传热学知识点word版

合集下载

传热学Word

传热学Word

传热学复习要点一、名词解释热传导:物体各部分之间不发生相对位移时或不同物体直接接触时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称导热。

温度场:指在各个时刻物体内各点温度分布的总称。

温度梯度:当相邻等温面间的距离趋于零时,其法线方向上的温度变化率。

热流密度:单位时间内通过单位面积的热流量。

对流换热:流体流过一个固体物体表面时的热量传递过程。

辐射传热:辐射与吸收过程的综合作用造成了以辐射方式进行的物体间的热量传递。

辐射力:单位时间内,物体的单位表面积向半球空间的一切方向发射的所有波长的能量总和。

黑体:吸收率为1的物体(1=α)。

白体:反射率为1的物体(1=ρ)。

黑度:实际物体的辐射力与同一温度下黑体辐射力之比。

灰体:光谱吸收比与波长无关的物体。

二、知识点1.热量传递过程的推动力:温差1)物体内只要存在温差,就有热量从物体的高温部分传向低温部分;2)物体之间存在温差时,热量就会自发的从高温物体传向低温物体。

2.热量传递的三种基本方式之间的联系和区别① 导热、对流两种热量传递方式,只在有物质存在的条件下,才能实现,而热辐射不需中 间介质,可以在真空中传递,而且在真空中辐射能的传递最有效。

② 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。

在辐射时,辐射体内热能 → 辐射能;在吸收时,辐射能 → 受射体内热能。

③ 物体的辐射能力与其温度性质有关。

3.斯蒂芬—波尔兹曼定律404100⎪⎭⎫ ⎝⎛==T c T E b σ 式中,()428/1067.5K m W ⋅⨯=-σ,Stefan-Boltzmann 常数()420/67.5K m W c ⋅=,黑体辐射系数描述了黑体辐射力随表面温度的变化规律。

4.基尔霍夫定律在热平衡条件下,任何物体的辐射和它对来自黑体辐射的吸收比的比值,恒等于同温度下该物体的黑度。

εα==bE E 热平衡时,任意物体对黑体投入辐射的吸收比等于该物体的发射率。

传热学知识整理1-4章

传热学知识整理1-4章

绪论一、概念1. 传热学: 研究热量传递规律的科学。

2. 热量传递的基本方式: 热传导、热对流、热辐射。

3. 热传导(导热): 物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。

(纯粹的导热只能发生在不透明的固体之中。

)4. 热流密度:通过单位面积的热流量(W/m2)。

5.热对流: 由于流体各部分之间发生相对位移而产生的热量传递现象。

热对流只发生在流体之中, 并伴随有导热现象。

6. 自然对流: 由于流体密度差引起的相对运功c7. 强制对流: 出于机械作用或其他压差作用引起的相对运动。

8. 对流换热:流体流过固体壁面时, 由于对流和导热的联合作用, 使流体与固体壁面间产生热量传递的过程。

9. 辐射: 物体通过电磁波传播能量的方式。

10.热辐射: 由于热的原因, 物体的内能转变成电磁波的能量而进行的辐射过程。

11. 辐射换热:不直接接触的物体之间, 出于各自辐射与吸收的综合结果所产生的热量传递现象。

12. 传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。

13.传热系数: 表征传热过程强烈程度的标尺, 数值上等于冷热流体温差1时所产生的热流密度。

14. 单位面积上的传热热阻:单位面积上的导热热阻: 。

单位面积上的对流换热热阻:对比串联热阻大小就可以找到强化传热的主要环节。

15. 导热系数是表征材料导热性能优劣的系数, 是一种物性参数, 不同材料的导热系数的数值不同, 即使是同一种材料, 其值还与温度等参数有关。

对于各向异性的材料, 还与方向有关。

常温下部分物质导热系数: 银: 427;纯铜: 398;纯铝: 236;普通钢: 30-50;水: 0.599;空气: 0.0259;保温材料: <0.14;水垢: 1-3;烟垢: 0.1-0.3。

16. 表面换热系数不是物性参数, 它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。

17. 稳态传热过程(定常过程):物体中各点温度不随时间而变。

传热学基本知识

传热学基本知识

导热分为两类
稳定导热:温度不随时间而变化的导热 不稳定导热:温度随时间而变化的导热
知识回顾
1
传热学基本知识
热传导
2、傅里叶导热定律
热传导的速率与垂直于热流方向的表面积成正比,与壁面两侧的温差成正比,与壁厚成反比。
QAt1t2
q
Q A
t
Q
t
t R
A
Q 导热量,传热速率 , W;
q 热流密度,W m2
2)流速的影响 流体流速增高时,对流传热系数就大。
3)流体的物理性质对给热系数的影响 导热系数、比热容c、密度越大,动力粘度越小,对流传 热系数越大
1
传热学基本知识
热对流
2)流体有相变发生时
蒸汽的冷凝 液体的沸腾
膜状冷凝 滴状冷凝(传热系数大)
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
1
蒸汽冷凝时的对流传热
传热学基本知识
热传导
4、导热计算
1)单层平壁的稳定热传导
计算公式:
Q A t
Q t R
热阻:
R A
当壁面两侧的温度不等时,且热量只沿垂直 于壁面的方向发生变化

q t
1
传热学基本知识
热传导
4、导热计算
2)多层平壁的稳定热传导
多层平壁是指由几层不同厚度、不同导热系数的材料组成 且其间接触良好的平壁
Q=qm热r热 Q=qm冷r冷 此法仅适于有相变过程
三、平均温度差
用传热速率方程式计算换热器的传 热速率时,因传热面各部位的传热温 度差不同,必须算出平均传热温度差 ⊿t均代替⊿t,
QKAt均
1
1、恒温传热时的平均温度差

传热学复习要点

传热学复习要点

传热学 复习要点1-3节为导热部分1.导热理论基础 (分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差 与其法线方向距离 的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数: λ=λ0(1+bt)t=q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度.当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热 (分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析 (对流换热=导热+热对流)(1) 对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程② 必须有直接接触(流体与壁面)和宏观运动;也必须有温差③ 由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。

(完整版)传热学知识点总结

(完整版)传热学知识点总结

Φ-=BA c t t R 1211k R h h δλ=++传热学与工程热力学的关系:a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律,传热学研究过程和非平衡态热量传递规律。

b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。

c 传热学以热力学第一定律和第二定律为基础。

传热学研究内容传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。

热传导a 必须有温差b 直接接触c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移d 没有能量形式的转化热对流a 必须有流体的宏观运动,必须有温差;b 对流换热既有对流,也有导热;c 流体与壁面必须直接接触;d 没有热量形式之间的转化。

热辐射:a 不需要物体直接接触,且在真空中辐射能的传递最有效。

b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。

c .只要温度大于零就有.........能量..辐射。

...d .物体的...辐射能力与其温度性质..........有关。

...传热热阻与欧姆定律在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2)第二章温度场:描述了各个时刻....物体内所有各点....的温度分布。

稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变非稳态温度场:工作条件变动的温度场,温度分布随时间而变。

等温面:温度场中同一瞬间相同各点连成的面等温线:在任何一个二维的截面上等温面表现为肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0之比接触热阻Rc :壁与壁之间真正完全接触,增加了附加的传递阻力三类边界条件第一类:规定了边界上的温度值第二类:规定了边界上的热流密度值第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度.....。

传热学知识点总结

传热学知识点总结

传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。

一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。

热量的传递方式主要有传导、对流和辐射三种。

2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。

传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。

3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。

在物质传热过程中,传热系数的大小直接影响热量的传递速率。

4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。

传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。

5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。

热传导是传热学的基本概念之一。

6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。

7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

热辐射是传热学的另一个基本概念之一。

二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。

在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。

2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。

在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。

3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。

(完整word版)传热学基本概念知识点,推荐文档.docx

(完整word版)传热学基本概念知识点,推荐文档.docx

传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。

对流仅能发生在流体中,而且必然伴随有导热现象。

对流两大类:自然对流与强制对流。

影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。

不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。

蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。

因此,不凝结气体层的存在增加了传递过程的阻力。

8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。

首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。

主要分为两个阶段:非正规状况阶段和正规状况阶段9 灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。

灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。

10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:( 1)气体辐射对波长有选择性( 2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。

传热学学习要点

传热学学习要点

传热学杨世铭陶文铨〇、文章框架1绪论1。

1 传热学的研究内容及其在科学技术和工程上的应用1.2吸能传递的三种基本方式1.3 传热过程和传热系数1。

4 传热学的发展简史和研究方法2 稳态热传导2.1 导热基本定律-—傅里叶定律2。

2 导热问题的数学描写2。

3 典型以为稳态导热问题分析解2.4 通过肋片导热2.5 具有内热源的一维导热问题2.6 多稳态导热的求解3 非稳态热传导3.1 非稳态导热的基本概念3.2零维问题的分析法——集中参数法3。

3 典型一维物体非稳态导热的分析解3。

4 半无限大物体的非稳态导热3.5 简单几何形状物体多维非稳态导热的分析解4 热传导问题的数值解法4。

1 导热问题数值求解的基本思想4.2 内节点离散方程的建立方法4。

3 边界节点离散方程的建立方法4.4 非稳态导热问题的数值解法5 对流传热的理论基础5.1 对流传热概况5。

2 对流传热问题的数学描写5.3 边界层型对流问题的数学描写5.4 流体外掠平板传热层流分析解及比拟理论6 单相对流传热的实验关联式6.1相似原理与量纲分析6.2 相似原理的应用6.3 内部强制对流传热的实验关联式6。

4 外部强制对流传热——流体横掠单管、球体及管束的实验关联式6。

5大空间与有限空间内自然对流传热的实验关联式6。

6 射流冲击传热的实验关联式7 相变对流传热7.1凝结传热的模式7.2膜状凝结分析解及计算关联式7。

3 膜状凝结的影响因素及其传热强化7.4 沸腾传热的模式传热学学习要点7.5 大容器沸腾传热的实验关联式7。

6 沸腾传热的影响因素及其强化7.7 热管简介8 热辐射基本定律和辐射特性8.1 热辐射现象的基本概念8.2 黑体热辐射的基本定律8.3 固体和液体的辐射特性8.4 实际物体对辐射能的吸收与辐射关系8.5 太阳与环境辐射9 辐射传热的计算9.1 辐射传热的角系数9.2 两表面封闭系统的辐射传热9.3 多表面系统的辐射传热9。

(完整word版)传热学基本概念知识点,推荐文档

(完整word版)传热学基本概念知识点,推荐文档

传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。

对流仅能发生在流体中,而且必然伴随有导热现象。

对流两大类:自然对流与强制对流。

影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。

不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。

蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。

因此,不凝结气体层的存在增加了传递过程的阻力。

8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。

首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。

主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。

灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。

10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。

传热学知识点

传热学知识点

传热学知识点传热学是研究热量传递的学科,对人类生活和工业生产有着重要的影响。

以下是关于传热学的一些知识点:1.热量传递方式:传热学研究的首要内容是热量在不同物质之间的传递方式。

热量传递有三种方式:导热、对流和辐射。

导热是指热量通过固体或液体的直接接触传递。

对流是指热量通过流体的运动传递,可以分为自然对流和强制对流两种。

辐射是指热量通过电磁波传递,无需介质参与。

2.热传导:导热是最常见的传热方式,它是由于不同物质内部的分子间作用力导致的。

导热的速度和物质的热导率有关,热导率是物质表征导热性能的物理量。

3.对流传热:对流是在流体中传递热量的方式。

它是由于流体的运动导致的热量传递。

在自然对流中,热量传递是由于流体受热后的密度变化产生的,而在强制对流中,热量传递是由于外界施加的压力或泵力导致的。

4.辐射传热:辐射是通过电磁波传递热量。

辐射传热不需要介质的参与,可以在真空中进行。

辐射传热的强度与物体的温度和表面性质有关,通常用斯特藩-玻尔兹曼定律来描述。

5.热传导的控制:控制热传导是提高节能和减少能源消耗的关键。

可以通过增加物体之间的接触面积、减少物体之间的间距、增加物质的热导率等方法来提高热传导效率。

6.流体流动换热:对流传热是通过流体的运动来传递热量的,研究流体流动条件下的传热现象是传热学的一个重要方向。

流体流动的方式有层流和湍流,研究边界层和流动分离等现象对于准确预测和控制流体流动换热过程至关重要。

7.换热设备:传热学在工程中的应用主要是研究和设计换热设备,如换热器、冷却塔、锅炉等。

这些设备的设计要考虑热量传递效率、流体流动特性以及材料的选择等因素。

8.相变传热:相变是物质由一种状态向另一种状态转变的过程,如液体变为固体时释放的凝固潜热。

相变传热是一种特殊的传热方式,研究相变传热现象对于设计冷凝器、蒸发器等设备有着重要意义。

9.传热计算和实验:传热学的研究方法包括传热计算和实验。

通过传热方程和边界条件来计算热传导、对流和辐射等传热过程。

(完整版)传热学知识点

(完整版)传热学知识点

(完整版)传热学知识点传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2. 导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3. 对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4 对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。

q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。

a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。

7. 导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1 度时、每单位壁面面积上、单位时间内所传递的热量。

影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

第一章导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):q ' = -k ?dT q ' = -k ?T = -k (i ?T + j ?T + k ?T) x ?dx ?x ?y ?zq ' = -k ?T n ?nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

(完整版)传热学知识点

(完整版)传热学知识点

传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2. 导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子 热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3. 对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把 热量由一处传递到另一处的现象。

4 对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下 特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。

q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。

a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。

7. 导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差 1 度时、每单位壁面面积上、单位时间内所传递的热量。

影响 h 因素:流速、流体物性、壁面形状大小等传热系数: 是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

第一章 导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):q ' = -k ∂dT q ' = -k ∇T = -k (i ∂T + j ∂T + k ∂T) x ∂dx ∂x ∂y ∂zq ' = -k ∂T n ∂nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

传热学知识点

传热学知识点

传热学1.热传导方式传热在固体液体气体中发生2.传热方式为热传导,热对流,热辐射3.等温面的特点:(1) 温度不同的等温面或线彼此不能相交;(2) 在连续的温度场中,等温面不会中断(3) 若温度间隔相等时,等温线的疏密可反映出不同区域导热热流密度(单位面积的热流量)的大小。

4.热量方向与温度梯度方向相反5.热量传递方向不止能从高温处传向低温处6.复合传热是指既有对流换热,又有辐射换热的换热现象7.热传导1.热传导定义:物体内部或相互接触的表面间,由于分子、原子及自由电子等微观粒子的热运动及相互碰撞而产生的热量传递现象称为热传导( 简称导热)2.特点:物质各部分不会发生相对位移3.热导率特点:1)对于同种物质,其固态的热导率值最大,气态的热导率值最小2)一般金属的热导率大于非金属的热导率3)导电性能好的金属,其导热性能也好4)纯金属的热导率大于它的合金5)对于各向异性物体,热导率的数值与方向有关5)对于同种物质,其晶体的热导率要大于非晶体的热导率热对流1.热对流:指流体的宏观运动使温度不同的流体相对位移而产生的热量传递的现象,显然,热对流只能发生在流体之中,而且必然伴随有微观微粒热运动产生的导热。

2.流动原因:一自然对流:温度不同引起密度差,轻者上浮,重者下沉;二强制对流:风机、泵或搅拌等外力所致流体质点的运动。

3.强制对流引起的热量传递远大于自然对流热量传递4.热辐射1.热射线主要有有红外线,可见光2.热辐射特点:(1) 热辐射总是伴随着物体的内热能与辐射能这两种能量形式之间的相互转化。

(2) 热辐射不依靠中间媒介,可以在真空中传播因此,又称其为非接触性传热。

(3) 物体间以热辐射的方式进行的热量传递是双向的。

即不仅高温物体向低温物体辐射热能,而且低温物体向高温物体辐射热能。

3.布鲁布鲁对流换热1.对流换热:流体与固体表面之间的热量传递是热对流和导热两种基本传热方式共同作用,不是基本传热方式2.特点:(1) 导热与热对流同时存在的热传递过程(2) 必须有直接接触(流体与壁面)和宏观运动;也必须有温差(3) 由于流体粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层3.对流换热是指流体流经固体时流体与固体表面之间的热量传递现象4.圆管壁稳定传热时,温度呈对数曲线分布5.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导热系数小的材料放置在外层,保温效果更好(错误)6.提高对流传热系数的途径:①使流动从层流转变为湍流②增加流速③增大管径④选用螺纹管,短管,弯管(5). 在管外流动,应加折流板7.沸腾三个阶段:自然对流、核状沸腾、膜状沸腾,工业上采用核状沸腾8.边界层的分离增强了流体的扰动,h 增大/ 流体在圆管外的换热,为避免层流,底层对对流换热的影响会设置障碍物,促使边界层的分离形成,为增强传热效果9.空气在圆管内做湍流运动,当其他条件不变,空气流速提高一倍时,对流传热h为原来对流传热系数的1.74倍10.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导数系数小的材料放置在外层,保温效果更好(错误)11.蒸汽冷凝时,定期排放不凝性气体。

传热学知识点复习

传热学知识点复习

传热学1.热力学三大定律+第零定律① 热力学第一定律:一个热力学系统的内能增量等于外界向他传递的热量与外界对他做功的和。

② 热力学第二定律:克劳修斯表述:热量可以自发地从较热的物体传递到较冷的物体,但是反之不行。

开尔文表述:不可能从单一热源吸收热量,并将这热量变为功,而不产生其他影响。

只要温差存在的地方,就有热能从自发地从高温物体向低温物体传递。

③ 热力学第三定律:绝对零度不可能达到。

④ 热力学第零定律:如果两个热力学系统都第三个热力学系统处于热平衡状态,那么这两个系统也必定处于热平衡。

2.各个科技技术领域中遇到的的传热学问题可以大致归纳为三种类型的问题 ①强化传热 ②削弱传热 ③温度控制3.热能传递的三种方式①热传导—物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生热能传递。

②热对流—由于流体的宏观运动二引起的流体各部分之间发生相对位移、冷热流体相互混掺所导致的热量传递。

③热辐射—物体通过电磁波来传递能量的方式。

(由于热的原因发出的辐射为热辐射)4.傅里叶定律(导热基本定律)热流密度q=-λdx dt(一维) 负号表示热量传递方向与温度升高方向相反 q —单位时间内通过某一给定面积的热量(矢量)。

λ金属>λ液体>λ气体 λ—导热系数表示材料的导热性能优劣的参数,即是一种热物性参数。

W/(m ·k )5.自然对流与强制对流自然对流—由于流体冷热各部分的密度不同而引起的。

强制对流—流体的流动是由于水泵、风机或者其他压差作用所造成的。

Q=Ah tf tw - 表面传热系数h —不仅取决于流体物性(λρCp )以及换热表面的形状、大小与布置海域流速密切相关。

① 水的对流传热比空气强②有相变的优于无相变的③强制对流优于自然对流6.热辐射的特点①热辐射可以在真空中传递(即无物质存在也可以传递)② 热辐射不仅产生能量传递,而且还伴随着能量形式的转换(热能—>辐射能—>热能)7.斯托芬-波尔兹曼定律φ=AT εσ4 -σ斯托芬-波尔兹曼常量 -ε物体发射率(黑度<1)8.导热机理气体导热—气体分子不规则热运动导电固体—自由电子的运动非导电固体—晶格结构振动的传递9.笛卡尔坐标系三维非稳态导热微分方程φλλλτρ+∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂)()()(z t z y t y x t x t c⇒c z t y t x t a t ρφτ+∂∂+∂∂+∂∂=∂∂)(222222 令a =cρλ(热扩散系数) ⇒常物性,无内热源)(222222zt y t x t a t ∂∂+∂∂+∂∂=∂∂τ ⇒常物性,稳态0222222=+∂∂+∂∂+∂∂λφzt y t x t 泊松方程⇒常物性,稳态,无内热源0222222=∂∂+∂∂+∂∂zt y t x t 拉普拉斯方程10.定解条件对于非稳态导热问题⇒定解条件(初始条件+边界条件)①第一类边界条件:规定了边界上的温度②第二类边界条件:规定了边界上的热流密度③第三类边界条件:规定了边界上物体与周围流体间的表面传热系数及周围流体的温度。

传热学基本知识

传热学基本知识
传热系数
W/(m2·K)或W/(m2·℃)
传热推动力
Q t
A
1
K
传热速率,单位时间通过 传热面的热量,W
传热总阻力,简称热阻R
二、热负荷的计算
焓差法
Q=qm热(H1-H2) Q=qm冷(h2-h1)
显热法 潜热法
Q=qm热cm热(T1-T2) Q=qm冷 cm冷(t2-t1) 此法适于无相变过程
(2)影响蒸汽冷凝传热的其它因素
蒸汽流速和流向 蒸汽流动会在汽-液界面上产生摩擦阻力,若 蒸汽与液膜流向相同,则会加速液膜的流动,使液膜减薄,传热 加快。 不凝性气体 蒸汽中含有不凝性气体时,即使含量极微,也会对 冷凝传热产生十分有害的影响。例如水蒸汽中含有1%的空气能使 给热系数下降60%。不凝性气体将会在液膜外侧聚积而形成一层 气膜,冷凝器操作中及时排除不凝性气体至关重要。 过热蒸汽 温度高于其饱和温度的蒸汽称为过热蒸汽,实验表明, 在大气压力下,过热30℃的蒸汽较饱和蒸汽的给热系数高1%,而 过热540℃的蒸汽的给热系数高30%,蒸汽过热对蒸汽冷凝传热影 响不大,所以,一定情况下不考虑过热的影响。
平均对流传热 热系 系数 数( W ) /m 给 2, .C
α物理意义是:流体与壁面温度差为1℃时,在单位时间内 通过每m2传递的热量。表示对流传热的强度。
传热学基本知识
热对流
5、对流传热系数影响因素
1) 流动状态的影响 雷诺数越大,对流传热系数越大。
2)流速的影响 流体流速增高时,对流传热系数就大。
液体的沸腾
工业上经常需要将液体加热使之沸腾蒸发,如:在锅炉 中把水加热成水蒸汽;在蒸发器中将溶剂汽化以浓缩溶液, 都是属于沸腾传热。
大容积沸腾是指加热面沉浸在具有自由表面的液体中 所发生的沸腾现象,此时,液体的运动由自然对流和汽泡 的扰动所引起的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传热学主要知识点1.热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。

[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。

a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h因素:流速、流体物性、壁面形状大小等。

传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

9.复杂传热过程Upside surface: adiabaticDownside surface: adiabatic xair LL 2L A/4A/4A/2第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

(1)空隙中充有空气,空气导热系数小,因此保温性好;(2)空隙太大,会形成自然对流换热,辐射的影响也会增强,因此并非空隙越大越好。

(3)由于水分的渗入,替代了相当一部分空气,而且更主要的是水分将从高温区向低温区迁移而传递热量。

因此,湿材料的导热系数比干材料和水都要大。

所以,建筑物的围护结构,特别是冷、热设备的保温层,都应采取防潮措施。

导热微分方程式的理论基础。

傅里叶定律 + 热力学第一定律热扩散率的概念。

热扩散率(用a表示)反映了导热过程中材料的导热能力与沿途物质储热能力之间的关系值大,即λ值大或ρc值小,说明物体的某一部分一旦获得热量,该热量能在整个物体中很快扩散。

热扩散率表征物体被加热或冷却时,物体内各部分温度趋向于均匀一致的能力在同样加热条件下,物体的热扩散率越大,物体内部各处的温度差别越小。

热扩散率反应导热过程动态特性,是研究不稳态导热的重要物理量。

完整数学描述:导热微分方程 + 单值性条件导热微分方程式描写物体的温度随时间和空间变化的关系;它没有涉及具体、特定的导热过程。

是通用表达式。

对特定的导热过程,需要补充单值性条件,才能得到特定问题的唯一解。

单值性条件包括四项:几何条件、物理条件、时间条件(初始条件)、边界条件。

边界条件。

边界条件说明导热体边界上过程进行的特点反映过程与周围环境相互作用的条件(1)第一类边界条件:已知任一瞬间导热体边界上温度值;(2)第二类边界条件:已知物体边界上热流密度的分布及变化规律,第二类边界条件相当于已知任何时刻物体边界面法向的温度梯度值;(3)第三类边界条件:当物体壁面与流体相接触进行对流换热时,已知任一时刻边界面周围流体的温度和表面传热系数。

第二章 稳态导热1.由第三类边界条件下通过平壁的一维稳态导热量关系式,分析为了增加传热量,可以采取哪些措施? 第三类边界条件下通过平壁的一维稳态导热量关系式:为了增加传热量,可以采取哪些措施?(1)增加温差(t f1 - t f2),但受工艺条件限制(2)减小热阻: a) 金属壁一般很薄(d 很小)、热导率很大,故导热热阻一般可忽略 b) 增大h 1、h 2,但提高h 1、h 2并非任意的c) 增大换热面积 A 也能增加传热量 在一些换热设备中,在换热面上加装肋片是增大换热量的重要手段。

[]W 112121A h A A h t t Φf f ++-=λδ2.在管道外覆盖保温层是不是在任何情况下都能减少热损失?为什么?不是,只有当管道外径大于临界热绝缘直径时,覆盖保温层才能减小热损失.接触热阻的概念。

实际固体表面不是理想平整的,所以两固体表面直接接触的界面容易出现点接触,或者只是部分的而不是完全的和平整的面接触 —— 给导热带来额外的热阻,即接触热阻。

5. 热阻:单位面积上的传热热阻:k R k 1=单位面积上的导热热阻:λδλ=R 。

单位面积上的对流换热热阻:hR 1=λ 对比串联热阻大小就可以找到强化传热的主要环节第三章 非稳态导热1.非稳态导热的分类。

周期性非稳态导热和瞬态非稳态导热2.Bi 准则数, Fo 准则数的定义及物理意义。

Bi 准则数:/1/h Bi h δδλλ===物体内部导热热阻物体表面对流换热热阻; Fo 准则数:2,a Fo τδ=是非稳态导热过程的无量纲时间。

3.集总参数法的物理意义及应用条件。

忽略物体内部导热热阻、认为物体温度均匀一致的分析方法。

此时,温度分布只与时间有关,与空间位置无关。

应用条件:0.1Bi <4.时间常数的定义及物理意义。

采用集总参数法分析时,物体中过余温度随时间变化的关系式中的ρ具有时间的量纲,称为时间常数。

/()cV hA时间常数的数值越小表示测温元件越能迅速地反映流体的温度变化。

5.非稳态导热的正规状况阶段的物理意义。

当0.2Fo≥时,物体在给定的条件下冷却或加热,物体中任何给定地点过余温度的对数值将随时间按线性规律变化。

物体中过余温度的对数值随时间按线性规律变化的这个阶段,称为瞬态温度变化的正规状况阶段。

6.半无限大物体的概念。

半无限大物体的概念如何应用在实际工程问题中?半无限大物体,是指以无限大的y-z平面为界面,在正x方向伸延至无穷远的物体。

在实际工程中,对于一个有限厚度的物体,在所考虑的时间范围内,若渗透厚度小于本身的厚度,这时可以认为该物体是个半无限大物体。

第四章导热问题数值解法基础1.数值解法的基本求解过程数值解法,即把原来在时间和空间连续的物理量的场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,从而获得离散点上被求物理量的值;并称之为数值解。

2.热平衡法的基本思想。

对每个有限大小的控制容积应用能量守恒,从而获得温度场的代数方程组,它从基本物理现象和基本定律出发,不必事先建立控制方程,依据能量守恒和傅立叶导热定律即可。

第五章对流换热分析影响对流换热的主要物理因素.对流换热是流体的导热和对流两种基本传热方式共同作用的结果。

其影响因素主要有以下五个方面:(1)流动起因; (2)流动状态; (3)流体有无相变; (4)换热表面的几何因素; (5)流体的热物理性质。

对流换热是如何分类的?流动起因:自然对流和强制对流;(2)流动状态: 层流和紊流;(3)流体有无相变: 单相换热和相变换热(4)换热表面的几何因素:内部流动对流换热和外部流动对流换热。

3.对流换热问题的数学描写中包括那些方程?连续性方程、动量微分方程、能量微分方程、对流换热过程微分方程式。

4.边界层概念的基本思想。

流场可以划分为两个区:边界层区与主流区边界层区:流体的粘性作用起主导作用,流体的运动可用粘性流体运动微分方程描述(N-S方程)主流区:速度梯度为0,t=0;可视为无粘性理想流体;流体的运动可用欧拉方程描述。

5.流动边界层的几个重要特性。

(1) 边界层厚度d 与壁的定型尺寸L相比极小,d << L(2) 边界层内存在较大的速度梯度(3) 边界层流态分层流与湍流;湍流边界层紧靠壁面处仍有层流特征,存在层流底层;(4) 流场可以划分为边界层区与主流区可以划分为两个区:热边界层区与等温流动区7.数量级分析的方法。

比较方程中各量或各项的量级的相对大小;保留量级较大的量或项;舍去那些量级小的项,方程大大简化。

8.相似理论回答了关于试验的哪三大问题?(1)实验中应测哪些量(是否所有的物理量都测)?应测量各相似准则中包含的全部物理量,其中物性由实验系统中的定性温度确定。

(2)实验数据如何整理(整理成什么样函数关系)?实验结果整理成准则关联式。

(3)实物试验很困难或太昂贵的情况,如何进行试验?实验结果可推广应用于哪些地方?实验结果可推广应用到相似的现象,在安排模型实验时,为保证实验设备中的现象(模型)与实际设备中的现象(原型)相似,必须保证模型与原型现象单值性条件相似,而且同名的已定准则数值上相等。

9.Nu, Re, Pr, Gr 准则数的物理意义。

hlNu λ=,表征壁面法向无量纲过余温度梯度的大小,由此梯度反映对流换热的强弱;Re ulν=,表征流体流动时惯性力与粘滞力的相对大小,Re 的大小能反映流态;Pr a ν=,物性准则,反映了流体的动量传递能力与热量传递能力的相对大小;32g t l Gr αν∆=,表征浮升力与粘滞力的相对大小,Gr 表示自然对流流态对换热的影响。

第六章 单相流体对流换热及准则关联式1. 对管内受迫对流换热,为何采用短管和弯管可以强化流体的换热?.短管:入口效应。

入口处边界层较薄,对流换热强度较大;弯管:由于离心力作用,产生二次回流,对边界层形成一定扰动。

2. 对管内受迫对流换热,各因素对紊流表面传热系数影响的大小。

0.80.60.40.80.40.2(,,,,,)p h f u c d λρμ--=3. 空气横掠管束时,沿流动方向管排数越多,换热越强,为什么? 横掠管束时,前排管子后形成的涡旋对后排管子上的边界层造成一定的扰动作用,有利于换热。

第七章 凝结与沸腾换热膜状凝结和珠状凝结的概念.膜状凝结:沿整个壁面形成一层薄膜,并且在重力的作用下流动,凝结放出的汽化潜热必须通过液膜,液膜厚度直接影响热量传递。

珠状凝结:当凝结液体不能很好的浸润壁面时,则在壁面上形成许多小液珠,此时壁面的部分表面与蒸汽直接接触,因此,换热速率远大于膜状凝结(可能大几倍,甚至一个数量级)虽然珠状凝结换热远大于膜状凝结,但可惜的是,珠状凝结很难保持,因此,大多数工程中遇到的凝结换热大多属于膜状凝结,因此,教材中只简单介绍了膜状凝结2.为什么冷凝器中的管子多采用水平布置?要增大卧式冷凝器的换热面积,采用什么方案最好?只要不是很短的管子,水平布置较竖直布置管外的凝结表面传热系数大。

相关文档
最新文档