江西省九江市同文中学2018-2019学年八年级上学期期中考试数学试卷
江西省九江市八年级上学期数学期中考试试卷

江西省九江市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018七下·揭西期末) 下面的图形中,是轴对称图形的是()A .B .C .D .2. (2分) (2018八上·山东期中) 下列长度的三条线段,能组成三角形的是()A . 1,1,2B . 2,3,7C . 1,4,6D . 3,4,53. (2分) (2020八上·滨州期末) 如图,∠ABC的外角平分线BD与∠ACB的外角平分线CE相交于点P,若点P到直线AC的距离为4,则点P到直线AB的距离为()A . 4B . 3C . 2D . 14. (2分) (2019九下·十堰月考) 直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A . 15°B . 20°C . 25°D . 30°5. (2分)(2018·南充) 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A .B . 1C .D .6. (2分) (2019八下·兰州期中) 点A(2,1)与点 (2,-1)关于______对称()A . x轴B . y轴C . 原点D . 都不对7. (2分) (2017七上·深圳期中) 若(a+3)2+∣b-2∣=0,则ab的值是()A . 6B . 9C . 8D . -68. (2分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的读数为()A . 30°B . 60°C . 90°D . 45°9. (2分)以下命题中,真命题的是()A . 两条线只有一个交点B . 同位角相等C . 两边和一角对应相等的两个三角形全等D . 等腰三角形底边中点到两腰的距离相等10. (2分) (2019八上·江津期中) 如图,D为∠BAC的外角平分线上一点,并且满足BD=CD,过D作DE⊥AC 于E,DF⊥AB交BA的延长线于F,则下列结论:① ;②∠DBC=∠DCB;③CE=AB+AE④∠BDC=∠BAC,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个11. (2分)如图是一张简易活动餐桌,现测得OA=OB=30cm,OC=OD=50cm,现要求桌面离地面的高度为40cm,那么两条桌腿的张角∠COD的大小应为()A . 150°B . 135°C . 120°D . 100°12. (2分)试用学过的知识判断,下列说法正确的是()A . 一个直角三角形一定不是等腰三角形B . 一个等腰三角形一定不是锐角三角形C . 一个等腰三角形一定不是等腰三角形D . 一个等边三角形一定不是钝角三角形二、填空题 (共6题;共6分)13. (1分) (2017八上·涪陵期中) 如图,BF、CF是△ABC的两个外角的平分线,若∠A=50°,则∠BFC=________度.14. (1分)(2019·电白模拟) 我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的________.15. (1分)(2017·陆良模拟) 如图,∠ADC=________°.16. (1分) (2017八下·南通期中) 如图,将▱ABCD沿对角线AC折叠,使点B落在点B'处.若∠1=∠2=44°,则∠B的大小为________度.17. (1分) (2016八上·宁阳期中) 如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB 于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是________.18. (1分)在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为________.三、解答题 (共7题;共60分)19. (10分)(2016·青海) 如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=________(填写度数).(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为________(用含n的式子表示).20. (5分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF 交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.21. (10分) (2017八下·萧山期中) 如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.22. (5分) (2019七下·大埔期末) 如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AB=FD,证明△ABC≌△FDE.23. (10分) (2016八上·杭州期中) 如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:(1)△ACE≌∠ABD=∠ACE;(2)∠ABC=∠ACB.24. (10分) (2019八上·武汉月考) △ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.(1)当E、F在边AC、BC上时如图,求证:△ABF≌△BCE.(2)当E在AC延长线上时,如图,AC=10,S△ABC=25 ,EG⊥BC于G,EH⊥AB于H,HE=8 ,求EG(3) E、F分别在AC、CB延长线上时,如图,BE上有一点P,CP=BD,∠CPB是锐角,求证:BP=AD.25. (10分) (2019八下·丰润期中) 已知:如图,▱ABCD的对角线AC与BD相交于点O ,过点O的直线与AD , BC分别相交于点E , F .(1)求证:OE=OF;(2)连接BE,DF,求证:BE=DF.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共60分)19-1、19-2、19-3、19-4、20-1、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。
江西省九江市八年级上学期数学期中考试试卷

江西省九江市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共48分) (共16题;共48分)1. (3分) (2020七下·伊通期末) 实数16的算术平方根是()A . 2B . 4C . ±4D . ±22. (3分) (2017七下·寮步期中) 下列四个数中,属于无理数的是().A . -5B . -3.14C .D .3. (3分) (2019七上·顺德期末) 数用科学计数法表示为()A .B .C .D .4. (3分) (2018八上·邢台月考) 当x为任意实数时,下列分式一定有意义的是()A .B .C .D .5. (3分)(2019·宁夏) 下列各式中正确的是()A .B .C .D .6. (3分) (2019八上·深圳期末) 以下四个命题中:①等腰三角形的两个底角相等②直角三角形的两个锐角互余③对顶角相等④线段垂直平分线上的点到线段两端点的距离相等,原命题与逆命题同时成立的个数有()A . 1B . 2C . 3D . 47. (3分)计算: =()A .B .C .D .8. (3分)(2018·集美期中) 方程的解是()A .B .C .D .9. (3分)(2017·博山模拟) 运用乘法公式计算(x+3)2的结果是()A . x2+9B . x2﹣6x+9C . x2+6x+9D . x2+3x+910. (3分)如图,用尺规作一个角等于已知角,其作图原理是:由△ODC≌△O’D’C’得∠AOB=∠A’O’B’,其依据的定理是()A . SSSB . SASC . ASAD . AAS11. (3分)(2020·温州模拟) 如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40cm,50cm,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,根据图中的数据,当隔板抽出后水面静止时,箱内的水面高度为()A . 46cmB . 45cmC . 44cmD . 43cm12. (3分)如图,已知AB=AE= ,BC=DE=1,∠B=∠E=90°,∠A=120°,五边形ABCDE的面积是()A . 4B . 2C . 8D . 414. (3分) (2019九下·东台月考) 如图,一次函数与轴,轴交于两点,与反比例函数相交于两点,分别过两点作轴,轴的垂线,垂足为,连接,有下列四个结论:① 与的面积相等;② ∽ ;③ ;④ ,其中正确的结论个数是()A . 1B . 2C . 3D . 415. (3分) (2018七上·从化期末) 已知和是同类项,那么2m+n的值()A . 3B . 4C . 5D . 616. (3分)如图,AD=AE,AB=AC,BD=CE,∠B=40°,∠AEC=110°,则∠EAC等于()A . 10°B . 20°C . 30°D . 40°二、填空题(共12分) (共4题;共12分)17. (3分)若分式的值为零,则x的值为________.18. (3分) (2017八下·下陆期中) 如图,将边长都为2 cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则2014个这样的正方形重叠部分的面积和为________.19. (3分)计算:2﹣1﹣(π﹣3)0﹣=________ .20. (3分) (2019八上·大兴期中) 若,,则的值是________.三、计算题(共24分) (共2题;共24分)21. (12分) (2019七上·闵行月考) 先化简,再求值:,其中22. (12分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(________)2=[________]2 .(2)猜想:113+123+133+143+153=________.四、解答题(共36分) (共4题;共36分)23. (9.0分)综合题。
2018-2019学年上学期八年级数 学期中考试卷含答案

2018-2019学年八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.83.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.134.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.67.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<148.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带去.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是三角形.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.15.(4分)轴对称图形对应点所连线段被对称轴.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC ≌△DEF.18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.22.(7分)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm两部分,求边AC和AB的长.(提示:设CD=x cm)五、解答题(每题9分,共27分)23.(9分)如图,△ABC中,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD、BE相交于点F,DF=DC.(1)求证:△BDF≌△ADC;(2)求∠C的度数.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1),结论(2)(只回答不写过程).参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【解答】解:A、4+3>5,能组成三角形;B、6+4=10,不能组成三角形;C、1+1=2<3,不能组成三角形;D、3+4=7<9,不能组成三角形;故选:A.2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.8【解答】解:设这个多边形的边数为n,则(n﹣2)180°=540°,解得n=5,故选:A.3.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.13【解答】解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选:B.4.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)【解答】解:点P(3,4)关于x轴对称的点的坐标是(3,﹣4),故选:D.5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm【解答】解:∵△ABC≌△DEF,∴EF=BC=7cm,故选:D.6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.6【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9﹣5=4,∴DE=4,故选:B.7.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<14【解答】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故选:C.8.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对【解答】解:如图,全等的三角形有:△ABE≌△ACD,△BDO≌△CEO,△BCD≌△CBE,共三对.故选:B.9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD【解答】解:这个条件不能是B;理由如下:在△ACF与△DBE中,已经有条件:AC=DB,CE=BF,进而得出CF=BE,∵有两边且其中一边的对角对应相等的两个三角形不一定全等,∴这个条件不能是B,故选:B.10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°【解答】解:∵AB=DC,AD=BC,∴四边形ABCD为平行四边形,∴∠ADE=∠CBF,∵BF=DE,∴△ADE≌△CBF,∴∠BCF=∠DAE,∵∠DAE=180°﹣∠ADB﹣∠AED,∵∠AED=180°﹣∠AEB=60°,∠ADB=30°,∴∠BCF=90°.故选:D.二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带③去.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合全等三角形的判定方法;第二块,仅保留了原三角形的一部分边,所以此块玻璃也不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故答案为:③.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是直角三角形.【解答】解:在△ABC中,∠A+∠B+∠C=180°,∵∠A=∠B=∠C,∴∠C+∠C+∠C=180°,解得∠C=90°,所以,△ABC是直角三角形.故答案为:直角.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如图,∠A+∠D=∠1,∠B+∠E=∠2,∵∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180°.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.15.(4分)轴对称图形对应点所连线段被对称轴垂直平分.【解答】解:轴对称图形对应点所连线段被对称轴垂直平分.故答案为:垂直平分.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为45°.【解答】解:在四边形AODE中,其内角和为360°,∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,又∠DOE=∠BOC=135°,∴∠A=45°.故应填45°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,A F=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).【解答】解:如图所示,点C即为公交车的位置.19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.【解答】解:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠BAD=45°,∴∠ABE=∠BAD=45°,∵∠EBC=80°,∴∠ABC=80°﹣45°=35°,∵∠BAC=∠BAD+∠DAC=45°+30°=75°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣75°﹣35°=70°.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【解答】解:(1)如图所示:△ABC的面积:×3×5=7.5;(2)如图所示:(3)A1(1,5),B1(1,0),C1(4,3).21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.【解答】解:∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=∠CAB=(90°﹣∠B),∵DE垂直平分AB,∴AD=BD,∴∠DAE=∠B,∴∠DAE=∠CAB=(90°﹣∠B )=∠B ,∴3∠B=90°,∴∠B=30°.答:若DE 垂直平分AB ,∠B 的度数为30°.22.(7分)如图,在△ABC 中(AC >AB ),AC=2BC ,BC 边上的中线AD 把△ABC 的周长分成60cm 和40cm 两部分,求边AC 和AB 的长.(提示:设CD=x cm )【解答】解:∵AD 是BC 边上的中线,AC=2BC ,∴BD=CD ,设BD=CD=x ,AB=y ,则AC=4x ,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8, y=52,即AC=4x=32,AB=52,BC=2x=16, 此时不符合三角形三边关系定理;综合上述:AC=48cm ,AB=28cm .五、解答题(每题9分,共27分)23.(9分)如图,△ABC 中,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 、BE 相交于点F ,DF=DC .(1)求证:△BDF ≌△ADC ;(2)求∠C 的度数.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠AEF=90°,∵∠AFE+∠CAD+∠AEF=180°,∠FBD+∠BFD+∠BDA=180°,∠AFE=∠BFD,∴∠FBD=∠CAD,在△BDF和△ADC中,∴△BDF≌△ADC(AAS),∴BF=AC.(2)∵△BDF≌△ADC,∴DA=DB,∵∠ADB=∠ADC=90°,∴∠BAD=45°,∵∠BAC=75°,∴∠DAC=75°﹣45°=30°,∴∠C=90°﹣30°=60°.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°.在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌Rt△CDE(HL).∴∠A=∠DCE.∵∠A+∠ACB=90°,∴∠DCE+∠ACB=90°.∵∠ACB+∠ACE+∠DCE=180°∴∠ACE=90°,∴AC⊥CE,(2)在Rt△CDE中,CE===2,∴S△ACE=××2=26.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1)成立,结论(2)不成立(只回答不写过程).【解答】证明:(1)∵AE⊥AB,AC⊥AF,∴∠BAE=∠CAF=90°,∴∠CAE=∠BAF,在△CAE与△BAF中,,∴△CAE≌△BAF,∴CE=BF;(2)如图,设AC交BF于O.∵△CAE≌△BAF,∴∠AFO=∠OCM,∵∠AOF=∠COM,∴∠OMC=∠OAF=90°,∴CE⊥BF.(3)条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则结论(1)成立,结论(2)不成立.理由:同法可证△CAE≌△BAF,可得CE=BF,∠CMO=∠FAO=m°,∴结论(1)成立,结论(2)不成立.故答案为成立,不成立.。
2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。
江西省九江市同文中学2018-2019学年八年级上学期阶段一考试数学试卷

九江市同文中学2018-2019学年度上学期期段1考试八年级数学试卷考试时间:120分钟;试卷分数:120分一、选择题(本大题共6小题,每题3分共18分)1.在 3.14,33,2,227, 3.145,0.2020020002…,49中,无理数有().A .1个B .2个C .3个D .4个2.下列各式中正确的是( )A.16=±4B.3-27=-9C.2(-3)=-3D.112=1423.满足下列条件的ABC △,不是直角三角形的是()A .ABC B .::1:1:2A B C C .::1:1:2a b c D .222b ac 4.如图,是一个三级台阶,它的每一级的长,宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物,请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是()A. 12B. 13C. 14D. 15(第4题)(第5题)5.如图,矩形ABCD 的长AD =9cm ,宽AB =3cm ,将它折叠,使点D 与点B 重合,求折叠后DE 的长和折痕EF 的长分别是()A 、cm 5,cm 10B 、cm 5,cm 3C 、cm 6,cm 10D 、cm 5,cm46.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),下列四个说法:①4922y x ,②2y x,③4942xy ,④9y x .其中说法正确的结论有几个()。
2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
【解析版】2018-2019学年江西省九江市八年级上期中数学试卷

2018-2019学年江西省九江市八年级(上)期中数学试卷一、选择题(共6小题,每小题3分,满分18分)1.在平面内,下列数据不能确定物体位置的是()A.电影票“3排5座” B.北偏西40°C.北京路20号D.东经120°,北纬30°2.“的平方根是±”用数学式表示为()A.=B.=C.=D.﹣=﹣3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④ D.①③④4.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)5.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1﹣a,﹣b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共8小题,每小题3分,满分24分)7.写出1组勾股数:.8.一次函数y=3x+b的图象过坐标原点,则b的值为.9.图象经过(1,2)的正比例函数的表达式为.10.若将三个数﹣,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是.11.比较与的大小关系是.(选用“>”或“<”填空)12.已知点P(8.﹣3)关于x轴的对称点Q的坐标是(a,b),则的值为.13.已知,函数y=3x的图象经过点A(﹣1,y1),点B(﹣2,y2),则y1与y2的大小关系为y1y2(选用“>”、“<”或“=”填空)14.如图,在平面直角坐标系中,若△ABC三点坐标分别为A(0,1),B(3,1),C(4,3),如果要找一点D,使△ABD与△ABC全等,那么点D的坐标是.三、解答题(共8小题,满分58分)15.计算:(1)(﹣1)3+(+1)0+(2)÷﹣×+.16.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,请求点M所表示的数.17.下图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:(1)此蜡烛燃烧1小时后,高度为cm;经过小时燃烧完毕;(2)求这个蜡烛在燃烧过程中高度与时间之间关系的解析式.18.已知直线l1:y=﹣4x+5和直线l2:y=x﹣4,求两条直线l1和l2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.19.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.(容器厚度忽略不计)20.已知矩形的两边长分别为4和6,建立适当的直角坐标使得它的一个顶点的坐标为(﹣2,3),请画出符合条件的两个图形,并在图上标出各点的坐标.21.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.22.一个直立的火柴盒在桌面上倒下,启迪人们发现快乐勾股定理的一种新的证明方法,如图所示,火柴盒的一个侧面ABCD倒下到A′B′C′D′的位置,连接CC′.设AB=a,BC=b,AC=c,请利用此图证明勾股定理:a2+b2=c2.2018-2019学年江西省九江市八年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.在平面内,下列数据不能确定物体位置的是()A.电影票“3排5座” B.北偏西40°C.北京路20号D.东经120°,北纬30°考点:坐标确定位置.分析:根据平面内的点与有序实数对一一对应对各选项进行判断.解答:解:电影票“3排5座”、北京路20号、东经120°北纬30°都可确定物体位置,而北偏西40°只能确定方向,但不能确定具体物体的位置.故选B.点评:本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.2.“的平方根是±”用数学式表示为()A.=B.=C.=D.﹣=﹣考点:平方根.分析:根据平方根的定义,即可解答.解答:解:“的平方根是±”用数学式表示为:,故选:B.点评:本题考查了平方根的定义,解决本题的根据是熟记平方根的定义.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④ D.①③④考点:估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.分析:先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.解答:解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.点评:本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.4.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)考点:坐标确定位置.专题:压轴题.分析:根据“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),得出原点的位置即可得出答案.解答:解:∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),∴可得出原点位置在棋子炮的位置,∴“兵”位于点:(﹣3,1),故选:C.点评:此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点,需要掌握确定原点的方法是解决问题的关键.5.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0考点:一次函数图象与系数的关系.专题:压轴题.分析:先根据函数的增减性判断出k的符号,再根据图象与y轴的负半轴相交判断出b的符号.解答:解:∵一次函数y=kx+b的函数值y随x的增大而减小,∴k<0;∵图象与y轴的负半轴相交,∴b<0.故选D.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,为增函数;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,为增函数;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,为减函数;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,为减函数.6.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1﹣a,﹣b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限.解答:解:∵点P(a,b)在第二象限,∴a<0,b>0;∴﹣a>0,﹣b<0,则1﹣a>0,即点Q(1﹣a,﹣b)在第四象限.故选D.点评:解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.二、填空题(共8小题,每小题3分,满分24分)7.写出1组勾股数:3、4、5.考点:勾股数.专题:开放型.分析:根据勾股数的定义:勾股数是整数且两个较小的数的平方和等于最大的数的平方,写出即可.解答:解:勾股数:3、4、5.故答案为:3、4、5(答案不唯一).点评:本题考查了勾股数的定义,是基础题,熟记概念是解题的关键.8.一次函数y=3x+b的图象过坐标原点,则b的值为0.考点:待定系数法求一次函数解析式.专题:计算题;待定系数法.分析:可根据一次函数的特点求出b的值.解答:解:解答本题有两种方法:(1)一次函数y=3x+b的图象过坐标原点,则函数为正比例函数,解析式为y=3x;(2)把(0,0)代入y=3x+b,得b=0;解析式为y=3x.故答案为0.点评:本题要熟悉一次函数的性质,且明确正比例函数是一次函数的特殊情况.9.图象经过(1,2)的正比例函数的表达式为y=2x.考点:待定系数法求正比例函数解析式.专题:压轴题;待定系数法.分析:本题中可设图象经过(1,2)的正比例函数的表达式为y=kx,然后结合题意,利用方程解决问题.解答:解:设该正比例函数的表达式为y=kx∵它的图象经过(1,2)∴2=k∴该正比例函数的表达式为y=2x.点评:此类题目需灵活运用待定系数法建立函数解析式,然后结合题意,利用方程解决问题.10.若将三个数﹣,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是,.考点:实数与数轴.分析:先估算出各数,再根据实数与数轴的关系即可得出结论.解答:解:∵﹣是负数,∴﹣在原点的左侧,∴﹣不可能被墨迹覆盖;∵4<7<9,∴2<<3,∴能被墨迹覆盖;∵1<11<27,∴1<<3,∴能被墨迹覆盖.故答案为:,.点评:本题考查的是实数与数轴,熟知实数与数轴上的点是一一对应关系是解答此题的关键.11.比较与的大小关系是<.(选用“>”或“<”填空)考点:实数大小比较.分析:首先估算,进而可得﹣1>2,再根据同分母的数相比较,分子大的较大可得答案.解答:解:∵>3,∴﹣1>2,∴<,故答案为:<.点评:此题主要考查了实数的比较大小,关键是正确估算出﹣1>2.12.已知点P(8.﹣3)关于x轴的对称点Q的坐标是(a,b),则的值为2.考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,进而可得的值.解答:解:∵点P(8,﹣3)关于x轴的对称点Q的坐标是(a,b),∴a=8,b=3,∴==2,故答案为:2.点评:此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.13.已知,函数y=3x的图象经过点A(﹣1,y1),点B(﹣2,y2),则y1与y2的大小关系为y1>y2(选用“>”、“<”或“=”填空)考点:一次函数图象上点的坐标特征.分析:分别把点A(﹣1,y1),点B(﹣2,y2)代入函数y=3x,求出点y1,y2的值,并比较出其大小即可.解答:解:∵点A(﹣1,y1),点B(﹣2,y2)是函数y=3x上的点,∴y1=﹣3,y2=﹣6,∵﹣3>﹣6,∴y1>y2.故答案为:>点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.14.如图,在平面直角坐标系中,若△ABC三点坐标分别为A(0,1),B(3,1),C(4,3),如果要找一点D,使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).考点:全等三角形的判定;坐标与图形性质.分析:根据三边对应相等的三角形全等可确定D的位置,再根据平面直角坐标系可得D的坐标.解答:解:如图所示:点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1),故答案为:(4,﹣1)或(﹣1,3)或(﹣1,﹣1).点评:此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的方法:SSS、SAS、ASA、AAS、HL.三、解答题(共8小题,满分58分)15.计算:(1)(﹣1)3+(+1)0+(2)÷﹣×+.考点:实数的运算;零指数幂.分析:(1)分别进行乘方、零指数幂、开方等运算,然后合并;(2)分别进行二次根式的除法运算、乘法运算,二次根式的化简,然后合并.解答:解:(1)原式=﹣1+1+3=3;(2)原式=4﹣+2=4+.点评:本题考查了实数的运算,涉及了乘方、零指数幂、开方、二次根式的乘除法等知识,掌握各知识点的运算法则是解答本题的关键.16.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,请求点M所表示的数.考点:实数与数轴;勾股定理.分析:先根据勾股定理求出AC的长,进而可得出AM的长,由此可得出结论.解答:解:∵在△ABC中,AB=3,BC=AD=1,∴AC===,即AM=.∵点A位于﹣1处,∴点M所表示的数是﹣1.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.17.下图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:(1)此蜡烛燃烧1小时后,高度为cm;经过小时燃烧完毕;(2)求这个蜡烛在燃烧过程中高度与时间之间关系的解析式.考点:一次函数的应用.专题:图表型.分析:(1)根据图象:当x=1时,可将y的值直接读出;求出函数关系式,将y=0的值代入,求x的解,即为蜡烛全部燃烧完所用的时间;(2)由图,可根据待定系数法列方程,求函数关系式.解答:解:(1)7,.(2)设所求的解析式为y=kx+b.∵点(0,15)、(1,7)在图象上,∴解得k=﹣8,b=15.∴所求的解析式为y=﹣8x+15.(0≤x≤)点评:本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力,此题未注明x的取值范围也不扣分.18.已知直线l1:y=﹣4x+5和直线l2:y=x﹣4,求两条直线l1和l2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.考点:两条直线相交或平行问题.专题:压轴题.分析:两直线的交点的坐标就是两函数的解析式组成的方程组的解,以此来得出交点坐标,然后根据坐标来判断在哪一个象限.解答:解:由题意得,解得.∴直线l1和直线l2的交点坐标是(2,﹣3).故交点(2,﹣3)落在平面直角坐标系的第四象限上.点评:本题主要考查了已知一次函数的关系式求交点坐标的方法,难度不大.19.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.(容器厚度忽略不计)考点:平面展开-最短路径问题.分析:将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解答:解:如图:∵高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,∴A′D=0.5m,BD=1.2m,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===1.3(m).故壁虎捕捉蚊子的最短距离为1.3m.点评:本题考查了平面展开﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.20.已知矩形的两边长分别为4和6,建立适当的直角坐标使得它的一个顶点的坐标为(﹣2,3),请画出符合条件的两个图形,并在图上标出各点的坐标.考点:坐标与图形性质.分析:根据矩形的性质,两组对边平行且相等在平面直角坐标系中画出图形即可.解答:解:如图所示,矩形ABCD,矩形AB′C′D′即为所求.点评:本题考查了坐标与图形的关系,矩形的性质,熟练掌握矩形的性质是解题的关键.21.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.考点:待定系数法求一次函数解析式.专题:计算题.分析:(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.解答:解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),∵S△BOC=2,∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).点评:本题考查了待定系数法求函数解析式,解答此题不仅要熟悉函数图象上点的坐标特征,还要熟悉三角形的面积公式.22.一个直立的火柴盒在桌面上倒下,启迪人们发现快乐勾股定理的一种新的证明方法,如图所示,火柴盒的一个侧面ABCD倒下到A′B′C′D′的位置,连接CC′.设AB=a,BC=b,AC=c,请利用此图证明勾股定理:a2+b2=c2.考点:勾股定理的证明.分析:四边形BCC′D′的面积从大的一方面来说属于直角梯形,可利用直角梯形的面积公式进行表示从组成来看,由三个直角三角形组成.应利用三角形的面积公式来进行表示.解答:证明:四边形BCC′D′为直角梯形,∴S梯形BCC′D′=(BC+C′D′)•BD′=,又∵∠AB′C′=90°,Rt△ABC≌Rt△AB′C′∴∠BAC=∠B′AC′.∴∠CAC′=∠CAB′+∠B′AC′=∠CAB′+∠BAC=90°;∴S梯形BCC′D′=S△ABC+S△CAC′+S△D′AC′=ab+c2+ab=;∴=;∴a2+b2=c2.点评:本题考查了勾股定理的证明.证明勾股定理时,需注意:组成的图形的面积有两种表示方法:大的面积的表示方法和各个组成部分的面积的和.。
江西省九江市同文中学2018-2019学年度第二学期开学初考试八年级数学试卷(PDF版无答案)

九江市同文中学2018-2019学年度第一学期开学初考试试卷一、选择题(每题3分,共6小题)1.下列个数中:3.14159,38,0.1010010001……(每相邻两个1之间0的个数逐次加1),π-,5,71-,无理数的个数为( )A.2B.3C.4D. 5 2.下列各式正确的是( ) A.416±= B.9273-=- C.()332-=- D.211412= 3.已知点A (a ,2)和点B (5,b )关于y 轴对称,则a+b 的值是( )A.-3B.3C.7D.-74.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物。
请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是( )A.12B.13C.14D.155.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱。
其中正确的个数是()A. 1个B. 2个C. 3个D. 4个6.函数y 1=ax+b与y 2=bx+a 的图象在同一坐标系内的大致位置正确( )A. B. C. D.二、填空题(每题3分,共6小题) 7.41的算术平方根是 。
8.若点(m ,n )在函数y=2x-6的图像上,则2m-n 的值为 。
9.将函数y=3x-5的图像向上平移3个单位所得到的函数图像的解析式为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.B.C.A.九江市同文中学2018—2019学年度上学期期中考试八年级数学试卷考试时间:120分钟 试卷分数:120分 命题人:黄志勇 审稿人:倪修兰一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.梯子的底端离建筑物 5米,13米长的梯子可以达到该建筑物的高度是( ) A .12米 B .13米 C .14米 D .15米2.在实数2,127,0.101001,π,0) A .0个 B .1个 C .2个 D .3个 3. 下列各式中,运算正确的是 ( ) A= B.= C .632a a a ÷=D .325()a a =4.有四个三角形,分别满足下列条件:(1)两角之和等于第三角;(2)三内角的度数比为3∶5∶4;(3)两角的平方和等于第三角的平方;(4)两边的平方差等于第三边的平方. 其中直角三角形的个数为 ( ) A. 1 B. 2 C. 3 D. 45.一次函数1y kx b =-与2y bx k =-在同一坐标系中大致的图象可能是( )6. 在平面直角坐标系中,已知直线1334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A.(0,43) B.(0,34) C.(0,3) D.(0,4) 二、填空题(本大题共8小题,每小题3分,共24分)7.用长4cm ,宽3cm 的邮票300枚不重不漏摆成一个正方形,这个正方形的边长等于_______cm .8.如图,在数轴上点A 和点B 之间的整数是 . 9.已知点(1P a +,2),(2Q b -,)关于x 轴对称,则a b -=______.10.已知AB ∥x 轴,且点A 的坐标为(m ,2m -1),点B 的坐标为(2,4),则点A 坐标为_ _.11. 若实数m 没有平方根,且12m +=,则m =__ ___.12. 若点(-4,1y ),(2,2y )都在直线2y x t =-+上,则1y 与2y 的大小关系是 .13. 如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为_________。
14. 已知正方形OABC ,BEFG 按照图示的位置摆放在数轴上,点O ,A ,E 表示的数分别为1,2,3,若以O 为圆心,OF 为半径作圆弧,则与数轴的交点所表示的数为11或.三、(本大题共4小题,每小题6分,共24分)15.517.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内作出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标.(第14题图) (第8题图)第13题图(1) 1B 1C 1D 1 A B C D D 2 A 2 B 2 C 2 D 1 C 1 B 1 A 1 A B C D 第13题图(2)FAD CBE (第21题图)18.如图,四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,且∠A =90°,求四边形ABCD 的面积。
四、(本大题共4小题,每小题8分,共32分)19.在平面直角坐标系中,点A 的坐标是(3a -5,a +1).(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 到x 轴的距离与到y 轴的距离相等,且点A 在x 轴的上方,求a 的值及点A 的坐标.20. 如图,直线4y kx =+(0k ≠)经过点A ,B ,P . (1)求一次函数的表达式 (2)求AP 的长(3)在x 轴上有一点C ,且BC =AP ,直接写出点C 的坐标.21.如图,折叠长方形一边AD ,使点D 落在BC 边的F 点上,已知已知△ABF 的面积为302cm , AB =5cm ,求△ADE 的面积。
`22.如图所示,在平面直角坐标系中,点B 的坐标为(a ,b ),且a ,b 满足2(2)0a +-=.A BCD (第18题图)(1)求点B 的坐标(2)点A 位y 轴上的一动点,过点B 作BC ⊥AB 交x 轴与点C ,求证:BA =五、(本大题共1小题,共10分)23.阅读材料:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12bb ≠,我们就称直线1l 与直线2l 互相平行. 解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式六、(本大题共1小题,共12分)24.如图1,甲、乙两人在一条笔直的公路上同向匀速而行,甲从A 点开始追赶乙,甲超过乙之前,甲、乙两人之间的距离y (m )与追赶的时间x (s)的关系如图2所示.已知乙的速度为5m/s .x(第23题)(第22题图)(1)求甲、乙两人之间的距离y(m)与追赶的时间x (s)之间的函数关系式;(2)甲从A点追赶乙,经过40s,求甲前行了多少米?(3)若甲追赶10s后,甲的速度增加1.2m/s,请求出10秒后甲、乙两人之间的距离y (m)与追赶的时间x (s)之间的函数关系式,并在图2中画出它的图像.D.B.C.A.九江市同文中学2018—2019学年度上学期期中考试八年级数学试卷考试时间:120分钟 试卷分数:120分 命题人:黄志勇 审稿人:倪修兰一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.梯子的底端离建筑物 5米,13米长的梯子可以达到该建筑物的高度是( A ) A .12米 B .13米 C .14米 D .15米2.在实数2,127,0.101001,π,0D ) A .0个 B .1个 C .2个 D .3个 3. 下列各式中,运算正确的是 ( A ) A= B.= C .632a a a ÷=D .325()a a =4.有四个三角形,分别满足下列条件:(1)两角之和等于第三角;(2)三内角的度数比为3∶5∶4;(3)两角的平方和等于第三角的平方;(4)两边的平方差等于第三边的平方. 其中直角三角形的个数为 ( B ) A. 1 B. 2 C. 3 D. 45.一次函数1y kx b =-与2y bx k =-在同一坐标系中大致的图象可能是( C )6. 在平面直角坐标系中,已知直线1334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( B )A.(0,43) B.(0,34) C.(0,3) D.(0,4) 二、填空题(本大题共8小题,每小题3分,共24分)7.用长4cm ,宽3cm 的邮票300枚不重不漏摆成一个正方形,这个正方形的边长等于____60____cm .8.如图,在数轴上点A 和点B 之间的整数是 2 . 9.已知点(1P a +,2),(2Q b -,)关于x 轴对称,则a b -=_____-1____._.10.已知AB ∥x 轴,且点A 的坐标为(m ,2m -1),点B 的坐标为(2,4),则点A 坐标为_(2.5,4)_.11. 若实数m 没有平方根,且12m +=,则m =____-3____.12. 若点(-4,1y ),(2,2y )都在直线2y x t =-+上,则1y 与2y 的大小关系是12y y > .13. 如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为_____625_____。
14. 已知正方形OABC ,BEFG 按照图示的位置摆放在数轴上,点O ,A ,E 表示的数分别为1,2,3,若以O 为圆心,OF 为半径作圆弧,则与数轴的交点所表示的数为11或.三、(本大题共4小题,每小题6分,共24分)15.515.解:原式2=分2= 6分16.解:原式(23)=- 4分1=6分(第14题图) (第8题图)第13题图(1) A 1B 1C 1D 1 A B C D D 2 A 2 B 2 C 2 D 1 C 1 B 1 A 1 A B C D 第13题图(2)17.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内作出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标.解:⑴正确画出平面直角坐标系……2分 ⑵确画出△A ′B ′C ′……4分, ⑶B ′(2,1)……6分18.如图,四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,且∠A =90°,求四边形ABCD 的面积。
解:连接BD ABD ∴是直角三角形222255AB AD BD BD +==∴= 222169DB CD BC +==CBD ∴是直角三角形211345123622ABCDS cm ∴=⨯⨯+⨯⨯=四边形 四、(本大题共4小题,每小题8分,共32分)19.在平面直角坐标系中,点A 的坐标是(3a -5,a +1).(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 到x 轴的距离与到y 轴的距离相等,且点A 在x 轴的上方,求a 的值及点A 的坐标.解:(1)53a =,A 的坐标是(0,83) ……2分(2)3a =,A 的坐标是(4,4) ……5分或1a =,A 的坐标是(-2,2) ……8分20. 如图,直线4y kx =+(0k ≠)经过点A ,B ,P . (1)求一次函数的表达式(2)求AP 的长(3)在x 轴上有一点C ,且BC =AP ,直接写出点C 的坐标.解:(1)443y x =+ ……3分A BCD(第18题图)FAD CBE(第21题图)(2)5AP = ……6分(3)C (2,0)或(-8,0) ……8分21.如图,折叠长方形一边AD ,使点D 落在BC 边的F 点上,已知已知△ABF 的面积为302cm , AB =5cm ,求△ADE 的面积。