传热学 总结
高等传热学知识点总结2024
引言概述:在高等传热学中,掌握各种传热方式以及其基本原理是非常重要的。
本文将分析五个大点,其中包括传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射。
每个大点都将进一步分解为五到九个小点,详细阐述相关知识。
通过本文的学习和理解,读者将能够深入了解高等传热学的知识点。
正文内容:一、传热方式的分类1.传热方式的基本分类2.对流传热与传导传热的区别3.辐射传热的特点及其应用4.相变传热的机理及其实例5.传热方式在工程中的应用案例二、传热边界条件1.传热边界条件的定义及分类2.壁面传热通量的计算方法3.壁面传热系数的影响因素4.壁面传热条件的实验测定方法5.边界条件的选择与优化三、传热传导1.传热传导的基本原理2.导热系数的计算方法3.等效导热系数的定义及其应用4.传热传导方程的推导和求解方法5.传热传导的数值模拟方法及其应用四、传热对流1.对流传热的基本原理2.传热换热系数的计算方法3.流体流动与传热的耦合关系4.对流传热的实验测定方法5.传热对流的同非稳态传热问题五、传热辐射1.辐射传热的基本原理2.黑体辐射的特性和计算方法3.辐射传热过程的数学模型4.辐射系数的影响因素及其计算方法5.传热辐射的应用案例和工程实例总结:通过对高等传热学知识点的总结,我们深入了解了传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射等重要知识点。
掌握这些知识,可以帮助我们更好地理解传热现象的基本原理及其在工程实践中的应用。
同时,对于热传导与辐射换热和传热对流以及其边界条件的掌握,有助于我们解决工程中的传热问题,优化设计和提高热能利用效率。
在今后的学习和实践中,我们应不断巩固和拓展这些知识,以更好地应对传热学的挑战,并为实际工程问题提供合理的解决方案。
(完整版)传热学知识点总结
Φ-=BA c t t R 1211k R h h δλ=++传热学与工程热力学的关系:a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律,传热学研究过程和非平衡态热量传递规律。
b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。
c 传热学以热力学第一定律和第二定律为基础。
传热学研究内容传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。
热传导a 必须有温差b 直接接触c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移d 没有能量形式的转化热对流a 必须有流体的宏观运动,必须有温差;b 对流换热既有对流,也有导热;c 流体与壁面必须直接接触;d 没有热量形式之间的转化。
热辐射:a 不需要物体直接接触,且在真空中辐射能的传递最有效。
b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。
c .只要温度大于零就有.........能量..辐射。
...d .物体的...辐射能力与其温度性质..........有关。
...传热热阻与欧姆定律在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2)第二章温度场:描述了各个时刻....物体内所有各点....的温度分布。
稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变非稳态温度场:工作条件变动的温度场,温度分布随时间而变。
等温面:温度场中同一瞬间相同各点连成的面等温线:在任何一个二维的截面上等温面表现为肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0之比接触热阻Rc :壁与壁之间真正完全接触,增加了附加的传递阻力三类边界条件第一类:规定了边界上的温度值第二类:规定了边界上的热流密度值第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度.....。
传热学知识点总结考研
传热学知识点总结考研传热学是热力学的一个重要分支,研究热量在物体之间传递的过程。
在工程学、化学工程、材料科学和环境科学等领域都有着重要的应用。
本文将围绕传热学的基本理论和应用进行系统总结,希望能够对传热学的学习和研究有所帮助。
一、传热学的基本概念1. 传热的定义传热是热量在物体之间传递的过程,可以通过传导、对流和辐射这三种方式进行。
传热的目的是使物体的温度相等或者使热量从高温物体传递到低温物体上。
2. 传热的基本原理传热的基本原理是热量由高温区流向低温区,其基本规律可以用热传导方程、对流传热方程和辐射传热方程来描述。
3. 传热的分类根据传热的方式不同,可以将传热分为传导传热、对流传热和辐射传热。
传导传热是由物体内部的分子传递热量,对流传热是通过流体的运动传递热量,而辐射传热是通过电磁波辐射传递热量。
二、传热学的基本理论1. 传导传热传导传热是由固体内部的分子、原子或离子的运动方式传递热量。
传导传热可以用热传导方程或者傅里叶热传导定律来描述,其中热传导方程可以表达为:q=-kA*(dT/dx),其中q 表示单位时间内通过物体的热量,k表示热导率,A是传热截面积,dT/dx表示温度梯度。
2. 对流传热对流传热是由流体的运动方式传递热量,主要包括自然对流和强制对流两种方式。
自然对流是由温差引起的流体的自然对流运动,而强制对流是通过外力使流体发生运动。
对流传热可以用波亚松定律或者努塞尔数来描述。
3. 辐射传热辐射传热是通过电磁波的辐射方式传递热量,主要取决于物体的温度和表面的发射率等。
辐射传热可以用斯特凡—波尔兹曼定律或者基尔霍夫定律来描述。
4. 传热的复合方式在实际传热过程中,通常会同时存在传导、对流和辐射三种方式,这就需要将它们进行组合计算。
可以通过综合利用传热系数来描述传热的复合方式。
三、传热学的应用1. 传热器设备传热器是用于传热的设备,广泛应用于化工、能源、环保等领域。
常见的传热器包括换热器、蒸发器、冷凝器和加热器等。
传热学知识点总结
传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
传热学知识点概念总结
传热学知识点概念总结传热学是研究热量传递的科学,主要涉及热传导、热辐射和对流传热三个方面。
下面将对传热学中的一些重要知识点进行概念总结。
1.热传导:热传导是指物质内部由于分子或原子之间的相互作用而引起的热量传递。
热传导的速率与传热介质的导热性质有关,如导热系数、传热介质的温度梯度和传热介质的厚度。
2.热辐射:热辐射是指由于物体表面温度而产生的电磁辐射,无需经过介质媒质进行传热。
热辐射的能量传递与物体的温度和表面特性有关,如表面发射率和吸收率。
3.对流传热:对流传热是指通过流体的流动使热量传递的过程。
对流传热受到流体流动速度、温度差和流体介质的热传导性质的影响。
对流传热可以分为自然对流和强制对流两种形式。
4.导热系数:导热系数是描述材料导热性质的物理量,定义为单位厚度和单位温度梯度时的热流密度。
导热系数是描述热传导能力大小的重要参数,与物质的组成、结构和温度有关。
5.温度梯度:温度梯度是指在物体内部或空间中温度随着距离的变化率。
温度梯度越大,热传导的速率越快。
6.热阻:热阻是指单位时间内单位温差时热传导的阻力。
热阻与传热介质的导热系数和厚度有关。
可通过热阻来描述传热介质对热传导的阻碍程度。
7.热容量:热容量是指单位质量物质温度升高单位温度所需的热量。
热容量与物质的物理性质有关,如比热容和密度。
8.辐射强度:辐射强度是指单位时间内单位面积上辐射通过的能量。
辐射强度与物体的表面发射率和温度有关。
9.辐射传热:辐射传热是指由于物体表面发射和吸收辐射而进行的传热。
辐射传热受到物体表面发射率、吸收率、温度差和介质的辐射传递能力的影响。
10.热傅里叶定律:热傅里叶定律是描述物体内部热传导的定律,其表达式为热流密度与传热介质的导热系数、温度梯度和传热介质的横截面积成正比。
以上是传热学中一些重要的知识点的概念总结。
传热学的研究对于理解和应用热量传递过程具有重要意义,可广泛应用于工程领域的热处理、热能转化和热工学等方面。
传热学基本知识总结
传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。
传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。
以下是对传热学基本知识的总结。
一、传热的基本概念1.温度:物体内部分子运动的程度的度量。
温度高低决定了热能的传递方向。
2.热量:物体之间由于温度差异而传递的能量。
热量沿温度梯度从高温区向低温区传递。
3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。
4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。
二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。
2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。
3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。
三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。
热导率取决于物质本身的性质,与物质的材料、温度有关。
热导率越大,物体传热能力越强。
四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。
2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。
五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。
2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。
3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。
在工程中,传热学常常运用于热工系统的设计和优化。
工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。
例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。
传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。
传热学知识点总结
传热学知识点总结传热学是研究热量从一个物体或一个系统传递到另一个物体或系统的科学。
它是热力学的一部分,具有广泛的应用领域,包括能源转换、热力学系统设计和工艺优化等。
以下是传热学的一些重要知识点的总结:1.热传导:热量通过直接接触和分子间的碰撞传递。
在固体中,热传导是最主要的传热方式,其传递速率与物质的热导率、温度梯度和传热距离有关。
2.热对流:热量通过流体(液体或气体)的流动传递。
对流传热的速率取决于流体的速度、温度差和传热面积。
3.热辐射:热能以电磁波的形式从热源发出,无需介质介导即可传递热量。
热辐射与物体的温度和表面特性有关,如表面的发射率和吸收率。
4.导热方程:描述了热传导现象,可以用来计算温度随时间和空间的变化。
它与热导率、物体的几何形状和边界条件有关。
5.导热系数:材料的物理性质,描述了材料导热性能的好坏。
较高的导热系数表示材料更好地传递热量。
6.热对流换热系数:描述了流体换热的能力,表示单位面积上的热量传递速率和温度差之间的关系。
7.四能截面:描述了热辐射的性质,反映了物体吸收、反射和透射电磁波的能力。
8.热阻和热导率:用于描述物体或系统中热量传递的难易程度。
热阻与热导率成反比。
9.传热过程中的能量守恒:热量传递过程中,能量守恒定律适用。
传热的总能量输入等于输出。
10.辐射传热公式:根据黑体辐射定律,描述了热辐射的能量传递,常用于计算热源辐射的热量。
11.对流换热公式:根据精细的实验和理论研究,发展了一系列对流换热公式,用于估算流体对流传热。
12.热导率与温度的关系:大多数材料的热导率随温度的升高而增大,但也有一些例外情况。
13. 传热表征:传热通常使用无量纲数值来表征,如Nusselt数、Prandtl数和Reynolds数,它们描述了传热过程中流体的性质和行为。
14.界面传热:当两个物体或系统接触时,它们之间的传热称为界面传热。
界面传热常见的形式包括对流传热和热辐射。
15.传热器件和应用:传热学的知识应用于各种传热器件和系统,如换热器、蒸发器、冷却器等,为工程和科技应用提供了基础。
传热学知识点总结考研真题
传热学知识点总结考研真题一、传热学概念传热学是研究物体之间热量传递的学科,研究热量传递的基本规律和热传递过程的数学模型。
热传递是热量自高温物体传递到低温物体的过程,主要包括传导、对流和辐射三种方式。
二、传热学基本知识1. 热量传递的基本规律热力学第一定律和第二定律规定了热量传递的基本规律。
第一定律要求能量守恒,在热传递中热量从高温物体流向低温物体,使热能分布均匀。
第二定律限制了热量传递的方向,指出热量自热量大者传递到热量小者。
2. 传热的基本方式传导是通过物体内部分子热运动传递热量的方式,是当物体内部温度不均匀时,热量由高温区向低温区传递。
对流是液体或气体中分子受热膨胀上升,冷却后下沉的过程,是传热最常见的方式。
辐射是热能以电磁波的形式传递的方式,适用于真空或无透明物质的热传递。
3. 传热的数学模型传热的数学模型主要采用热传导方程和流体力学方程,通过数学公式和定理来描述传热过程,求解传热问题。
热传导方程描述了传导过程中热量的扩散规律,流体力学方程描述了流体传热过程中的动力学规律。
4. 传热的工程应用传热学在工程中有着广泛的应用,如热工程、制冷空调、化工工程、建筑工程等都离不开传热学的理论和方法。
热传递是很多工程中必不可少的过程,通过传热学的知识和方法可以提高工程的效率和质量。
三、传热学的研究内容1. 传热传质物理基础传热传质物理基础包括热力学、流体力学、传热学、传质学等多个学科知识,主要研究物体间热量传递的基本规律和热量传递过程的数学模型。
此外,也需要涉及热传导、对流传热、辐射传热等传热方式的研究。
2. 传热的数学模型与方法传热学研究中需要建立相应的数学模型,并通过数学方法来解决传热问题。
传热的数学模型可以分为定常传热和非定常传热,通过微分方程和积分方程来描述传热过程,并通过数值计算方法来求解传热问题。
3. 传热的实验方法与技术传热学研究中需要进行大量的实验,通过实验来验证传热理论和模型的正确性。
传热学公式总结
传热学公式总结在物理学中,传热学是一个重要的分支领域,研究物质之间热量的传递方式和规律。
在实际应用中,我们常常需要利用传热学公式来计算热传导、对流和辐射等过程中的热量变化。
本文将对传热学中常用的公式进行总结和归纳,帮助读者更好地理解和应用相关知识。
1. 热传导方程热传导是物质内部由于温度差异而引起的热量传递过程。
热传导的速率可以根据傅里叶定律描述:q = -kA(dT/dx)其中,q表示单位时间内通过横截面A传导的热量,k为材料的热导率,dT/dx表示单位长度内温度的变化率。
这个公式说明了热量传导与温度梯度之间的关系,温度梯度越大,热传导速率就越大。
2. 热对流公式热对流是通过流体介质的热传递方式,常见于气体和液体中。
热对流可以根据牛顿冷却定律进行计算:q = hA(Ts - T∞)其中,q表示通过表面积A从物体表面传递的热量,h为热对流系数,Ts为表面温度,T∞为流体的远场/环境温度。
牛顿冷却定律的基本思想是热量传递与温度差和表面积之间成正比,而且逆向传热过程中的温度差往往比较小。
3. 辐射传热公式辐射传热是通过电磁波辐射的方式进行的,不需要物质介质。
具体的辐射传热公式可以根据斯特藩-玻尔兹曼定律给出:q = εσA(T⁴s - T⁴∞)其中,q为单位时间内通过表面积A传递的辐射热量,ε为发射率(表征表面辐射能力的一种无量纲值),σ为斯特藩-玻尔兹曼常数,Ts为表面温度,T∞为远场/环境温度。
斯特藩-玻尔兹曼定律说明了辐射热量与表面温度的四次方成正比,这意味着一个小的温度提高可以显著增加辐射传热率。
4. 复合热传递在实际情况中,热传递往往是多种传热方式的复合过程。
例如,一个物体既有热传导,又有对流和辐射。
在这种情况下,总的热传递可以通过下列公式求得:q = q₁ + q₂ + q₃其中,q₁、q₂和q₃分别表示通过热传导、热对流和辐射传递的热量。
根据具体情况,我们可以使用以上公式中的一个或多个来计算总的热传递。
《传热学》名词解释总结
《传热学》名词解释总结《传热学》是一门研究热量传递规律的学科,在这门学科中有许多重要的名词需要我们去理解。
首先是热传导。
热传导是指由于物质的分子、原子或电子等微观粒子的热运动,而在物体内部产生的热量传递现象。
就像是一根金属棒,一端被加热,另一端过一会儿也会变热,这就是热传导在起作用。
热传导的速率与物体的导热系数有关,导热系数大的物质,热传导就快。
例如,金属的导热系数通常比非金属大很多,铜和铝就是导热性能非常好的材料,所以它们常常被用于制作散热器,因为它们能够快速地将热量传导出去。
热对流也很关键。
热对流是指流体各部分之间发生相对位移而引起的热量传递过程。
它只能发生在流体中,无论是气体还是液体。
比如烧开水的时候,壶底的水受热后密度变小会上升,周围较冷的水会流过来补充,这样就形成了热对流。
热对流的强度与流体的流速、流体的物理性质等因素密切相关。
在实际应用中,像汽车发动机的冷却系统就是利用热对流的原理,冷却液在发动机和散热器之间循环流动,将发动机产生的热量带走。
热辐射是一种特殊的传热方式。
它是通过电磁波来传递热量的,不需要任何介质,可以在真空中进行。
太阳向地球传递热量就是通过热辐射。
热辐射的能量大小与物体的温度、表面性质等有关。
例如,黑色的物体表面比白色的物体表面吸收和发射热辐射的能力更强。
这就是为什么在夏天,穿黑色衣服会感觉比穿白色衣服更热,因为黑色衣服吸收了更多的太阳热辐射。
导热系数这个名词也不容忽视。
它是衡量物质导热能力的一个物理量,单位是瓦每米开尔文。
不同物质的导热系数差异很大,除了前面提到的金属导热系数大之外,像空气的导热系数就很小。
这就是为什么我们会使用双层玻璃来保温,中间的空气层起到了阻碍热量传导的作用,因为空气导热系数小,热量不容易通过空气层传导。
对流传热系数同样重要。
它反映了流体与固体表面之间对流传热的强弱程度。
对流传热系数的大小受到流体的种类、流速、温度以及固体表面的形状等多种因素的影响。
传热学心得体会
传热学心得体会传热学是研究物体内部或不同物体之间热量传递的学科。
在传热学的学习与实践过程中,我深感其重要性与应用价值。
本文将从传热学理论学习、实验实践和应用例子三个方面,分享我对传热学的心得体会。
一、传热学理论学习通过系统地学习传热学理论,我深入理解了传热的基本原理和各种传热方式。
传热学理论告诉我们,热量可以通过传导、对流和辐射三种方式传递。
传导是指热质固体的直接传递方式,对流是指热质流体的传递方式,辐射是指热质间通过电磁波辐射传热的方式。
不同的物体、环境和实际情况下,传热过程可能综合了这三种方式。
在学习传热学理论时,我深入研究了传热方程与传热系数的计算方法,了解了热传导的相关理论模型和传热表达式。
这些知识的掌握使我能够更好地理解和分析传热现象,为后续的传热实验与工程应用打下了基础。
二、传热实验实践通过传热实验实践,我加深了对传热学理论的理解,并学会了如何利用仪器设备进行传热实验的操作。
在实验中,我注意到不同物体材料、形状和温度差异对传热效果的影响。
通过测量和记录实验数据,我近距离观察了传热过程中温度的变化和传热速率的差异。
实验结果与传热学理论相互印证,使我对传热现象有了更加直观和深刻的认识。
同时,实验还提醒我注意实验条件的控制和操作技巧的熟练,确保实验的准确性和可靠性。
三、传热学在生活中的应用传热学理论和实验实践的学习使我认识到传热学在实际生活中的广泛应用。
传热学的知识可以帮助我们更好地理解和解决生活中的热传递问题。
在建筑领域,合理设计建筑的隔热和保温结构,可以提高建筑节能效果,减少能源消耗。
通过热传递的分析,我们可以选择合适的材料和技术手段,优化空调和采暖系统,提高室内温度舒适度。
在工业生产中,传热学的应用可以帮助我们提高热能的利用效率,降低能源消耗和生产成本。
合理设计工业设备和加热系统的传热方式,可以提高传热效率,提升工业生产的效率和质量。
此外,传热学还广泛应用于热交换器、冷却系统、能源转换等领域。
传热学知识点总结
传热学知识点总结传热学是研究物质内部和不同物质之间能量传递的一门科学。
它广泛应用于工程领域,涉及到热传导、对流传热和辐射传热等多个方面。
下面我将总结一些传热学的重要知识点。
1.傅立叶定律:它是传热学中最基本的定律之一,也被称为热传导定律。
根据傅立叶定律,热传导速率正比于温度梯度的负值。
数学上可以表示为q=-k∇T,其中q是单位时间内的热流量,k是导热系数,∇T是温度梯度。
2.热传导:指的是热量通过物质内部的传递过程。
在固体中,热传导主要通过分子振动、电子热传导和晶格热传导等方式进行。
3.热对流:指的是通过流体的流动来传递热量。
热对流可以分为自然对流和强制对流两种形式。
自然对流是由于密度差异引起的,而强制对流是通过外部力的作用产生的。
4.辐射传热:是指热量通过电磁波的辐射传递。
所有物体在温度大于绝对零度时都会发出辐射,而辐射传热不需要通过介质传递。
辐射传热受到物体的表面性质和温度的影响。
5.热导率:是材料传导热量的能力的度量,通常用导热系数k来表示。
热导率越大,材料传导热量的能力就越强。
各种材料的热导率不同,可以用于选择合适的材料来满足特定的传热要求。
6.热阻和热导:热阻是指阻碍热量传递的能力。
热阻的大小与材料的导热性质和传热面积有关。
热导是热量在单位时间内通过材料的能力,可以用于计算传热速率。
7.对流换热系数:对流传热时,介质和界面的性质会影响传热速率。
通过引入对流换热系数h,可以描述介质与界面之间的热量传递能力。
对流换热系数与流体性质、流动方式和传热界面的条件有关。
8.对流传热的努塞尔数:努塞尔数是用于表征对流传热能力的无量纲数。
努塞尔数与热传导、对流传热系数和传热面积有关。
9.辐射传热的黑体辐射:黑体辐射指的是一个完美吸收和辐射的物体的辐射行为。
根据斯蒂芬-波尔兹曼定律,黑体辐射功率与温度的四次方成正比。
黑体辐射是辐射传热中一个重要的概念。
10.换热器:换热器是用于在两个流体之间传递热量的设备。
传热学期末复习专用总结
Gr gtl3 2
数是浮升力/粘滞力比值的一种量度。
瑞利数: Ra Gr Pr gvtl3
第12页/共27页
第13页/共27页
第七章 相变对流传热
凝结传热现象:蒸汽与低于饱和温度的壁面接触时,将汽化潜热释 放给固体壁面,并在壁面上形成凝结液的过程,称凝结传热现象。 凝结换热的分类:根据凝结液与壁面浸润能力不同分为膜状凝结与 珠状凝结。 膜状凝结:凝结液体能很好地湿润壁面,并能在壁面上均匀铺展成 膜的凝结形式,称膜状凝结。 特点:壁面上有一层液膜,凝结放出的相变热(潜热)须穿过液膜 才能传到冷却壁面上, 此时液膜成为主要的换热热阻。 珠状凝结:凝结液体不能很好地湿润壁面,在壁面上形成一个个小 液珠的凝结形式,称珠状凝结。 特点:凝结放出的潜热不须穿过液膜的阻力即可传到冷却壁面上。 所以,在其它条件相同时,珠状凝结的表面传热系数定大于膜状凝 结的传热系数。hd 5 10hf 珠状凝结好,但是难于实现,因此工业上多采用膜状凝结。
1)根据对流换热时是否发生相变分:相变对流换热和单相对
流换热。
2)根据引起流动的原因分:自然对流和强制对流。 对流换热的基本规律 < 牛顿冷却公式 > q ht Aht
h —比例系数(表面传热系数),单位 W/ m2 K 。
h 的物理意义:单位温差作用下通过单位面积的热流量。 一般地,就介质而言:水的对流传热比空气强烈; 就传热方式而言:有相变的强于无相变的;强制对流强于自然 对流。 3.热辐射:物体通过电磁波来传递能量的方式称为辐射。因热 的原因而发出辐射能的现象称为热辐射。
第9页/共27页
5.0
x Rex
c f 0.664Rex1 2
hx x
Nux
1
0.332
传热实训年终总结
传热实训年终总结一、实训内容与成果1. 理论学习系统学习了传热的基本原理,包括热传导、热对流和热辐射的概念、数学模型及影响因素。
掌握了传热系数的计算方法以及不同传热方式之间的能量转换关系。
2. 实验操作进行了热传导实验,通过测量不同材料的热导率,了解了材料的导热性能对传热过程的影响。
完成了热对流实验,研究了流体流速、温度差和管道形状等因素对对流换热系数的影响。
开展了热辐射实验,观察了物体表面温度、颜色和发射率对辐射传热的作用。
3. 数据处理与分析学会了运用专业软件对实验数据进行处理和绘图,能够准确地得出实验结果。
4. 项目成果成功完成了各项实训任务,实验数据准确可靠,为后续的课程学习和工程实践提供了有力的支持。
二、技能提升与收获1. 实践操作能力通过亲自动手操作实验设备,熟练掌握了各种仪器的使用方法,提高了自己的动手能力和实验技能。
在实验过程中,遇到了一些问题,如仪器故障、数据偏差等,通过自己的努力和团队的协作,成功解决了这些问题,培养了自己的问题解决能力和应变能力。
2. 理论联系实际的能力将课堂上学到的传热理论知识应用到实际实验中,加深了对知识的理解和掌握。
通过实验结果与理论值的对比,发现了理论知识在实际应用中的局限性,为今后的学习和研究提供了新的思路和方向。
3. 团队协作能力在实训过程中,与小组成员密切合作,共同完成实验任务。
通过分工协作、交流讨论,充分发挥了每个人的优势,提高了团队的工作效率。
在团队合作中,学会了倾听他人的意见和建议,尊重他人的想法,增强了团队的凝聚力和协作精神。
4. 数据分析与处理能力学会了运用统计学方法对实验数据进行分析和处理,能够准确地判断数据的可靠性和有效性。
三、不足之处与改进措施1. 不足之处在实验操作过程中,有时会出现操作不规范的情况,影响了实验结果的准确性。
对实验数据的分析还不够深入,只停留在表面现象,没有挖掘出数据背后的深层次原因。
在团队协作中,有时会缺乏沟通和协调,导致工作进度受到影响。
传热学复习总结
u x v 2 2 y x y
(2)边界层微分方程组及其求解(数量级分析法) (3)边界层(附面层)积分方程组及其求解 (4) 雷诺比拟 (5) 相似原理及其相关概念
3 、 计算 (1)管槽 : (注意考虑各种修正) (2)横掠单管和管束:
Ebi J i 求解上面的方程组,再计算净换热量。 i 1 i Ai i
4 、分析 (1)辐射特点(与对流和导热相比) (2)一般意义的辐射与阳光辐射的区别 (3)基尔霍夫定律的条件 (4)黑度对辐射换热系数的影响 (5)减少辐射换热的方法
六、 传热的强化和隔热保温技术
一、 强化传热的原则和强化对流换热的手段
2 、理 论
• 普朗克定律: W/m3 • 维恩位移定律: • 斯蒂芬-玻尔兹曼定律(四次方定律):
• 兰贝特定律:
• 基尔霍夫定律:
3 、计 算 (1)角系数 • 代数法: (a) 一个方向无限长封闭三凸面
(b) 一个方向无限长任意两凸面
(c) 由角系数定义直接计算 (d) 查表(资料)法 (e) 积分法
传热学复习总结
一、 基本内容 1、 导 热 2、 对 流 3、 辐 射 4、 传热过程 强化与削弱
板式换热器结构 1.固定压紧板 2.连接口 3.垫片 4.板片 5.活动压紧板 6.下导杆 7.上导杆 8.夹紧螺栓 9.支柱
二、导
1、基本概念
• • • • • •
热
导热系数、导温系数(热扩散系数); 温度场、等温线、绝热线; 稳态与非稳态导热; 初始条件、三类边界条件及其数学表达式; 热阻、接触热阻。 热阻分析法及其条件。
四、 对流与相变换热
1、基本概念 • 边界层(层流、紊流、层流底层、温度边界层) • Pr、Re、Gr的物理概念、数量级, • 定性温度,定性尺度, • 管内层流入口效应和定型段(充分发展), • 管长修正,温度修正,弯管修正,当量直径, • 膜状凝结,珠状凝结,过冷沸腾,饱和沸腾,核 态沸腾,沸腾换热临界热流密度,烧毁点,大容 器沸腾换热曲线。
传热学知识点总结
传热学知识点总结传热学是物理学的一个重要分支,研究物体间传递热量的规律和方式。
下面是一些传热学的重要知识点的总结。
1.热量传递方式:传热学研究的第一个重要问题是热量的传递方式。
主要有三种方式:传导、对流和辐射。
传导是通过固体或液体内部的分子振动和自由电子振动而传递热量的方式;对流是通过液体或气体的运动而传递热量的方式;辐射是通过热辐射的电磁波传递热量的方式。
不同物体间的传热方式通常是综合应用这些方式。
2.热传导:热传导是固体或液体内部的热量传递方式。
它遵循傅里叶热传导定律,即热传导速率正比于温度梯度,与导热系数成正比。
导热系数是物质的一个固有特性,用于描述物质对热量的导热能力。
热情况下,低导热系数的物质不容易传递热量,而高导热系数的物质能够更好地传递热量。
3.对流传热:对流是热量通过液体或气体的运动而传递的方式。
它分为自然对流和强迫对流。
自然对流是由密度差异引起的液体或气体的自发运动,如气流中的热空气上升;强迫对流是通过外部力量推动流体运动,如风扇吹起的空气。
对流传热具有较高的传热效率,因为流体的运动可以带走物体表面的热量。
4.辐射传热:辐射是通过热辐射的电磁波传递热量的方式。
所有物体在室温下都会发射辐射,其强度与温度的四次方成正比。
黑体是指一个理想化的物体,能够完全吸收所有辐射,并以最大强度发射辐射。
根据斯特藩-玻尔兹曼定律,黑体辐射的强度正比于温度的四次方。
实际物体的辐射强度可以用其发射率和黑体辐射强度之间的比例来描述。
5.热传导方程:热传导方程是研究固体或液体内部热量传递的数学模型。
它描述了材料内部温度随时间和空间的变化。
热传导方程是一个偏微分方程,其中包含了热传导系数、材料的热容和密度等参数。
6.传热换热系数:传热换热系数描述了传热过程中介质对热量的传递能力。
它是一个物质特性,不同物质和不同传热方式都有不同的传热换热系数。
传热换热系数的大小直接影响传热速率,较大的传热换热系数意味着更快的传热速率。
传热知识点总结
传热知识点总结一、传热的基本概念1. 热传递方式热传递是指热能从高温物体传递到低温物体的过程。
在自然界中,热传递有三种方式:传导、对流和辐射。
1)传导:是指热量在固体或液体内部通过分子的传递而进行传热的现象。
传导的速度取决于物体的热导率和温度梯度。
2)对流:是指热量通过流体内部的流动而进行传热的现象。
对流传热是一种辐射传热和传导传热的耦合方式。
3)辐射:是指热能在真空和空气中通过电磁波传递而进行传热的现象。
辐射传热不需要介质,能够在真空中进行传递。
2. 热传递规律根据热传递方式的不同,热传递规律也有所不同。
在传导传热中,热流密度与温度梯度成正比;在对流传热中,热流密度与温度差、流体性质和流体速度有关;在辐射传热中,表面辐射率与物体表面性质、温度和波长有关。
3. 热传递计算在工程设计中,通常需要计算物体的传热过程。
传热计算需要考虑传热方式、传热系数、温度梯度等因素,并且可以利用传热方程进行计算。
二、传热的机制1. 传导传热传导传热是通过颗粒内部的分子振动而进行热传递的过程。
传导传热取决于介质的热导率和温度梯度。
传导传热的传热率与温度梯度成正比,与距离成反比,通常可以用傅立叶传热定律进行描述。
2. 对流传热对流传热是通过流体内部的流动而进行热传递的过程。
对流传热的传热率与温度差、流体性质和流体速度有关。
对流传热还与流体的黏度、密度、导热系数等物性参数有关。
3. 辐射传热辐射传热是通过电磁波在真空或空气中进行热传递的过程。
辐射传热的传热率与物体的表面性质、温度和波长有关。
辐射传热的计算通常需要考虑黑体辐射、灰体辐射等因素。
三、传热的数学模型1. 一维传热在一维情况下,传热可以用傅立叶传热方程进行描述。
该方程包括传热导数和传热系数两个物理量,并可以用来描述传导传热、对流传热和辐射传热。
2. 二维传热在二维情况下,传热可以用拉普拉斯传热方程进行描述。
该方程可以用来描述平板、圆柱、球体等形状的传热过程,并可以通过适当的边界条件进行求解。
传热学知识点总结
第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。
作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。
本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。
传热学重点研究的是在宏观温差作用下所发生的热量传递。
傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。
牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。
由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。
黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。
最简单的传热过程由三个环节串联组成。
4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。
2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。
思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。
为什么?2.试分析室内暖气片的散热过程。
3.冬天住在新建的居民楼比住旧楼房感觉更冷。
试用传热学观点解释原因。
4.从教材表1-1给出的几种h数值,你可以得到什么结论?5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1.热流量:单位时间内所传递的热量。
2.热流密度:单位传热面上的热流量。
3.导热:物体粒子微观的热运动而产生的热量传递现象。
4.对流传热:流体流过固体壁时的热传递过程。
热对流:流体个部分之间发生宏观相对位移级领热流体的相互掺混。
5.辐射传热:由于热运动产生的,以电磁波形式传递能量的现象。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。
11.稳态传热过程:物体中各点温度不随时间而改变的热量传递过程。
第二章热传导1.温度场:某一瞬间物体内各点温度分布的总称。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.导热系数:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
导热系数是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
材料的导热能力与吸热能力之比导温系数不但与材料的导热系数有关,还与材料的热容量(或储热能力)也有关;从物理意义看,导热系数表征材料导热能力的强弱,导温系数表征材料传播温度变化的能力的大小,两者都是物性参数。
6.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
7.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
8.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
使两个导热壁面之间出现温差。
接触热阻主要与表面粗糙度、表面所受压力、材料硬度、温度及周围介质的物性等有关,因此可以从这些方面考虑减少接触热阻的方法,此外,也可在固体接触面之间衬以导热系数大的铜箔或铝箔等以减少接触热阻。
9.三类边界调节第一类:规定了边界上的温度值第二类:规定了边界上的热流密度第三类:规定了边界上物体与周围流体间的表面传热系数和周围流体的温度10.通过长圆筒壁导热时,圆筒壁内的温度呈对数曲线分布规律。
11. 通过大平壁导热时,大平壁内的温度分布规律是直线12. 冬天用手分别触摸置于同一环境中的木块和铁块,感到铁块很凉,这是因为铁块的导温系数比木块大13. 气体的导热系数一般随温度升高而减小14. Fo 表示非稳态导热过程的无因次时间15. 试用所学的传热学知识说明用温度计套管测量流体温度时如何提高测温精度。
(提示:温度计套管可以看作是一根吸热的管状肋(等截面直肋),利用等截面直肋计算肋端温度t h 的结果,可得采用温度计套管后造成的测量误差Δt 为Δt=t f -t h =)(0mH ch t t f -,其中H h H A hP mH λδλ==,欲使测量误差Δt 下降,可以采用以下几种措施:(1)降低壁面与流体的温差(t f -t 0),也就是想办法使肋基温度t 0接近t f ,可以通过对流体 通道的外表面采取保温措施来实现。
(2)增大(mH)值,使分母ch(mH)增大。
具体可以用以下手段实现:①增加H ,延长温度计套管的长度;②减小λ,采用导热系数小的材料做温度计套管,如采用不锈钢管,不要用铜管。
因为不锈钢的导热系数比铜和碳钢小。
②降低δ,减小温度计套管的壁厚,采用薄壁管。
④提高h 增强温度计套管与流体之间的热交换。
)第三章 对流传人1.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。
2.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。
3.强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。
4.自然对流传热:流体各部分之间由于密度差而引起的相对运动。
5.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。
6.珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。
7.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。
影响因素:不凝结气体【(1)含有不凝性气体的蒸汽凝结时在液膜表面会逐渐积聚起不凝性气体层,将蒸汽隔开,蒸汽凝结必须穿过气层,使换热热阻大大增加;(2)随着蒸汽的凝结,液膜表面气体分压力增大,使凝结蒸汽的分压力降低,液膜表面蒸汽的饱和温度降低,减少了有效冷凝温差,削弱了凝结换热。
在一般冷凝温差下,当不凝结气体含量为 1% 时,换热系数将只达纯净蒸汽的 40% 左右,后果是很严重的。
(3)这是凝汽器必须装设抽气器的主要原因之一】;蒸汽流速(流速较高时,产生粘滞力,如果蒸汽流动与液膜向下的流动同向时,使液膜拉薄,h 增大);过热蒸汽;液膜过冷度及温度分布的非线性;管排数;管内冷凝;凝结表面几何形状8.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
9.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。
10.影响自然对流传热系数的主要因素有:流动起因,流动速度,流体有无相变,壁面的几何形状、大小和位置,流体的热物理性质11. 流体刚刚流入恒壁温的管道作层流传热时,其局部对流传热系数沿管长逐渐减小,这是由于边界层厚度沿管长逐渐增厚。
12. 温度边界层越厚对流传热系数越小,强化传热应使温度边界层越薄。
13. 流体流过弯曲的管道或螺旋管时,对流传热系数会变大,这是由于离心力作用产生了二次环流增强了扰动15. 沸腾的临界热通量是指当壁面过热度大到某一程度时,汽泡来不及脱离加热面而开始连成不稳定的汽膜,即由核态沸腾开始向膜态沸腾过渡,出现临界点的热流密度。
一旦加热热量大于临界热流密度,沸腾工况从核态沸腾飞跃到稳定膜态沸腾,壁温飞升到1000℃以上(水),使设备烧毁。
16. 格拉晓夫数,表达式Gr =23ναc v tl g ∆17. 减小管内湍流对流传热热阻的方法:增加流速,采用短管。
改变流体物性,增加换热面积,扰流,采用导热系数大的流体用小管径等18. 努塞尔:反映对流传热强度的准则,反应对流传热强度19. 大空间自然对流处于湍流状态时有自模化特征,此时传热系数与尺寸无关20. 管槽内对流传热的入口效应:流体入口段由于热边界层较薄而具有较高的对流传热系数21. 相变传热的特征:工质比体积变化较大,汽化潜热22. 冷却液润湿壁面的能力取决:液体的表面张力,液体与壁面间的附着力23. 自由对流传热的流态主要取决:Gr24.四个区域的特点:自然对流阶段:避免过热度小时,沸腾尚未开始,服从单相自然对流规律核态沸腾:有大量气泡产生,强烈时还会产生汽块和汽柱,气泡的扰动强烈,h 和q w 急剧增大,汽化核心其主要作用,具有温差小、热流大的传热特点。
过度沸腾:热流密度不仅随过热度的增高和提高,反而越来越降低。
这是因为气泡汇聚覆盖在加热面上,而蒸汽排除过程越趋恶化,是不稳定的过程。
稳定膜态沸腾:加热面上已形成稳定的蒸汽膜层,产生的蒸汽有规律的排除膜层,壁面辐射增强。
25. 强化管内强迫对流传热的方法:增大流速、采用机械搅拌、增强扰动、采用入口效应、弯管效应26. 强迫对流横掠管束传热中管束叉排与顺排的优缺点(换热强度和流动阻力)(1)叉排使流体在弯曲的通道中流动,流体扰动剧烈,对流换热系数较大,同时流动阻力也较大;(2)顺排管束中流体在较为平直的通道中流动,扰动较弱,对流换热系数小于叉排,其流阻也较小;(3)顺排管束由于通道平直比叉排管束容易清洗。
27. 横向冲刷管束比流体在管外纵向冲刷传热系数大纵向冲刷容易形成较厚的边界层,其层流层较厚且不易破坏。
横向:弯曲的表面引起复杂的流动,边界层较薄且不易稳定;管径小,流体到第二个管子时易造成强烈扰动;流体直接冲击换热表面。
28. 短管为什么要进行修正:(1)在入口段,边界层的形成过程一般由薄变厚;(2)边界层的变化引起换热系数由大到小变化,考虑到流型的变化,局部长度上可有波动,但总体上在入口段的换热较强(管长修正系数大于1);(3)当l /d >50(或60)时,短管的上述影响可忽略不计,当l /d <50(或60)时,则必须考虑入口段的影响。
第四章辐射传热1.热辐射:由于物体内部微观粒子的热运动状态改变,而将部分内能转换成电磁波的能量发射出去的过程。
2.灰体:光谱吸收比与波长无关的理想物体。
3.发射率:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。
4.辐射力:单位时间内物体的单位辐射面积向半球空间发射的全部波长的辐射能。
5.漫灰表面:物体表面对投入辐射的吸收特性表现为单色吸收比与波长无关6.定向辐射力:单位辐射面积在单位时间内向半球空间某一方向单位立体角内发射的辐射能。
7.定向辐射强度:单位时间在某一辐射方向上的单位可见辐射面积向该方向单位立体角内辐射的所有波长的辐射能8.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为零的表面9.基尔霍夫定律:热平衡时,任何物体对黑体投入辐射的吸收比=同温度下该物体的发射率10. 将任意形状气体的辐射折合成一个假想的当量半球,半球内气体与所研究的气体具有相同的温度压力和成分,球内气体对球心的辐射效果等于所研究的气体对指定地点的辐射,该当量半球的半径称为平均射线行程。
11. 普朗克定律揭示了黑体光谱辐射力按波长于热力学温度变化的分布规律12. 影响物体表面黑度的主要因素:物质种类、表面温度、表面状况13.热电偶测量高温气体温度产生测量误差的原因:用热电偶测温时同时存在气流对热电偶换热和热电偶向四壁的散热两种情况,热电偶的读数小于气流的实际温度产生误差。
所以,引起误差的因素:①烟气与热电偶间的复合换热小;②热电偶与炉膛内壁问的辐射换热大。
减小误差的措施:①减小烟气与热电偶间的换热热阻,如抽气等;②增加热电偶与炉膛间的辐射热阻,如加遮热板;②设计出计算误差的程序或装置,进行误差补偿14. 天可以用玻璃温室种植热带植物的原理:可以从可见光、红外线的特性和玻璃的透射比来加以阐述。
玻璃在日光(短波辐射)下是一种透明体,透过率在90%以上,使绝大部分阳光可以透过玻璃将温室内物体和空气升温。
室内物体所发出的辐射是一种长波辐射——红外线,对于长波辐射玻璃的透过串接近于零,几乎是不透明(透热)的,因此,室内物体升温后所发出的热辐射被玻璃挡在室内不能穿过。