高中数学:坐标系与参数方程

合集下载

高考数学核心考点 第十四章坐标系与参数方程

高考数学核心考点 第十四章坐标系与参数方程

高考数学核心考点 第十四章坐标系与参数方程1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:(1)设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ. (2)若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

4.极坐标与直角坐标的互化:)0(n t ,sin ,cos ,222≠===+=x xy a y x y x θθρθρρ 5.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是r =ρ; 在极坐标系中,以)0,(a C )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =; 在极坐标系中,以 )2,(πa C )0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =; 6. 在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.在极坐标系中,过点)0)(0,(>aa A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos .7.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

e 44
th
(
,
2
)或(或 (,-
2 ))
44
44
, 5
等多种形式,其中,只有
(
,
)
的极坐标满足方程
.
44
44
in 二、参数方程
gs 1.参数方程的概念
thin x f (t)
ll 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标
x,
y
都是某个变数
t
的函数
y
g
(t
)
①,并且对于
t
a 的曲线的参数方程的形式也不同。
ing 3.圆的参数
ir be 如图所示,设圆O 的半径为 r
,点 M
从初始位置
M0
出发,按逆时针方向在圆 O 上作匀速圆周运动,设
M
(x,
y)
x ,则
y
r cos r sin
(为参数)

the 这就是圆心在原点 O ,半径为 r 的圆的参数方程,其中 的几何意义是 OM0 转过的角度。
bein (1)极坐标系如图所示,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正 eir 方向(通常取逆时针方向),这样就建立了一个极坐标系. th 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系, in 而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. ings (2)极坐标:设 M 是平面内一点,极点 O 与点 M 的距离|OM|叫做点 M 的极径,记为 ;以极轴 Ox 为始边,射线 OM 为终边的角 xOM 叫做点 M 的极角,记 th 为 .有序数对 (, ) 叫做点 M 的极坐标,记作 M (, ) .

高中数学《坐标系与参数方程》课件

高中数学《坐标系与参数方程》课件
以坐标原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11=0. (1)求C的普通方程和l的直角坐标方程; (2)求C上的点到l的距离的最小值.
7
解 (1)因为-1<11- +tt22≤1,且 x2+2y2=11- +tt222+(1+4t2t2)2=1, 所以 C 的普通方程为 x2+y42=1(x≠-1),因为 x=ρcos θ,y=ρsin θ,
19
解 (1)⊙O的普通方程为x2+y2=1.
当 α=π2时,l 与⊙O 交于两点.
当 α≠π2时,记 tan α=k,则 l 的方程为 y=kx- 2.
l 与⊙O 交于两点当且仅当
1+2 k2<1,解得 k<-1 或 k>1,即 α∈π4,π2或 α∈π2,34π.
综上,α 的取值范围是π4,34π.
23
解 (1)由题意知,直线 l 的普通方程为 y= 3(x-1), 曲线C1的普通方程为x2+y2=1. 联立方程组xy2=+y32=(1x,-1),解得 A(1,0),B12,- 23,
则|AB|= 1-122+0+ 232=1.
24
(2)曲线
C2
的参数方程为yx==122c3ossinθ,θ (θ
1
第1讲 坐标系与参数方程
2
高考定位 高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参 数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、 参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几 何知识.
3
真题感悟
1.(2019·全国Ⅱ卷)在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上, 直线l过点A(4,0)且与OM垂直,垂足为P. (1)当 θ0=π3时,求 ρ0 及 l 的极坐标方程; (2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.

【高中数学】坐标系与参数方程

【高中数学】坐标系与参数方程

【高中数学】坐标系与参数方程1. 平面直角坐标系学习过程1. 到两个定点A (-1,0)与B (0,1)的距离相等的点的轨迹是什么?2. 在⊿ABC 中,已知|AB|=10,且{ EMBED Equation.3 |6=-BC AC ,求顶点C 的轨迹方程.例题讲解例1. 已知△ABC 的三边满足,BE,CF 分别为边A C, AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系。

例2. 求证:三角形的三条高线交于一点.巩固练习1. 两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 得轨迹2. 求直线与曲线的交点坐标.3. 已知A (-2,0),B (2,0),求以AB 为斜边的直角三角形的顶点C 的轨迹方程4. 已知A (-3,0),B (3,0),直线AM 、BM 相交于点M ,且它们的斜率之积为,求点M 的轨迹方程5. 已知B 村位于A 村的正西方向1公里处,原计划经过B 村沿着北偏东600的方向埋设一条地下管线m 但在A 村的西北方向400米处,发现一古代文物遗址W 。

根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区。

试问:埋设地下管线m 的计划需要修改吗?2. 坐标变换1. 理解平面直角坐标系中的伸缩变换;2. 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;3. 会用坐标变换、伸缩变换解决实际问题。

学习过程设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点(,)称为坐标系中的伸缩变换. 例题讲解例1. 在平面直角坐标系下,求下列方程所对应的图形经过伸缩变换后的图形. (1)(2)例2. 在同一平面直角坐标系中,求满足下列图形变换的伸缩变换. (1)直线变换成直线 (2)曲线变成曲线例3. 在伸缩变换下,椭圆是否可以变成圆?抛物线、双曲线变成什么曲线?巩固练习1. 已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为( )A.B .2C.3D.2. 在同一直角坐标系中,经过伸缩变换后,曲线C 变为曲线则曲线C 的方程为( )A.B.C.D.3. 在同一平面坐标系中,经过伸缩变换后,曲线C 变为曲线,求曲线C 的方程并画出图象。

高中数学选修4-4 坐标系及参数方程

高中数学选修4-4 坐标系及参数方程
5
坐标系及参数方程
考点一
极坐标方程与直角坐标方程的互化
1.极坐标与直角坐标的互化条件 (1)极点与原点重合; (2)极轴与 x 轴正方向重合; (3)取相同的单位长度. 2.若把直角坐标化为极坐标,求极角 θ 时,应注意判断点 P 所在的象限(即 角 θ 的终边的位置),以便正确地求出角 θ.利用两种坐标的互化,可以把不熟悉 的问题转化为熟悉的问题.
1.平面直角坐标系中的伸缩变换 设点 P(x,y)是平面直角坐标系中的任意一点,在变换 x′=λxλ>0 φ: 的作用下,点 P(x,y)对应到点 P′(x′,y′),称 φ 为 y′=μyμ>0 平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.坐标系 (1)极坐标系的概念
在平面上取一个定点 O 叫作极点;自点 O 引一条射线 Ox 叫作极轴;再选 定一个长度单位、角度单位 (通常取弧度)及其正方向(通常取逆时针方向为正方 向),这样就建立了一个极坐标系. 设 M 是平面上任一点, 极点 O 与点 M 的距离|OM|叫作点 M 的极径, 记为 ρ; 以极轴 Ox 为始边,射线 OM 为终边的∠xOM 叫作点 M 的极角,记为 θ.有序数
6
坐标系及参数方程
在极坐标系中,判断曲线的形状,研究曲线的性质,最常用的方法是化极坐 标方程为直角坐标方程, 使不熟悉的问题转化为熟悉的问题. 对一些简单的直线、 圆的有关问题,也可直接用极坐标知识解决. 对点训练 ⊙O1 和⊙O2 的极坐标方程分别为 ρ=4cos θ,ρ=-4sin θ. (1)把⊙O1 和⊙O2 的极坐标方程化为直角坐标方程; (2)求经过⊙O1,⊙O2 交点的直线的直角坐标方程. [解] 以极点为原点,极轴为 x 轴正半轴建立平面直角坐标系,两坐标系中

坐标系与参数方程高考知识点 2024数学

坐标系与参数方程高考知识点 2024数学

坐标系与参数方程高考知识点 2024数学2024年的高考数学考试中,坐标系与参数方程是一个重要的知识点。

本文将对坐标系和参数方程的概念、性质以及应用进行详细的论述。

一、坐标系的概念与性质坐标系是一种用来确定平面或空间中点位置的方法。

在平面上,常用的坐标系有直角坐标系和极坐标系;在空间中,常用的坐标系有直角坐标系和球坐标系。

1. 直角坐标系:直角坐标系是平面上最常用的一种坐标系,使用两个数值来确定平面上的点的位置。

我们用横坐标x和纵坐标y来表示一个点的位置,记作P(x, y)。

直角坐标系具有以下性质:- 原点:坐标系的交叉点称为原点,表示为O(0, 0)。

- 坐标轴:直角坐标系由两条相互垂直的直线组成,分别称为x轴和y轴。

- 单位长度:直角坐标系中x轴和y轴的单位长度相等。

2. 极坐标系:极坐标系是另一种表示点位置的方法,它使用距离和角度来确定点的位置。

对于平面上的点P,极坐标系表示为(r, θ),其中r为点P到原点的距离,θ为点P与正半轴的夹角。

极坐标系具有以下性质:- 极轴:极坐标系有一条特殊的直线称为极轴,通常与x轴重合。

- 极角:极坐标系中,与极轴正向的夹角称为极角,通常用θ表示。

- 极径:点P到原点的距离称为极径,用r表示。

二、参数方程的概念与性质参数方程是用参数的变化规律来确定点的位置的方法。

它通常由一组含有参数的方程组成,通过给参数赋值,可以确定出点的坐标。

在坐标系中,参数方程可以用来表示一条曲线或曲面。

常见的参数方程有平面曲线的参数方程和空间曲线的参数方程。

1. 平面曲线的参数方程:平面曲线的参数方程通常用两个参数t、u来表示。

例如,曲线C可以由参数方程表示为:x = f(t)y = g(t)其中t的取值范围确定了曲线上点的位置。

平面曲线的参数方程具有以下性质:- 曲线上的点的坐标是参数t的函数,参数t的值域决定了曲线的范围。

- 在参数方程中,可以通过改变参数的取值来绘制不同部分的曲线。

高中数学·选修:坐标系与参数方程

高中数学·选修:坐标系与参数方程

高中数学·选修:坐标系与参数方程
在高中数学中,坐标系与参数方程是一个重要的话题。

本文旨在介绍一些关于坐标系及参数方程的基本概念和关系。

首先,坐标系是一种常用的图形几何论结构,把数轴作为坐标系的基本要素来表示空间对象和定位空间点之间的关系。

常见的坐标系有二维平面坐标系、极坐标系、三维空间坐标系等。

每一种坐标系都有着自己的特点,可以用于应用领域的空间分析,如物理学的空间分析、经济学的市场销售分析等。

其次,参数方程是一种简单的数学方法,用一系列参数表示解析地函数的解析表达式。

它的核心思想是,通过给定的参数绘制出某一曲线,这个曲线就是满足这一条件的函数图像。

参数方程具有简单易懂、方便求解、计算量少等优点,常用于构建某种表示空间对象的曲线图形。

最后,坐标系与参数方程之间是密切联系的。

坐标系可以为参数方程提供一个结构化的关系框架,将所有的参数统一起来,从而更容易确定函数的图像,从而更轻松地求解参数方程。

同时,参数方程也可以利用坐标系来描述曲线图形,更加直观地表示函数的变化关系与极限情况。

总之,坐标系与参数方程在高中数学中是一个激动人心的课题,它们有着深远的影响。

坐标系可以让参数方程更加容易求解,而参数方程则可以更好地利用坐标系来描述函数的变化关系与极限情况。

因此,学习坐标系和参数方程在深入学习数学中仍然是必不可少的。

高三数学坐标系及参数方程

高三数学坐标系及参数方程

高三数学 坐标系与参数方程( 1)认识坐标系的作用,认识在平面直角坐标系伸缩变换作用下平面图形的变化状况。

( 2)认识坐标系的基本观点,会在极坐标系顶用极坐标刻画点的地点,能进行极坐标和直角坐标的互化。

( 3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的极坐标方程。

( 4)认识参数方程,认识参数的意义。

( 5)能选择适合的参数写出直线、圆和椭圆的参数方程。

1. 极坐标系MOθx①极坐标是用 “距离 ”与“角度 ”来刻画平面上点的地点的坐标形式。

极点、极轴、长度单位、角度单位和它的方向组成极坐标系的四因素,缺一不行。

规定:当点 M 在极点时,它的极坐标 0, 能够取随意值。

② 平面直角坐标与极坐标的差别: 在平面直角坐标系内,点与有序实数对( x ,y )是一一对应的,但是在极坐标系中,固然一个有序实数对 ( , ) 只好与一个点 P 对应,但一个点 P 却能够与无数多个有序实数对对应 ( , ) , 极坐标系中的点与有序实数对极坐标 ( , ) 不是一一对应的。

③ 极坐标系中,点 M ( ,) 的极坐标一致表达式 ( ,2k), k Z 。

④ 假如规定 0,02 ,那么除极点外, 平面内的点可用独一的极坐标 ( , ) 表示,同时, 极坐标 ( , ) 表示的点也是独一确立的。

2.极坐标与直角坐标的互化: ( 1)互化的前提:① 极点与直角坐标的原点重合;极轴与 x 轴的正方向重合; ③ 两种坐标系中取同样的长度单位。

xcos2x 2y 2( 2)互化公式,tany, x 0ysinx2是常用的方法 .注:极坐标方程化为直角坐标方程 ,方程两边同乘 ,使之出现1. 已知点的极坐标分别为 A(3,) , B(2, 2 3 ) ,求它们的直角坐标。

), C(, ),D( 4,4322答案:A (3 2,3 2) B( 1, 3)C(3,0) D (0, 4)2225 2、已知点的直角坐标分别为A(3, 3), B(0,), C ( 2, 2 3) ,求它们的极坐标。

2024高考数学坐标系与参数方程

2024高考数学坐标系与参数方程

2024高考数学坐标系与参数方程数学一直是高考中重要的一门科目,而在数学中,坐标系与参数方程是常见的概念与应用。

本文将围绕2024年高考数学坐标系与参数方程这一题目展开讨论,并通过几个例子来加深我们对这一知识点的理解。

一、坐标系的概念与应用坐标系是数学中表示点的位置的一种方法,常见的有直角坐标系和极坐标系。

直角坐标系由x轴和y轴组成,通过确定点与坐标轴的交点来确定点的位置;而极坐标系则通过半径和极角来表示点的位置。

在解决实际问题中,坐标系有着广泛的应用。

例如,在地图上,我们可以利用坐标系确定两个城市之间的距离;在物理学中,通过坐标系可以确定物体在空间中的位置等。

因此,对坐标系的理解与应用非常重要。

二、参数方程的概念与应用参数方程是一种描述曲线、曲面等几何对象的方法。

它通过一个或多个参数的变化来表示对象上的点的坐标。

常见的参数方程有二维参数方程和三维参数方程。

在数学中,参数方程的应用非常广泛。

例如,在物理学中,我们可以通过参数方程描述质点在空间中的运动轨迹;在计算机图形学中,参数方程可以用来描述各种曲线和曲面等。

因此,对参数方程的理解与应用也是非常重要的。

三、坐标系与参数方程的联系与区别虽然坐标系和参数方程都是描述几何对象的方法,但它们之间存在一定的联系与区别。

首先,坐标系可以通过确定坐标轴和交点来确定点的位置,而参数方程则通过参数的变化来表示点的位置。

其次,坐标系通常是直角坐标系或极坐标系,而参数方程可以是二维参数方程或三维参数方程。

此外,在解决问题时,选择使用坐标系还是参数方程,取决于问题的特点和需要。

对于某些问题,坐标系可能更直观、更方便,而对于另一些问题,参数方程则可能更简洁、更易于处理。

四、案例分析为了更好地理解坐标系与参数方程的应用,我们通过几个案例进行分析。

案例一:求解直线与圆的交点已知直线的方程为y = 2x + 1,圆的方程为x^2 + y^2 = 9。

我们可以将直线和圆的方程转化为参数方程,求解它们的交点。

高中数学坐标系与参数方程

高中数学坐标系与参数方程

高中数学坐标系与参数方程数学中的坐标系与参数方程是高中数学中的重要概念和工具。

坐标系是一种用于描述和定位点的系统,而参数方程是一种利用参数来描述曲线和图形的方程。

本文将详细介绍坐标系和参数方程的概念、性质以及在解决实际问题中的应用。

一、坐标系坐标系是一种用于描述和定位点的系统。

常见的坐标系有直角坐标系、极坐标系和空间坐标系等。

其中,直角坐标系是最常用的一种坐标系。

1. 直角坐标系直角坐标系又称笛卡尔坐标系,由两个相互垂直的数轴组成,分别为x轴和y轴。

通过给每个点分配一个唯一的有序数对(x, y),可以精确定位平面上的任意一点。

2. 极坐标系极坐标系以原点O和极轴作为基准,通过极径r和极角θ来描述平面上的点。

其中,极径r表示原点O到点P的距离,极角θ表示OP 与极轴的正向夹角。

3. 空间坐标系空间坐标系用于描述三维空间中的点。

最常用的空间坐标系是直角坐标系,由三条相互垂直的坐标轴x、y和z组成。

二、参数方程参数方程是一种利用参数来描述曲线、图形或曲面的方程。

通过引入参数,可以更方便地描述和分析不同类型的曲线和图形。

1. 平面曲线的参数方程对于平面曲线,一般使用参数t来描述。

平面曲线的参数方程可以表示为x=f(t),y=g(t),其中f(t)和g(t)分别是x和y关于参数t的函数。

2. 三维空间曲线的参数方程对于三维空间曲线,常用的参数方程形式为x=f(t),y=g(t),z=h(t)。

通过给定的参数值t,可以确定空间曲线上的每个点的坐标。

3. 曲面的参数方程曲面的参数方程可以表示为x=f(u,v),y=g(u,v),z=h(u,v),其中u 和v是两个参数。

通过给定不同的参数值,可以得到曲面上的各个点的坐标。

三、坐标系和参数方程的应用坐标系和参数方程在数学中有广泛的应用,特别是在几何和解析几何中的问题求解过程中起到关键作用。

以下是坐标系和参数方程在实际问题中的应用示例。

1. 几何图形分析通过在直角坐标系或极坐标系中表示几何图形的方程,可以对其进行分析和研究。

坐标系与参数方程_知识点总结

坐标系与参数方程_知识点总结

坐标系与参数方程_知识点总结一、坐标系1.直角坐标系直角坐标系是最常见的坐标系,在平面上由两个垂直的坐标轴组成,分别为x轴和y轴。

一个点在直角坐标系中的位置可以用坐标(x,y)来表示,其中x为横坐标,y为纵坐标。

2.极坐标系3.球坐标系球坐标系是一种用于描述空间点位置的坐标系统,它由径向距离、极角和方位角组成。

一个点的位置可以用有序数组(r,θ,φ)来表示,其中r为点到原点的距离,θ为点与一些固定轴的夹角,φ为点的方位角。

二、参数方程1.一维参数方程一维参数方程是指由一个参数确定的直线或曲线的方程。

例如,一个点在直线上的一维参数方程可以表示为x=f(t),其中x为点在直线上的位置,t为参数,f(t)为关于参数t的函数。

2.二维参数方程二维参数方程是指由两个参数确定的平面曲线的方程。

一个点在平面上的位置可以表示为(x(t),y(t)),其中x(t)和y(t)分别为关于参数t的函数。

二维参数方程常用于描述曲线、圆、椭圆等几何图形。

3.三维参数方程三维参数方程是指由三个参数确定的空间曲线的方程。

一个点在空间中的位置可以表示为(x(t),y(t),z(t)),其中x(t)、y(t)和z(t)分别为关于参数t的函数。

三维参数方程常用于描述空间曲线、曲面等几何图形。

三、坐标系与参数方程的关系坐标系和参数方程之间存在着密切的关系。

在直角坐标系中,一个函数的参数方程可以通过将x和y用参数表示来得到,即将x=f(t)和y=g(t)的参数方程转化为直角坐标系中的函数y=f(x)的形式。

反之,一个函数的直角坐标系方程也可以通过将x和y用参数表示来得到参数方程。

参数方程在极坐标系和球坐标系中也可以通过类似的方式转化。

总结:坐标系是描述点的位置的系统,常见的坐标系有直角坐标系、极坐标系和球坐标系。

参数方程是用参数表示的函数方程,常用于描述直线、曲线、曲面等几何图形。

坐标系和参数方程之间存在密切的关系,可以通过转化将一个方程从坐标系表示转化为参数方程,反之亦然。

高中数学坐标系与参数方程知识点总结,快来收藏啦!

高中数学坐标系与参数方程知识点总结,快来收藏啦!

第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系。

(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O 的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M 的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:3.直线的极坐标方程(1)特殊情形如下表:四柱坐标系与球坐标系简介(了解)第二讲一曲线的参数方程1.参数方程的概念2.圆的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线(了解)。

高中数学坐标系与参数方程

高中数学坐标系与参数方程

高中数学坐标系与参数方程高中数学是学生学习数学的重要阶段之一,坐标系和参数方程是其中的两个重要内容。

坐标系是一种描述位置的方法,它是由两个互相垂直的直线组成的。

在坐标系中,我们用一对有序数对(x,y)来表示平面上的一个点,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

坐标系的中心点为(0,0),称为原点。

通过坐标系,我们可以简单地描述平面上的各种几何图形,如线段、直线、圆等。

在坐标系中,我们可以通过一些基本操作来得到新的图形。

其中包括平移、旋转、反射等操作。

平移是指将图形沿着某个方向移动一定的距离,旋转是指将图形绕着某个点旋转一定的角度,反射是指将图形绕着某个直线对称。

通过这些操作,我们可以得到各种复杂的几何图形,从而更好地理解几何学的基本概念。

参数方程是一种用参数表示函数的方法,它将函数的自变量和因变量都表示为参数的形式。

在参数方程中,我们将自变量和因变量分别表示为x和y的函数,在参数t的取值范围内进行变化。

例如,一个简单的参数方程为x=cos(t),y=sin(t),其中t的取值范围为0到2π。

这个参数方程表示了一个单位圆的轨迹。

通过参数方程,我们可以更好地理解函数的性质,以及函数图形的特点。

在坐标系和参数方程中,我们可以进行一些有趣的应用。

例如,在坐标系中,我们可以绘制出各种几何图形的图像,从而更好地理解几何学的基本概念。

在参数方程中,我们可以绘制出各种函数的图像,从而更好地理解函数的性质。

此外,坐标系和参数方程还可以应用于物理、工程、计算机科学等领域,具有广泛的应用价值。

坐标系和参数方程是高中数学中的重要内容,它们可以帮助学生更好地理解数学的基本概念,具有广泛的应用价值。

希望学生们能够认真学习和掌握这些知识,为今后的学习和生活打下坚实的数学基础。

高中数学·选修:坐标系与参数方程

高中数学·选修:坐标系与参数方程

高中数学·选修:坐标系与参数方程在高中数学教学中,坐标系与参数方程这一章节是相当重要的,也是教学中比较主要的内容之一。

本文将从六个方面来介绍坐标系与参数方程的教学内容:第一,坐标系的概念;第二,坐标系的建立方法;第三,曲线图像的分析;第四,参数方程的概念;第五,参数方程的求解方法;第六,参数方程的应用。

首先,从宏观上来讲,坐标系最主要的作用就是它能够把复杂的问题简单地表示出来,能够将多维空间数据压缩在二维平面上,这对于我们对某一物理问题的描述非常有益。

建立坐标系的方法也相当的简单,首先,我们从一个参考点出发,然后需要确定两条独立的参考线,接下来,根据一定的参考距离相互确定出坐标值。

这个过程就是建立坐标系的步骤。

接下来,我们要分析曲线图像,对于某一物理问题,我们最常用的方法就是分析其在坐标系上的图像,从而得出其相关的数学性质以及结论。

此时,我们可以做出判断和推论,比如分析曲线拐点,以及极值点等等。

接着,我们需要介绍参数方程,它是一类特殊的方程组,可以使用参数来表示原本没有明确定义的变量,从而得到更加精确的结果。

参数方程还可以使用来把一张曲线图像表示出来,可以说,这是一种把曲线图像以参数方程形式表述的方法。

再者,我们需要讲解求解参数方程的方法,其实这也是种比较简单的方法,只需要以参数的形式把原来函数表达式上的未知量替换掉,然后得到新的函数表达式,最后得到关于参数的方程,解决这个方程就可以求出参数的值。

最后,就是参数方程的应用,高校数学教学中,参数方程可以用来解决很多实际问题,比如求解某物理现象的参数值,用参数的形式表示复杂函数的图像等等。

另外,在很多工程中,也会经常使用参数方程,以求解某些复杂的物理图形。

总的来说,坐标系与参数方程的教学内容是高中数学教学中比较重要的内容,也是一个学习者必须要掌握的知识,它不仅仅可以用来表示物理问题,还可以用来解决很多复杂的物理图形和实际问题,从而取得更好的效果。

高中数学·选修:坐标系与参数方程

高中数学·选修:坐标系与参数方程

高中数学·选修:坐标系与参数方程
在学习高中数学课程时,我们经常会遇到数学中最重要的两个概念:坐标系和参数方程。

下面我们将对这两个概念进行详细介绍。

首先,坐标系是一种两维或三维的笛卡尔坐标系,它将空间中的点标记为坐标(x,y)或(x,y,z)。

坐标系最常用于定位空间中的点,因为它将空间中的概念转换为数学模型。

如果要知道一个点在空间里的位置,只需要计算这个点在坐标系中的坐标即可。

坐标系的方位有四种,分别是极坐标系、直角坐标系、正负坐标系和球面坐标系。

另外,在其他数学科学中,坐标系也经常被使用,比如在动力学中,坐标系更多的是用来跟踪移动物体的位置。

其次,参数方程是指基于参数的一系列数学方程式。

参数方程的格式是:y=f(x),其中x和y是参数,f(x)是x和y的函数关系。

通过参数方程,可以描述一个特定点在空间中的位置,也可以将它们转换为坐标系中的数学模型。

参数方程有很多种,如线性方程,抛物线方程,圆方程,三次方程等。

最后,坐标系和参数方程有着密切的关系,一般来说,坐标系用于定位空间中的点,而参数方程则可以将这些点转换为可视化的数学模型。

换句话说,坐标系可以用来定位空间中的点,而参数方程则可以将这些点转换为可以方便描述空间中点的轨迹。

总之,坐标系和参数方程对学习高中数学有着非常重要的意义。

坐标系可以用来定位空间中的点,而参数方程可以将这些点转换为可以方便描述空间中点的轨迹。

希望本文能够帮助读者更好地理解这两
个概念,从而更好地学习数学。

高中数学:坐标系与参数方程

高中数学:坐标系与参数方程

解析 曲线ρ=2sin θ化为直角坐标系方程为x2+y2-2y=
0. 由ρcos θ=-1可化为x=-1.将x=-1代入x2+y2-2y=0
得x=-1,y=1,因此交点的直角坐标为(-1,1),化为
极坐标为
2,34π.
探究提高 解决这类问题一般有两种思路.一是将极 坐标方程化为直角坐标方程,求出交点的直角坐标, 再将其化为极坐标;二是将曲线的极坐标方程联立, 根据限制条件求出极坐标.要注意题目所给的限制条 件及隐含条件.
(1)当圆心位于极点,半径为 r:ρ=r; (2)当圆心位于 M(r,0),半径为 r:ρ=2rcos θ; (3)当圆心位于 M(r,π2),半径为 r:ρ=2rsin θ.
4.直线的参数方程
过定点 M(x0,y0),倾斜角为 α 的直线 l 的参数方
程为xy= =xy00+ +ttcsions
6.(2010·陕西)已知圆 C 的参数方程为xy==c1o+s sαi,n α (α
为参数),以原点为极点,x 轴正半轴为极轴建立极
坐标系,直线 l 的极坐标方程为 ρsin θ=1,则直线 l 与圆 C 的交点的直角坐标为__(_-__1_,1_)_,__(_1_,1_)___.
解析 ∵y=ρsin θ, ∴直线 l 的直角坐标方程为 y=1. 由xy==c1o+s sαi,n α 得 x2+(y-1)2=1. 由yx=2+1(,y-1)2=1 得xy==-1 1, 或xy==11,. ∴直线 l 与圆 C 的交点的直角坐标为(-1,1)和(1,1).
(1)化 C1,C2 的方程为普通方程,并说明它们分别表 示什么曲线;
(2)若 C1 上的点 P 对应的参数为 t=π2,Q 为 C2 上的
动点,求 PQ 中点 M 到直线 C3:xy==-3+22+t,t (t 为

高中数学知识点总结( 坐标系与参数方程 第一节 坐标系)

 高中数学知识点总结( 坐标系与参数方程 第一节 坐标系)

坐标系与参数方程第一节 坐标系一、基础知识1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·xλ>0,y ′=μ·y μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对ρ,θ叫做点M 的极坐标,记为M ρ,θ.一般不作特殊说明时,我们认为ρ ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ), 极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0. 4.简单曲线的极坐标方程曲线极坐标方程 圆心为极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r,0),半径为r 的圆 ρ=2r cos θ⎝⎛⎭⎫-π2≤θ≤π2 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆 ρ=2r sin θ(0≤θ<π)过极点,倾斜角为α的直线 θ=α(ρ∈R)或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线 ρcos θ=a ⎝⎛⎭⎫-π2<θ<π2 过点⎝⎛⎭⎫a ,π2,与极轴平行的直线 ρsin θ=a (0<θ<π)考点一 平面直角坐标系下图形的伸缩变换[典例] 求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标. [解] 设曲线C ′上任意一点P (x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程, 可见仍是双曲线,则焦点(-5,0),(5,0)为所求. [解题技法] 伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx λ>0,y ′=μy μ>0的作用下的变换方程的求法是将⎩⎨⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[提醒] 应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的坐标(x ′,y ′).[题组训练]1.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入曲线y ′=3sin ⎝⎛⎭⎫x ′+π6得 3y =3sin ⎝⎛⎭⎫2x +π6,整理得y =sin ⎝⎛⎭⎫2x +π6, 故f (x )=sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.2.将圆x 2+y 2=1变换为椭圆x 225+y 216=1的一个伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy (λ,μ>0),求λ,μ的值.解:将变换后的椭圆x 225+y 216=1改写为x ′225+y ′216=1,把伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy (λ,μ>0)代入上式得:λ2x 225+μ2y 216=1即⎝⎛⎭⎫λ52x 2+⎝⎛⎭⎫μ42y 2=1,与x 2+y 2=1, 比较系数得⎩⎨⎧⎝⎛⎭⎫λ52=1,⎝⎛⎭⎫μ42=1,所以⎩⎪⎨⎪⎧λ=5,μ=4.考点二 极坐标与直角坐标的互化[典例] (2018·江苏高考)在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.[解] 因为曲线C 的极坐标方程为ρ=4cos θ,化成直角坐标方程为(x -2)2+y 2=4, 所以曲线C 是圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π6- θ=2, 化成直角坐标方程为y =33(x -4), 则直线l 过A (4,0),倾斜角为π6,所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6.如图,连接OB .因为OA 为直径,从而∠OBA =π2,所以AB =4cos π6=2 3.所以直线l 被曲线C 截得的弦长为2 3.[解题技法]1.极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.2.极角的确定由tan θ确定角θ时,应根据点P 所在象限取最小正角. (1)当x ≠0时,θ角才能由tan θ=yx 按上述方法确定.(2)当x =0时,tan θ没有意义,这时可分三种情况处理:当x =0,y =0时,θ可取任何值;当x =0,y >0时,可取θ=π2;当x =0,y <0时,可取θ=3π2.[题组训练]1.(2019·郑州质检)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22(ρ≥0,0≤θ<2π). (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0, 直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为x -y +1=0.(2)将两直角坐标方程联立得⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1), 将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2即为所求. 2.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cos ⎝⎛⎭⎫θ-π4=2. (1)求圆O 1和圆O 2的直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4.因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22. 考点三 曲线的极坐标方程的应用[典例] (2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. [解] (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3=2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32. 即当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. [解题技法]1.求简单曲线的极坐标方程的方法(1)设点M (ρ,θ)为曲线上任意一点,由已知条件,构造出三角形,利用三角函数及正、余弦定理求解|OM |与θ的关系.(2)先求出曲线的直角坐标方程,再利用极坐标与直角坐标的变换公式,把直角坐标方程化为极坐标方程.2.利用极坐标系解决问题的技巧(1)用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.(2)已知极坐标方程解答最值问题时,通常可转化为三角函数模型求最值问题,其比直角坐标系中求最值的运算量小.[提醒] 在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性. [题组训练]1.(2019·青岛质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)设直线l 的极坐标方程是ρsin ⎝⎛⎭⎫θ+π3=2,射线OM :θ=π6与圆C 的交点为P ,与直线l 的交点为Q ,求线段P Q 的长.解:(1)圆C 的普通方程为x 2+(y -1)2=1,又x =ρcos θ,y =ρsin θ, 所以圆C 的极坐标方程为ρ=2sin θ. (2)把θ=π6代入圆的极坐标方程可得ρP =1,把θ=π6代入直线l 的极坐标方程可得ρQ =2,所以|P Q|=|ρP -ρQ |=1.2.(2018·湖北八校联考)已知曲线C 的极坐标方程为ρ2=9cos 2 θ+9sin 2 θ,以极点为平面直角坐标系的原点O ,极轴为x 轴的正半轴建立平面直角坐标系.(1)求曲线C 的直角坐标方程;(2)A ,B 为曲线C 上两点,若OA ⊥OB ,求1|OA |2+1|OB |2的值.解:(1)由ρ2=9cos 2θ+9sin 2θ得ρ2cos 2θ+9ρ2sin 2θ=9,将x =ρcos θ,y =ρsin θ代入得到曲线C 的直角坐标方程是x 29+y 2=1.(2)因为ρ2=9cos 2θ+9sin 2θ,所以1ρ2=cos 2θ9+sin 2θ, 由OA ⊥OB ,设A (ρ1,α),则点B 的坐标可设为⎝⎛⎭⎫ρ2,α±π2, 所以1|OA |2+1|OB |2=1ρ21+1ρ22=cos 2α9+sin 2α+sin 2α9+cos 2α=19+1=109.[课时跟踪检测]1.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝⎛⎭⎫θ+π6=1化为直角坐标方程为3x -y =2, 即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即(x -3)2=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 2.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径|PC |=22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.3.在直角坐标系xOy 中,圆C 的方程为(x -3)2+(y +1)2=9,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线OP :θ=π6(ρ∈R)与圆C 交于点M ,N ,求线段MN 的长.解:(1)(x -3)2+(y +1)2=9可化为x 2+y 2-23x +2y -5=0, 故其极坐标方程为ρ2-23ρcos θ+2ρsin θ-5=0. (2)将θ=π6代入ρ2-23ρcos θ+2ρsin θ-5=0,得ρ2-2ρ-5=0,所以ρ1+ρ2=2,ρ1ρ2=-5, 所以|MN |=|ρ1-ρ2|=4+20=2 6.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎫θ-π3=1得ρ⎝⎛⎭⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎫0,233.所以点P 的直角坐标为⎝⎛⎭⎫1,33,则点P 的极坐标为⎝⎛⎭⎫233,π6, 所以直线OP 的极坐标方程为θ=π6(ρ∈R).5.(2018·南昌摸底调研)在平面直角坐标系xOy 中,曲线C 1的方程为(x -3)2+(y -2)2=4,直线C 2的方程为y =33x ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP |·|O Q|的值. 解:(1)∵曲线C 1的普通方程为(x -3)2+(y -2)2=4, 即x 2+y 2-23x -4y +3=0,∴曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0. ∵直线C 2的方程为y =33x , ∴直线C 2的极坐标方程为θ=π6(ρ∈R).(2)设P (ρ1,θ1),Q(ρ2,θ2),将θ=π6(ρ∈R)代入ρ2-23ρcos θ-4ρsin θ+3=0,得ρ2-5ρ+3=0,∴ρ1ρ2=3,∴|OP |·|O Q|=ρ1ρ2=3.6.(2019·山西八校联考)在直角坐标系xOy 中,曲线C 的方程为(x -3)2+(y -4)2=25.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 分别交于异于原点的A ,B 两点,求△AOB的面积.解:(1)∵曲线C 的普通方程为(x -3)2+(y -4)2=25, 即x 2+y 2-6x -8y =0.∴曲线C 的极坐标方程为ρ=6cos θ+8sin θ. (2)设A ⎝⎛⎭⎫ρ1,π6,B ⎝⎛⎭⎫ρ2,π3. 把θ=π6代入ρ=6cos θ+8sin θ,得ρ1=4+33,∴A ⎝⎛⎭⎫4+33,π6. 把θ=π3代入ρ=6cos θ+8sin θ,得ρ2=3+43,∴B ⎝⎛⎭⎫3+43,π3. ∴S △AOB =12ρ1ρ2sin ∠AOB=12(4+33)(3+43)sin ⎝⎛⎭⎫π3-π6 =12+2534.7.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.8.(2019·郑州一中模拟)在平面直角坐标系中,曲线C 1的普通方程为x 2+y 2+2x -4=0,曲线C 2的方程为y 2=x ,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 1,C 2的极坐标方程;(2)求曲线C 1与C 2交点的极坐标,其中ρ≥0,0≤θ<2π.解:(1)依题意,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2+2x -4=0可得ρ2+2ρcos θ-4=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入y 2=x ,得ρsin 2θ=cos θ. 故曲线C 1的极坐标方程为ρ2+2ρcos θ-4=0,曲线C 2的极坐标方程为ρsin 2θ=cos θ. (2)将y 2=x 代入x 2+y 2+2x -4=0,得x 2+3x -4=0,解得x =1,x =-4(舍去), 当x =1时,y =±1,所以曲线C 1与C 2交点的直角坐标分别为(1,1),(1,-1),记A (1,1),B (1,-1),所以ρA =1+1=2,ρB =1+1=2,tan θA =1,tan θB =-1, 因为ρ≥0,0≤θ<2π,点A 在第一象限,点B 在第四象限,所以θA =π4,θB =7π4,故曲线C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,7π4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)双曲线ax22-by22=1
的参数方程为xy==abtsaenc
θ θ
(θ 为
参数).
(3)抛物线 y2=2px(p>0)的参数方程为xy==22pptt2 .
热点分类突破
题型一 极坐标与直角坐标(方程)的互化 例 1 (1)点 P 的直角坐标为(1,- 3),求点 P 的极坐
例 2 (2010·广东)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线
ρ = 2sin θ 与 ρcos θ = - 1 的 交 点 的 极 坐 标 为 __( _2_,_43_π_)_. 思维启迪 (1)化为直角坐标方程求交点,再将交点
坐标化为极坐标.
(2)直接联立极坐标方程求解.
解析 曲线ρ=2sin θ化为直角坐标系方程为x2+y2-2y=
主干知识梳理
1.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x 轴正半轴作为极 轴,且在两坐标系中取相同的长度单位.设 M 是 平面内的任意一点,它的直角坐标、极坐标分别为 (x,y)和(ρ,θ),则
x=ρcos θ y=ρsin θ
ρ2=x2+y2
, tan
θ=xy(x≠0)
标将不唯一. (2)在曲线的方程进行互化时,一定要注意变量的范 围.要注意转化的等价性.
变式训练 1 求曲线 ρ=4sin θ 的直角坐标方程.
解 ∵ρ=4sin θ, ∴ρ2=4ρsin θ, ∴x2+y2=4y, 即 x2+(y-2)2=4. ∴曲线的直角坐标方程为 x2+(y-2)2=4.
题型二 曲线的极坐标方程的应用
第3讲 坐标系与参数方程 感悟高考 明确考向
(2010·广东)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(cos θ +sin θ)=1与ρ(sin θ-cos θ)=1的交点的极坐标为_1_,__π2_.
解析 曲线 ρ(cos θ+sin θ)=1 化为直角坐标方程为 x +y=1,ρ(sin θ-cos θ)=1 化为直角坐标方程为 y-x

1.





x+y=1, y-x=1,

x=0, Leabharlann y=1,则交点为(0,1),对应的极坐标为1,π2.
考题分析 本小题考查了极坐标的概念,曲线的极坐 标方程以及利用曲线的极坐标方程求曲线的交点问 题.考查了极坐标的基础知识以及运用极坐标解决问 题的能力.
易错提醒 (1)易忽略 ρ≠0 的条件和 0≤θ<2π. (2)忽视极坐标与直角坐标的互化.
(θ 为参数).
(1)化 C1,C2 的方程为普通方程,并说明它们分别表 示什么曲线;
0. 由ρcos θ=-1可化为x=-1.将x=-1代入x2+y2-2y=0
得x=-1,y=1,因此交点的直角坐标为(-1,1),化为

极坐标为

2,34π.
探究提高 解决这类问题一般有两种思路.一是将极 坐标方程化为直角坐标方程,求出交点的直角坐标, 再将其化为极坐标;二是将曲线的极坐标方程联立, 根据限制条件求出极坐标.要注意题目所给的限制条 件及隐含条件.
圆心C的直角坐标为( 22, 22), 故C点满足直线l的方程,则直线l经过圆C的圆心, 故直线被圆所截得的弦长为直径,为2.
题型三 参数方程及其应用
例3
(2009·海南)已知曲线 C1:xy==3-+4+sinctos t,
(t
为参数),曲线
C2:xy==83csions
θ, θ
(1)当圆心位于极点,半径为 r:ρ=r; (2)当圆心位于 M(r,0),半径为 r:ρ=2rcos θ; (3)当圆心位于 M(r,π2),半径为 r:ρ=2rsin θ.
4.直线的参数方程
过定点 M(x0,y0),倾斜角为 α 的直线 l 的参数方
程为xy= =xy00+ +ttcsions
标(0≤θ<2π); (2)将曲线的极坐标方程 sin θ=13化为直角坐标方程. 思维启迪 用极坐标与直角坐标的互化公式求解.
解 (1)∵P 的直角坐标为(1,- 3), ∴ρ= 12+(- 3)2=2,tan θ=yx=- 3. 又点 P 在第四象限,0≤θ<2π,∴θ=53π. ∴P 的极坐标为(2,53π).
(2)∵sin θ=13,∴ρsin θ=13ρ, ∴y=31 x2+y2,∴x2=8y2, ∴y= 42x,y=- 42x.又 y=13 x2+y2>0, ∴y= 42x(x>0)和 y=- 42x(x<0).
探究提高 (1)在由点的直角坐标化为极坐标时,一 定要注意点所在的象限和极角的范围,否则点的极坐
.
2.直线的极坐标方程
若直线过点 M(ρ0,θ0),且极轴到此直线的角为 α,
则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).
几个特殊位置的直线的极坐标方程
(1)直线过极点:θ=α; (2)直线过点 M(a,0)且垂直于极轴:ρcos θ=a; (3)直线过 M(b,π2)且平行于极轴:ρsin θ=b. 3.圆的极坐标方程 若圆心为 M(ρ0,θ0),半径为 r 的圆方程为: ρ2-2ρ0ρcos(θ-θ0)+ρ20-r2=0 几个特殊位置的圆的极坐标方程
变式训练 2 在极坐标系中,已知直线 l 的极坐标方程 为 ρsin(θ+π4)=1,圆 C 的圆心是 C(1,π4),半径为 1. (1)求圆 C 的极坐标方程; (2)求直线 l 被圆 C 所截得的弦长.
解 (1)设O为极点,OD为圆C的直径,A(ρ,θ)为圆C 上的一个动点,则∠AOD=π4-θ或∠AOD=θ-π4, OA=ODcos(4π-θ)或OA=ODcos(θ-π4), 所以圆C的极坐标方程为ρ=2cos(θ-4π). (2)直线l的直角坐标方程为x+y- 2=0,
α, α
(t 为参数).
5.圆的参数方程
圆心在点 M(x0,y0),半径为 r 的圆的参数方程为
x=x0+rcos θ y=y0+rsin θ
(θ 为参数,0≤θ≤2π).
6.圆锥曲线的参数方程
(1)椭圆ax22+by22=1
的参数方程为xy==abcsions
θ θ
(θ 为
参数).
相关文档
最新文档