ABD =12AB ×BD =4 3. ∴S 四边形ABCD =3+43=5 3.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ) A.⎝⎛⎭⎫152,+∞ B.(10,+∞) C.(0,10) D.⎝⎛⎦⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403. 5.海上一观测站A 测得南偏西60°的方向上有一艘停止待维修的商船D ,在商船D 的正东方有一艘海盗船B 正向它靠近,速度为每小时90海里,此时海盗船B 距观测站107海里,20分钟后测得海盗船B 位于距观测站20海里的C 处,再经 分钟海盗船B 到达商船D 处.答案 403解析 如图,过A 作AE ⊥BD 于点E ,由已知可知AB =107,BC =30,AC =20,∴cos ∠ACB =202+302-(107)22×20×30=12, ∵0°<∠ACB <180°,∴∠ACB =60°,∴AE =10 3.∵∠DAE =60°,∴DE =103×3=30.∵∠CAE =30°,∴CE =10,∴DC =20,∴t =2090×60=403. 6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C .(1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c .解 (1)∵3(cos B cos C +sin B sin C )-1=6cos B cos C ,∴3cos B cos C -3sin B sin C =-1,∴3cos(B +C )=-1,∴cos(π-A )=-13, ∴cos A =13.(2)由(1)得sin A =223, 由面积公式12bc sin A =22,得bc =6,① 根据余弦定理,得cos A =b 2+c 2-a 22bc =b 2+c 2-912=13, 则b 2+c 2=13,②①②两式联立可得b =2,c =3或b =3,c =2.7.如图,在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点. (1)若AD =2,S △DAC =23,求DC 的长;(2)若AB =AD ,试求△ADC 的周长的最大值.解 (1)∵S △DAC =23,∴12·AD ·AC ·sin ∠DAC =23, ∴sin ∠DAC =12. ∵∠DAC <∠BAC <π-π3=2π3, ∴∠DAC =π6. 在△ADC 中,由余弦定理得,DC 2=AD 2+AC 2-2AD ·AC cos π6, ∴DC 2=4+48-2×2×43×32=28, ∴DC =27.(2)∵AB =AD ,B =π3, ∴△ABD 为正三角形.在△ADC 中,根据正弦定理,可得AD sin C =43sin 2π3=DC sin ⎝⎛⎭⎫π3-C , ∴AD =8sin C ,DC =8sin ⎝⎛⎭⎫π3-C ,∴△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝⎛⎭⎫π3-C +4 3=8⎝⎛⎭⎫sin C +32cos C -12sin C +4 3=8⎝⎛⎭⎫12sin C +32cos C +4 3 =8sin ⎝⎛⎭⎫C +π3+43, ∵∠ADC =2π3,∴0<C <π3, ∴π3<C +π3<2π3, ∴当C +π3=π2, 即C =π6时,△ADC 的周长取得最大值,且最大值为8+4 3.。