第四章液压马达解析

合集下载

液压马达的工作原理ppt课件

液压马达的工作原理ppt课件

液压马达与液压泵
功用上----相反 结构上----类似 原理上----互逆
液压泵与液压马达的对比
1.泵是能源装置,而马达是执行元件。 2.泵一般是单向旋转,而马达可以正反转。 3.泵的吸油腔一般为真空,通常进口尺寸大于出口;马达排 油腔的压力稍高于大气压力,所以马达的进出油口尺寸相同。 4.泵的结构需保证自吸能力,而马达无此要求 5.泵是需要容积效率高,而马达是需要机械效率高。 6.泵是连续运转,油温变化相对较小,而马达是经常空转或 停转,受频繁的温度冲击。
7.泵的起动靠外机械动力;马达起动需克服较大的静摩擦力, 因此要求起动扭矩大,扭矩脉动小,内部摩擦小。
液压缸、液压泵、液压马达的共性
n油缸油泵油马达,工作原理属一家: n能量转化共同点,均靠容积来变化; n出油容积必缩小,进油容积则扩大。 n油泵输出压力油,出油当然是高压, n缸和马达与泵反,出油自然是低压。 n工作压差看负载,负载含义要记下: n油泵不仅看外载,管路阻力也得加, n缸和马达带负载,压差只是克服它。 n流量大小看速度,再看排量小与大, n单位位移需油量,排量含义就是它。
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选编辑ppt
10
三、工作原理
由于齿轮啮合而在高压区形成的承压面积之差是 齿轮液压马达产生驱动力矩的根源。
思考: 相同形式的液压泵和液压马达是否可以互换?
从工作原理上讲,是可以的。但是,一般情况下未 经改进的液压泵不宜用作液压马达。
因为考虑到压力平衡、间隙密封的自动补偿等因素, 液压泵吸、排油腔的结构多是不对称的,只能单方 向旋转。但作为液压马达,通常要求正、反向旋转, 要求结构对称。
《液压传动与控制》
液压马达的工作原理

3.第四章-概述-齿轮泵

3.第四章-概述-齿轮泵

对于液压马达, 对于液压马达,机械效率表现为实际输出转矩 与理论转矩之比。 与理论转矩之比。
§4-1 概述
二、液压泵和液压马达的基本性能 3、功率和效率
总效率: 总效率:输出功率与输入功率之比 对于液压泵: 对于液压泵: 对于液压马达: 对于液压马达: 液压泵(液压马达) 液压泵(液压马达)的总效率等于其容积效 率与机械效率的乘积
作业
1、泵和马达在液压系统中起什么作用? 2、什么是泵的工作压力?额定压力?排量?流量?理论流量? 3、泵的功率损失主要组成部分是什么? 4、泵的容积损失主要由哪些因素引起的? 5、外啮合齿轮泵的齿数和流量脉动之间有什么关系? 6、解释齿轮泵的困油现象。如何解决? 7、齿轮泵的内泄漏途径有哪些?哪个途径的泄漏最严重? 8、齿轮泵的径向不平衡力是怎么产生的?有什么危害? 如何防止? 9、齿轮泵有哪些优缺点? 10、画出定量泵、变量泵、双作用定量泵、双作用变量泵 的符号。定量马达、变量马达、双作用定量马达、双 作用变量马达的符号。
§4-1 概述
二、液压泵和液压马达的基本性能 排量( 和流量( 2、排量(V )和流量( qt )
液压泵的排量是指在没有泄漏的情况下, 液压泵的排量是指在没有泄漏的情况下,液 压泵每转一转所排出的油液体积。 压泵每转一转所排出的油液体积。
q 液压泵的排量仅仅取决于密封工作油腔每转 变化的容积而与转速无关。 变化的容积而与转速无关。
§4-2 齿轮泵
五、齿轮泵的泄漏 2、补偿轴向间 、 隙的措施
1) 浮动轴套; 浮动轴套; 2) 浮动(弹性) 浮动(弹性) 侧板。 侧板。
引入 压力 油
图4-5
§4-2 齿轮泵
五、齿轮泵的优缺点
优点:结构简单,尺寸小,重量轻,制造方便, 价格低廉,工作可靠,自吸能力强,对 油液污染不敏感,维护成本低。 缺点:流量脉动大,噪声大,磨损严重,泄漏 大,一些机件承受径向不平衡力,工作 压力的提高受限。

液压系统的执行元件

液压系统的执行元件

第四章、液压执行元件第一节液压马达一、液压马达的特点及分类液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。

但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。

例如:1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。

2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。

而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。

3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。

因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。

4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。

若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。

5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。

6.液压马达必须具有较大的起动扭矩。

所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。

由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。

液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。

高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。

它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。

通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。

高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。

液压马达结构与原理

液压马达结构与原理
11
转子动力芯一端与压力侧板配流盘接触;另一端与前壳
体接触; 压力侧板配流盘装在后盖内并通过波浪形弹簧垫
将其压紧在转子动力芯上; 后盖与前壳体各有一个进出油
口; 轴封用以防止液压油漏 出和空气侵入;
油口
动力芯 轴封
波浪弹簧垫
压力侧板
压力侧板有三个作用: 1作为转子的密封端盖;防止内泄漏; 2为端盖油口提供配油窗口; 3始终将系统压力引导到叶片底部;
行程 T
回程
油口通过环形油道 D;配油轴上的轴向
N F
孔按马达的工作相 进油
回油
位角给柱塞工作腔
E配油;
此类马达的低速 大扭矩特性使其可 以直接应用于车轮 驱动 大型门式起重 机或绞车滚筒驱动;
结构
1 壳体;2 输出轴;3 缸盖;4 配油阀室;5 轴承;6 缸筒;7 柱塞; 8 配油控制组件;
工作原理 A B为马达进出油口; 缸
mv
q mt qm
qmqm 1qm
qm
qm
2理论输出转速nmt 实际输出转速nm
n mt
qm Vm
nm
qm Vm
mv
4
5 转矩和机械效率 1转矩 理论输出转矩
Tmt
pmVm
2
实际输出转矩
TmTmtTm 2机械效率
Tm Tmt mm
pmVm
2
mm
mm
Tm T mt
TmtTm 1Tm
Tmt
Tmt
2
§3 4 液压马达
2 排量Vm 马达轴每转一周;密封容腔几何尺寸变化所需要的液 体体积; 3 流量 1理论流量qmt 马达密封腔容积变化所需要的流量; 2实际流量qm 马达入口处的流量; 注:马达的实际流量大于理论流量;

液压马达第一节液压马达的结构特点和主要技术参数

液压马达第一节液压马达的结构特点和主要技术参数

一 齿轮式马达的工作原理和技术参数
1、工作原理(如图1-4-2)
2、技术参数的计算
(1)排量
qM 2m2 zB
(2)平均输出转速
nM
(3)平均输出扭矩
QM qM
vm
M M PM qM mM
二 叶片式马达的工作原理及结构特点
1、双作用式叶片马达的工作原理(如图1-4-3)
2、技术参数计算
(1)排量 qM
2、流量控制阀:控制和调节系统流量,从而改变 执行机构的运动速度。主要有节流阀,调速阀和分 流阀等。
3、方向控制阀:用于控制和改变系统中工作液体的 流动方向,以实现执行机构运动方向的转换。方向 控制阀可分为二通、三通、四通和多通阀等。操纵 方式有:手动、液压、电液、电磁和机械换向。
1、普通油路连接时
F推
4
D2
p
F拉
(D 2
4
d 2)p
V推 Q
D2
4
V拉 Q
(D2 d 2)
4
2、差动连接时
F d2p
4
V Q d2
4
由此可见,单活塞杆推力油缸在
差动连接时,伸出速度更高,但推力却小得多。
二 、双伸缩液压缸
组成:一级缸、二级缸பைடு நூலகம்活柱、大小导向套、底阀和
大小活塞等组成。如图1-5-4
第四章 液压马达
第一节 液压马达的结构特点和主要技术参数
一、结构特点和分类
液压马达是液压系统的一种执行元件(另一种 是液压缸)。它将液压泵提供的液体压力能转变为 其输出轴的机械能(扭矩和转速)。从能量观点看, 马达和泵是可逆的,即泵可做马达用,反之亦然。 由于用途和工作条件不同,对它们的性能要求也不 一样,所以相同结构类型的泵、马达之间存在差别。

液压-第04章液压执行元件

液压-第04章液压执行元件
可以看出,液压马达总的输出转矩等于处在马达压 力腔半圆内各柱塞瞬时转矩的总和。
由于柱塞的瞬时方位角呈周期性变化,液压马达总
的输出转矩也周期性变化,所以液压马达输出的转矩是 脉动的,通常只计算马达的平均转矩。
Ft Ft Ft FN
Ft
F F
13
4.1.3 低速大扭矩液压马达
低速大扭矩液压马达是相对于高速马达而言的,通常 这类马达在结构形式上多为径向柱塞式,其特点是:最低转 速低,大约在5~10转/分;输出扭矩大,可达几万牛顿米; 径向尺寸大,转动惯量大。
动、制动、调速和换向。通常高速马达的输出转矩不
大,最低稳定转速较高,只能满足高速小扭矩工况。
9
柱塞式马达的工作原理
当压力油输入液压马达时,处于压力腔的柱塞被顶 出,压在斜盘上,斜盘对柱塞产生反力,该力可分解为 轴向分力和垂直于轴向的分力。其中,垂直于轴向的分 力使缸体产生转矩。
Ft Ft Ft Ft FN
由上式可见,液压马达的总效率亦同于液压泵的总效 率,等于机械效率与容积效率的乘积。
8
4.1.2
高速液压马达
一般来说,额定转速高于 500r/min 的马达属于高 速马达,额定转速低于 500r/min 的马达属于低速马达。
高速液压马达基本型式:齿轮式、叶片式和轴向 柱塞式等。 它们的主要特点是转速高,转动惯量小,便于启
(2.32)
马达的实际输出转矩小于理论输出转矩: pV T m (2.33) 2 因马达实际存在机械摩擦,故实际输出转矩应考虑机 械效率。
7
• 功率和总效率 马达的输入功率为
N i pq
马达的输出功率为 N o 2nT 马达的总效率为
(2.34) (2.35) (2.36)

液压马达课件ppt

液压马达课件ppt

使用注意事项与维护保养
使用注意事项
确保液压马达的工作环境清洁,防止杂物和 污染物进入;定期检查油液的清洁度和粘度 ,保持油液的清洁和更换;注意观察液压马 达的工作状态,发现异常及时处理。
维护保养
定期对液压马达进行清洗和检查,更换磨损 件和密封件;定期检查和调整油泵、溢流阀 等液压元件,确保其正常工作;对液压马达 进行周期性的性能检测和调整。
总结词
功率大、转速低、体积大、转动惯量大、启动和制动性能较差。
详细描述
轴向柱塞式液压马达是一种大功率的液压马达,其转速相对较低。由于其体积较大,转动惯量也较大,启动和制 动性能相对较差。但是,由于其功率大、转速低的特点,轴向柱塞式液压马达在重型设备和大型机械中得到广泛 应用。
径向柱塞式液压马达
总结词
采用环保友好型材料和生产工艺,减 少对自然资源的依赖和环境污染。
回收与再利用
制定合理的回收方案,对废旧液压马 达进行再利用或环保处理,实现资源 的高效利用。
THANKS
感谢观看
启动特性与制动特性
启动特性
液压马达在启动过程中的性能表现。 启动特性包括启动扭矩、启动速度、 启动压力等参数。
制动特性
液压马达在制动过程中的性能表现。 制动特性包括制动扭矩、制动速度、 制动压力等参数。
调速特性与控制特性
调速特性
液压马达在调速过程中的性能表现。调速特性包括调速范围、调速稳定性、调速平滑性 等参数。
应用领域的拓展
工业自动化
应用于智能制造、机器人 、自动化生产线等领域, 提高生产效率和精度。
农业装备
应用于拖拉机、收割机等 农业机械,提升农业生产 效率和质量。
能源与矿业
应用于石油、天然气、矿 业等领域,实现重型设备 的远程控制和高效作业。

04-04液压泵和液压马达习题及答案

04-04液压泵和液压马达习题及答案

04-04液压泵和液压马达习题及答案第四章液压泵和液压马达4.1 液压泵完成吸油和排油,必须具备什么条件?泵靠密封⼯作腔的容积变化进⾏⼯作,容积增加吸油,容积减⼩排油。

4.2 什么是齿轮泵的困油现象?有何危害?如何解决?⼀部分的油液困在两轮齿之间的密闭空间,空间减⼩,油液受积压,发热,空间增⼤,局部真空,⽓⽳、振动、噪声。

在两侧盖板上开卸荷槽。

4.3 齿轮泵、双作⽤叶⽚泵、单作⽤叶⽚泵各有哪些特点。

如何正确判断转向、油腔和进出油⼝。

齿轮泵结构简单、尺⼨⼩、重量轻、价格低、流量压⼒脉动⼤、泄漏⼤。

叶⽚泵流量压⼒脉动⼩、噪声⼩、结构复杂、吸油差、对污染敏感。

单作⽤叶⽚泵可做成变量泵。

叶⽚泵根据叶⽚⽅向判断转向。

根据容积变化判断进出油⼝。

4.4 为什么轴向柱塞泵适⽤于⾼压?柱塞泵配合精度⾼、泄漏⼩、容积效率⾼。

4.5 已知泵的额定压⼒和额定流量,管道压⼒损失忽略不计,图c 中的⽀路上装有节流⼩孔,试说明图⽰各种⼯况下泵出⼝处的⼯作压⼒值。

a) b)c) d) e) FF T,n M题4.5图a) b)油回油箱,出⼝压⼒为0。

c) 节流⼩孔流量ρP A C q d =20出⼝压⼒ 20)(2A C q P d ?=?ρd) 出⼝压⼒A FP =e) 功率关系M TT V q T T q P ??=?=?πω2 出⼝压⼒M V TP ?=π24.6设液压泵转速为950r/min ,排量为V P =168m l /r ,在额定压⼒2.95MPa 和同样转速下,测得的实际流量为150l /min ,额定⼯况下的总效率为0.87,求:1)泵的理论流量q t ; 2)泵的容积效率ηv ; 3)泵的机械效率ηm ;4) 泵在额定⼯况下,所需电机驱动功率P ;5) 驱动泵的转矩T 。

1)理论流量min /6.159/168min /950l r ml r V n q p t =?=?=2) 容积效率94.06.159150===t v q qη 3) 机械效率93.094.087.0===v m ηηη4) 电机功率kW l Mpa q p P 48.887.0min//15095.2/=?=?=η5) 转矩Nm nP P T 3.85602===πω 4.7 某液压马达排量V M =250ml/r ,⼊⼝压⼒为9.8MPa ,出⼝压⼒为0.49Mpa ,总效率η=0.9,容积效率ηV =0.92。

液压传动系统第四章 容积调速回路分析

液压传动系统第四章 容积调速回路分析

Tm Vmpmmm Vm max xmpmmm
V p maxn p x p pv mv Vm max xm
第四章 容积调速回路分析
第二节 容积调速回路的速度刚性分析
一.容积调速回路的速度刚性分析
Vm nm V p n p ( p m l ) p qtm Vm nm qtp (q p qm ql ) p V p n p ( p m l ) p V p n 容积调速回路速 度刚性分析
二.速度稳定方法
1.流量补偿法
利用回路压力随负载的 增减来控制泵流量做相 应的增减 当马达负载增加时,p 升高,作用在柱塞1上 的力增大,推动泵的钉 子向加大偏心距e的方 向移动,使泵的流量增 大。反之,流量减少
第四章 容积调速回路分析 第二节 容积调速回路速 度刚性分析
nm min Vp min
定量泵-变量马达回路:马达转速nm与马达排量成反 比,即: D nm max Vm max 3 4
nm min Vm min
变量泵-变量马达回路:该回路由上述两种回路组合 V n V 而成,即: D D D 100
m max p max m max
p1q1 p1 ppqp pp
第四章 容积调速回路分析 第四节 容积节流调速回路
二.差压式变量泵和节流阀的调速回路
1.回路工作原理 该回路采用了带有先导式 滑阀控制的差压式变量叶 片泵,在液压缸的进油路 上串联一节流阀。 当节流阀开口增大时滑阀 5左移,节流口b开大,c 关小,泵的定子左移,e 增大,泵流量增大,液压 缸的速度增大,反之亦然 在某一稳定工况下,当节 流阀3处在某一开口时, 变量泵有一稳定流量

第四章 液压马达与液压缸

第四章 液压马达与液压缸

2、活塞和活塞杆
3、密封装置 用以防止油液的泄漏(液压缸一般不允许外泄 并要求内泄漏尽可能小)。
4.缓冲装置 目的:使活塞接近终端时,增达回油阻力, 减缓运动件的运动速度,避免冲击。 1)节流缓冲装置 a)缝隙节流
b)小孔节流
C)三角槽缓冲装置
d)阀式卸压缓冲装置 如图所示为安装在活塞上的双向卸压缓冲 阀。
E2 pc Ac l c
节流口可调式则最大的缓冲压力即冲击压 力为
pc max
2 mv0 pc 2 Ac l c
5.液压缸稳定性校核 当 l/d ≤15时 一般不用校核 当 l/d ≥15时 必须进行校核,即F<Fk F为活塞杆承受的负载力,Fk为保持工作稳 定的临界负载力
(2)叶片式液压马达
• 优点:体积小,转动惯量小,因此动作灵 敏。允许频繁换向(甚至可以在千分之几 秒内换向)。 • 缺点:泄漏较大,不能在低转速下工作。 所以叶片式马达一般用于高转速、低扭矩 以及动作要求灵敏的场合。
(3)轴向柱塞马达
优点:结构紧凑、单位功率重量轻、工作 压力高、容易实现变量和效率高 缺点:结构比较复杂,对油液污染敏感, 过滤精度要求较高,且价格较贵。
E1 pc Ac lc
1 2 E 2 p p A p l c mv0 F f l c 2 lc为缓冲长度,pc为缓冲腔中的平均缓冲压 力,Ac,Ap为缓冲腔,高压腔有效工作面 积,m,vc为工作部件的总质量和速度,Ff 为摩擦力
当E1=E2时,工作部件的机械能全部被缓冲 腔液体所吸收,由上两式得
• 泵与原动机装在一起,主轴不受额外的径 向负载。而马达直接装在轮子上或与皮带、 链轮、齿轮相连接时,主轴将受较高的径 向负载。 3.液压马达的分类 1)高速液压马达:额定转速高于500r/min的 属于高速液压马达; a)基本形式:齿轮式、螺杆式、叶片式和 轴向柱塞式等。

液压气动技术基础 第4章

液压气动技术基础 第4章

4.1 液压缸的工作原理与结构
三、液压缸结构设计中的几个基本问题
1、缸体与缸盖的连接 • 拉杆连接:前、后端盖装载缸体两边,用四根拉杆(螺栓) 拉杆连接: 将其紧固。这种连接结构简单、装拆方便,但外形尺寸较 大,重量较大,通常只用于较短的液压缸。 • 法兰连接:在无缝钢管的缸体上焊上法兰盘,再用螺钉与 法兰连接: 端盖紧固。这种连接结构简单,加工和装拆都方便,缺点 连接端部较大,外形尺寸大。但是尺寸和重量比拉杆连接 要小,应用广泛。 • 内半环连接:内半环连接结构紧凑,重量小,工作可靠, 内半环连接: 但缸体铣出了半环槽后,消弱了其强度,所以相应要加大 缸体的壁厚。
4.1 液压缸的工作原理与结构
2、单活塞杆液压缸 1)无杆腔进油时:
4.1 液压缸的工作原理与结构
2、单活塞杆液压缸 2)有杆腔进油时:
活塞运动速度v2与v1之比称为速比 速比, 速比 用λv表示,则

4.1 液压缸的工作原理与结构
2、单活塞杆液压缸 3)液压缸差动连接时:
单杆活塞液压缸两腔同时通入流体时,利用两端面积差 进行工作的连接形式,称为液压缸的差动连接 液压缸的差动连接。 液压缸的差动连接
4.1 液压缸的工作原理与结构
二、液压缸的结构
4、活塞杆是由钢材做成实心杆或空心杆,表面经淬火再镀铬 活塞杆 处理并抛光。 5、缓冲装置:为了防止活塞在行程的终点与前后端盖板发生 缓冲装置: 缓冲装置 碰撞,引起噪音,影响工件精度或使液压缸损坏,常在液 压缸前后端盖上设有缓冲装置,以使活塞移到快接近行程 终点时速度减慢下来终至停止。 6、放气装置:在安装过程中或停止工作的一段时间后,空气 放气装置: 放气装置 将渗入液压系统内,缸筒内如存留空气,将使液压缸在低 速时产生爬行、颤抖现象,换向时易引起冲击,因此在液 压缸结构上要能及时排除缸内留存的气体。 7、密封装置是 用以防止油液的泄漏,液压缸常采用O形密封 密封装置是 密封装置 圈和Y形密封圈。

第四章液压马达

第四章液压马达

第四章液压马达§1 概论液压马达是将液压能转变成机械能,并持续旋转的执行元件。

液压马达与液压泵技术要求偏重点不同,液压泵要求容积效率高,减少泄漏,而液压马达要求机械效率高,能取得较大的输出扭矩。

在实际利用中,液压泵一般为单向旋转,工作转速较高,而液压马达多为双向旋转,需要很低的转速。

液压马达按结构分类与液压泵大体相同。

液压马达与电机相较,它的结构小,重量轻,功率大,调速比大,可无级变速,转动惯性小,起动和制动迅速,适用于自动控制系统。

§2 高速液压马达一、齿轮液压马达1.参数计算转速n和扭矩M按下式计算n=Q/q0·ηv=Q/2πzm2b·ηv (转/分)M=(p1-p2)bzm2·ηm (千克力·厘米)式中:Q——输入流量(厘米3/分)——理论排量(厘米3/转)qz——齿数m——模数(厘米)b——齿宽(厘米)p1——入口液压力(千克力/厘米2)p2——出口液压力(千克力/厘米2)——容积效率ηvη——机械效率m齿轮液压马达结构简单,体积小,重量轻,耐冲击,惯性小,保护方便,价钱低廉,对油液过滤精度要求较低,但流量脉动较大,容效率低,扭矩较小,低速稳固性差。

二、叶片液压马达(一般常常利用双作用式,不能变量)1.参数计算转速n和扭矩M按下式计算n=Q/q0·ηv=Q/2[π(R2-r2)-(R-r)/cosθ·δz]b·ηv (转/分) M=(p1-p2)q0/2π·ηm=(p1-p2)[π(R2-r2)-(R-r)/cosθ·δz]b /π·ηm(千克力·厘米)式中:Q——输入流量(厘米3/分)q——理论排量(厘米3/转)R——定子内腔大半径(厘米)r——定子内腔小半径(厘米)δ——叶片厚度(厘米)z——叶片数b——叶片宽度(厘米)θ——叶片倾角p——入口液压力(千克力/厘米2)p2——出口液压力(千克力/厘米2)η——容积效率v——机械效率ηm三、轴向柱塞液压马达1.工作原理斜盘倾角越大,转矩越大,转速越慢。

第四章-液压传动中的执行元件之一---液压马达ppt课件(全)

第四章-液压传动中的执行元件之一---液压马达ppt课件(全)

➢多作用内曲线径向柱塞马达
➢特点
这种马达有些具有多排柱塞,以增大输出扭矩,减小扭矩 脉动。 该马达在使用时与一般马达不同,其回油管路不能直接接 回油箱,必须具有一定的回油背压(一般为0.5MPa~1 MPa), 以防止在回油区段滚轮在工作过程中脱离导轨而带来事故。 多作用内曲线径向柱塞马达扭矩脉动小,径向力平衡,启 动扭矩大,并能在低速下稳定地运转,因而获得了广泛地应 用。
➢工作原理
在图4-5(a)所示位置,高压油进入柱塞Ⅳ、V顶部油腔,柱 塞受高压油的作用,柱塞l顶部油腔处于与高压油和回油均 不相通的过渡位置,柱塞Ⅱ、Ⅲ与回油口相通。于是,高压 油作用在柱塞Ⅳ、V的作用力F通过连杆作用于偏心轮中心 01,对曲轴旋转中心O形成扭矩,曲轴逆时针方向旋转。曲 轴旋转时带动配流轴同步旋转,因此,配流状态发生变化。 如曲轴逆时针旋转90°至图4-4(b)所示位置,柱塞Ⅱ、l、 V同时通高压油,柱塞Ⅲ、Ⅳ通回油,对曲轴中心形成扭矩, 使曲轴进一步逆时针旋转。 当与曲轴同步旋转的配流轴逆时针旋转180°至图4-5(c)的 位置时,柱塞I顶部退出高压区处于过渡状态,柱塞Ⅱ和Ⅲ 通高压油,柱塞Ⅳ和V通回油。
4.1 液压马达的特点及分类
1、液压马达定义及分类
液压马达是将液体压力能转换为机械能的装置,输出转矩和 转速,是液压系统的执行元件。 马达与泵在原理上有可逆性,但因用途不同结构上有些差别: 马达要求正反转,其结构具有对称性;而泵为了保证其自吸 性能,结构上采取了某些措施。
按结构类型,液压马达可分为齿轮式、叶片式、柱塞式和其 他形式的液压马达。 按转速的不同,液压马达可分为高速和低速两大类。 按排量可否调节,液压马达可分为定量马达和变量马达。变 量马达又可分为单向变量马达和双向变量马达。

《液压马达》课件

《液压马达》课件

专业维修
对于复杂的故障或需要专业知识的维修,建 议寻求专业维修人员的帮助。
资料备份
保留液压马达的相关资料和图纸,以便在需 要时进行查阅和参考。
THANKS
感谢观看
考虑液压马达的维护成本,包括密封件、 润滑油等配件的更换周期和价格。
油品质量
性能稳定性
选择能够提供高质量液压油的供应商,以 保证液压马达的正常运行和延长使用寿命 。
选择性能稳定、对压力波动不敏感的液压 马达品牌和型号,以保证设备的可靠性和 稳定性。
05
液压马达的维护与保养
使用注意事项
启动前检查
确保液压马达在启动前 已经彻底检查,包括油 位、密封件和连接件等
旋转不灵活
检查液压马达的润滑情况,清理污垢,更换 损坏的密封件。
性能下降
检查液压马达的油液是否清洁,更换油液, 清理吸油、压油口的滤网。
保养与维修建议
定期检查
按照制造商推荐的保养周期进行定期检查, 包括油位、密封件、连接件等。
维修记录
建立液压马达的维修记录,记录每次维修和 更换的部件,方便跟踪和管理。

避免超载
避免液压马达在超出设 计负载的情况下运行,
以防损坏。
保持清洁
保持液压系统内部和外 部的清洁,防止杂物和
污垢进入。
定期更换油液
按照制造商推荐的油液 更换周期进行更换,以 保证油液质量和性能。
常见故障及排除方法
噪音过大
检查液压马达的轴承、齿轮等是否正常,必 要时进行更换。
泄漏
检查液压马达的密封件是否完好,更换损坏 的密封件,紧固连接件。
对油品要求高
液压马达对使用的油品质量要求较高 ,如果使用低质量的液压油可能导致 磨损和故障。

液压与气压传动--液压马达PPT课件

液压与气压传动--液压马达PPT课件
原因: (1)摩擦力的大小不稳定;
(2)液压马达的泄漏量不稳定。
3
4
4.1.2 液压马达的基本参数及其计算
(1) 压力
入口压力 (工作压力) pm
出口压力 (回油压力或称背压)
压力差 ΔpM (2) 排量 qM
=pm -pM’
(3) 流 量
理论流量 QMtqMnM
泄漏流量 QMLpM
pM’
实际流量 QMQM t QM
24
其瞬时啮合传动状况如图所示,内齿圈
(即定子)的轮齿齿廓(即针轮)是以d为直径的
圆弧构成;小齿轮(即转子)的轮齿齿廓是圆弧 的共扼曲线,即圆弧 中心轨迹 α (整条 的短幅外摆线)的等距曲线β,转子和定子之
n
M
Mm ' axMm ' in M
(4) 最低稳定转速
9
1. 判断下列说法正确与否: (1) 液压马达的入口压力取决于它的输入流量; (2) 液压马达的输入转速只取决于其输入流量而与其
排量和入口压力无关; (3) 液压马达的输出转矩取决于工作压力、输入流量; (4)液压马达的理论流量总是大干它的实际流量; (5)液压马达的理论转矩总是大于它的实际转矩。
M 机M 械效M 率MtM Mmm 21M m pM qM M MM M Mim
NMo NMt
总效率
M
Mv Mm
NMo NMi
背压 pM’ =0
MMvMmMp 背压 pM’ /=0
6
(6) 转 速
理论转速
n Mt
QM qM
实际转速 (7) 功率
nM
QMMvQMt
qM
qM
理论 理论液压功率 N M p tM Q M p tM Q M M N vMM i

液压马达和液压缸课件讲解

液压马达和液压缸课件讲解

6、制动性能
液压马达额定转矩下马达的进出油口被切断时的马达轴的 滑动值来评价马达的制动性能。 滑动值小,制动性能好。
液压马达的分类
按工作特性分类 (1)额定转速ns>500r/min 为高速液压马达: 齿轮马达,叶片马达,轴向柱塞马达 (2)额定转速ns< 500r/min 为低速液压马达: 径向柱塞马达(单作用连杆型径向柱塞马达,多 作用内曲线径向柱塞马达) 按排量能否改变分类 定量马达和变量马达 液压马达一般双向旋转,也可以用于单向旋转
双杆活塞缸
双杆活塞缸活塞两侧都有活塞杆伸出,根据安装方
式不同又分为活塞杆固定式和缸筒固定式两种。
符号:
当缸筒固定时,运动部件移动范围是活塞有效行程的三倍;
当活塞杆固定时,运动部件移动范围是活塞有效行程的两倍 。
双杆活塞缸的速度推力特性
v = q / A = 4 qηv /π(D 2- d 2) 缸在左右两个方向上输出的速度相等,ηv为缸的容积效率。 F = A(p1- p2)ηm=π(D 2-d 2)(p1- p2)ηm /4 缸在左右两个方向上输出的推力相等,ηm为缸的机械效率。
齿条活塞缸的速度推力特性
输出转矩 TM=Δp(π/ 8)D 2 D iηm 输出角速度 ω=8 qηv / πD 2 D i 式中 Δp 为缸左右两腔压力差,D 为活塞直径,D i为齿轮分度圆直径。
增压缸

增压缸是活塞 缸与柱塞缸组成 的复合缸,但它 不是能量转换装 置,只是一个增 压器件。
排量公式 v =(πd 2/4)sxyz
s 为柱塞行程; x 为作用次数; y 为柱塞排数; z 为每排柱塞数 。 应用 转矩脉动小,径向力平衡,启动转矩大, 能在低速下稳定运转,普遍用于工程、 建筑、起重运输、煤矿、船舶、农业等 机械中。 一般不需要减速装置即可直接驱动工作 机械。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-斜盘 2-缸体 3-柱塞 4-配油盘 5-马达轴
❖ 设第i个柱塞和缸体的垂直中心线夹角为θ,柱塞在缸体中的分 布圆半径为R,则在该柱塞上产生的转矩为
Ti Fy r Fy R sin Fx R tg sin
液压马达产生的转矩应是处于高压腔柱塞产生转矩的总和, 即
T Fx Rtg sin
随着θ角的变化,每个柱塞产生的转矩也发生变化,故液 压马达产生的总转矩也是脉动的,它的脉动情况和讨论液压泵 流量脉动时的情况相似。
三、液压马达的主要性能参数
(一)工作压力和额定压力 1.工作压力: p 液压马达实际工作时输入的压力。 2.额定压力: pn 液压马达在正常工作条件下,按试验标准规定能
第六节 液压及气压马达(Motor) 、 一 液压马达的分类,特点及应用
液压马达和液压泵在原理上可逆,结构上类似,但由于 用途不同,它们在结构上有一定差别。常用的液压马达有 柱塞式、叶片式和齿轮式等。
二、液压马达的工作原理 以斜盘式轴向柱塞马达为例说明液压马达的工作原理。
压力油
回油
图4-1轴向柱塞马达工作原理
(a)定量马达 (b)变量马达 (c)双向定量马达 (d)双向变量马达 (e)摆动液 图4-2 液压马达图形符号
四、典型液压马达的结构和工作原理
1.齿轮液压马达
b
h o1
K
p
a
o2 h
图 4-3 齿轮马达工作原理图
2.叶片马达
1
5
2
p
4 3
图 4-4 叶片马达的工作原理
学习要点
1、缸和马达的工作原理、作用及图形符号; 2、缸的运动速度和推力计算; 3、单活塞杆液压缸的差动联接特点及相关计算。
作业:4-6,4-10
T 2 Mm
2.马达轴实际输出的转速n为 式中:V—马达的排量
n qT q M v
VV
四、液压马达的类型
与液压泵类似,从结构上看,常用的液压马达有柱塞式、叶片 式和齿轮式等三大类。根据其排量是否可调,可分为定量马达和 变量马达;根据转速高低和转矩大小,液压马达又分为高速小转 矩和低速大转矩马达等。
1 T1 Tt
3.马达的总效率ηM M Mv Mm
4.马达的输入功率Pi
Pi p q
5.马达的输出功率Po
Po T 2 n T
式中:Δp—马达进、出口的压力差;ω,n—马达的角速度和
转速。
(四)输出的转矩和转速
1.液压马达轴理论输出的转矩Tt和实际输出的转矩T为
p V
Tt 2
p V
(三)理论流量qT与实际输入流量q的比值。
Mv
qT q
qT qT q
式中:Δq—马达的泄漏量。
2.机械效率ηMm 由于有摩擦损失,液压马达实际输出的转矩T小于理论 转矩Tt。如果损失转矩T1,则实际输出转矩M和机械效率ηMm为
T Tt T1
Mm
T Tt
Tt T1 Tt
连续运转所允许的最高压力。 (二)排量和流量 1.理论(或几何)排量 V 液压马达转一周,由其密封容积几何尺 寸变化计算而得的、需输进液体的体积。 2.流量: 液压马达在单位时间内,需输进液体的体积,也有理论 和实际流量之分。理论流量 qt 是指在没有泄漏的情况下,达到要求 转速所需输入液体的流量。其值由理论排量和转速计算而得。由于 有泄漏损失,实际输入的流量 q 必须大于理论流量。
相关文档
最新文档