运筹学实验期末论文

合集下载

大学生运筹学论文

大学生运筹学论文

大学生运筹学论文第一篇:大学生运筹学论文论数学与生活内容提要:步入大学,我们的学习已经不再停留于刻板的书本,我们学习的目的也不仅仅是去掌握那些常规的知识,大学学习,我们更多的是去学习一种思想,学习一种态度,然后用我们所学去实践生活。

当我们用心思考,我们也会发现,陪伴我们十几年的恼人的数学也蕴含了丰富的人生哲理。

关键字:生活,思考,哲理一、数学里的奇妙现象有时候我们会思考:无穷的边缘是什么?就像我们弄不懂广袤宇宙的边境是什么,无论多么科学的解释我们也始终想不明白怎么可以存在这样的一个空间去包括宇宙以及宇宙之外的东西。

而代表着这个含义的π=3.1415……..,无穷尽的不规则小数,没有尽头,但是它却确确实实是我们每天都会用到的具有现实意义的数值;二、最美丽的数字——0.618(1)人体上的黄金分割《达芬奇密码》一书中说讲,肩膀到指尖的距离除以肘关节到指尖的距离;臀部到地面的距离除以膝盖到地面的距离。

再看看手指关节、脚趾、脊柱的分节,都会得到PHI(黄金分割比)。

真的会这样吗?我半信半疑地进行了一点近似的计算。

按照一个正常体型的人为例:肩膀到指尖的距离:70㎝肘关节到指尖的距离:43㎝43÷70≈0.614 臀部到地面的距离:80㎝膝盖到地面的距离:49㎝49÷80≈0.613 这些数据的结果都接近于0.618。

(2)生理上的黄金分割再如网上说,人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。

37℃×0.618=22.866℃所以当所有的这些都和黄金分割比联系上时,我们不得不感叹数学的奥秘,真的很不可思议,如果说是巧合,但是当种种现象都联系在一起的时候,就不仅仅是巧合可以解释的了,我们不得不承认这就是数学中蕴含的奥妙。

运筹学与最优化方法期末论文

运筹学与最优化方法期末论文
约定: b 0, m n ,秩 A m 。 如何化标准形: 目标函数实现极大化,即 min z cx ,令 w z ,则 max w cx ; 约束条件为不等式 约束条件为“ ” 不等式,则在约束条件的左端加上一个非负的松弛变量; 约束条件为“ ” 不等式,则在约束条件的左端减去一个非负的松弛变量。 若存在无约束的变量 xk ,可令 x k x k ' xk ' ' ,其中 xk ' 0, xk ' ' 0 。 3.3 单纯形法求解 第一步:加入松弛变量,化为标准形(要求 b 0 ),确定初始基 B ,建立初始单纯形表:
cj
CB
2 b 15 4 6/4
x1
1
x2
0
x3
0
x4
0
x5

x3
x1 x2
0 2 0
0 1 0 0
5 2/6 1 1
1 0 0 0
0 1/6 -1/4 -1/3
0 0 6/4 0
cj zj
然后再用 x1 行减去 2/6 倍的 x2 行,X3 行减去 5 倍的 x2 行。并且重新计算检验数。
cj
k 所在列实施最小比值法,确定出主元,并把主元加上小括号。
主元是最大正检验数 k 所在列,用常数项 bi (i 1,2,..., m) 与进基变量 xk 所对应的列向量 中正分量的比值
be 最小者; aek
(3)换基:用进基变量 xk 替换出基变量 xe ,从而得到新的基变量。也就是主元所在列的 非基变量进基,所在行的基变量出基; (4)利用矩阵的行初等变换,将主元变为 1,其所在列其他元素都变为零,从此得到新的 单纯形表; (5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解 决为止。 3.4 单纯形法求解例示

运筹学结课论文

运筹学结课论文

运筹学与博弈论思想的应用概要:本文从“运筹帷幄”引入运筹学和博弈论,从历史、经济、民生等领域所举例子详细解说了运筹学与博弈论思想在现实中的应用。

关键字:运筹学、博弈论、企业管理、运输问题、影子价格、运筹工作者一、运筹学的的起源与发展普遍认为,运筹学起源于第二次世界大战初期,当时, 英国(随即是美国) 军事部门迫切需要研究如何将非常有限的物资以及人力和物力, 分配与使用到各种军事活动的运行中, 以达到最好的作果。

在第二次世界大战期间, 德国已拥有一支强大的空军, 飞机从德国起飞17 分钟即到达英国本土。

在如此短的时间内, 如何预警和拦截成为一大难题。

1935 年, 为了对付德国空中力量的严重威胁, 英国在东海岸的鲍德西(Birdseye) 成立了关于作战控制技术的研究机构。

1938 年, 鲍德西科学小组负责人( Rowe , A1 P) 把他们从事的工作称为运筹学(Operational research[ 英] ,Operations research[美] ,直译为“作战研究”) 。

因此, 人们把鲍德西作为运筹学的诞生地, 将1935 —1938 年这一时间段作为运筹学产生的酝酿时期。

其实早在古代中国就有“运筹于帷幄之中,决胜于千里之外”之说,后来人们用“运筹帷幄”表示善于策划用兵、指挥战争。

然而“运筹”发展到现代已成为一门重要的学科“运筹学”。

由上述运筹学发展历史可知,运筹学是由军事、经济、生产等各个领域所提出的决策问题的推动而发展起来的一门新兴的学科分支。

所谓运筹学,可以说是一系列用以提高所研究系统的有效性的分析工具。

博弈论属于运筹学的一个分支,是研究博弈行为中竞争各方是否存在着最合理的行动方案,以及如何找到这一合理方案的数学理论和方法。

运筹学包括以下内容:线性规划、非线性规划、动态规划、多目标规划、网络分析、网络规划、排队论、存储论、博弈论、决策论、模型论等。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

运筹学论文

运筹学论文

运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。

首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。

1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。

运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。

本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。

2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。

它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。

2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。

常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。

3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。

通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。

3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。

运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。

3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。

通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。

4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。

运筹学运输问题实践论文

运筹学运输问题实践论文

管理运筹学论文---产销不平衡运输问题姓名:学号:班级:摘要:运输问题是运筹学中的一个重要问题,也是物流系统优化中常见的问题,同时也是一种特殊的线性规划问题。

怎么样尽可能的在产地与销地之间减少运输成本和降低运输费用是很多运输公司热切关注的话题。

本文涉及的是一个总产量大于总销量的产销不平衡运输问题,通过对产地与销售地车辆运输的建立模型,在运用表上作业迭代法(最小元素法)求解后,再根据模型用lingo软件编写程序进行求解。

然后对结果进行分析,以及运输问题的延伸。

最后证明用lingo 解决车辆运输的可行性。

关键字:运输问题,产销不平衡,表上作业法, lingo模型问题提出:重庆有三家电子厂分别是新普,隆宇和恒华,生产的笔记本电脑将要运向北京,天津,广东,上海四个城市销售,其产量和销售量见下表:(单位:万台)表:1-1北京天津广东上海产量新普 6 2 6 7 30 隆宇 4 9 5 3 25 恒华8 8 1 5 21 销量15 17 22 12 -问:哪种销售方案将会取得最少的运输费用,费用为多少?问题分析:图表数据显示产量总和为30+25+21=76万台,销量的总和为15+17+22+12=66万台,说明了此问题是一个总产量大于总销量的运输问题(76>66)。

该问题一方面要求满足北京,天津,广东,上海四个销售地的供货需求,而另一方面又要考虑新普,隆宇和恒华三个产地的运往销售地的运输费用,此外问题不但要求满足销售地分配要足,同时也要保证最大化的减少运输费用。

这里选择何种分配方案,将涉及不同的运输费用,所以其是一个典型的线性规划问题,同时也是一个总产量大于总销量的产销不平衡运输问题。

根据题目已知可以得出以下图论:模型建立:假设某物品有m 个产地 A 1、A 2、…、 A m ,各产地的产量是a 1、a 2、…、a m ;有n 个销地B 1、B 2、…、B n ,各销售地销量分别为b 1、b 2、…、b n ;假定从产地A i (i=1,2,…,m )向销售地B j (j=1,2,…,n )运价单位物品的运价是c ij ,问这样调运这些物品才能使运费最少?设 x ij 为从产地Ai 运往销地Bj 的运输量,若各产地产量之和大于各销地销量之和,即有:∑∑==>nj jm i i ba 11则得到下列产销平衡运输量问题的模型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤=∑∑∑∑=+===0,...,2,1,,...,2,1,min 11111ij j mi ij i n j ij m i nj ijij x n j b x m i a x x c z 其中,约束条件右侧常数ai 和bj ,约束条件最多有m+n-1个有效,即最多有m+n-1个基可行解。

运筹学论文

运筹学论文

中国矿业大学运筹学结课论文姓名:魏恒征学院:矿业工程学院班级:采矿工程09-7班学号:01090235教师:付乳燕运筹学的初步学习及认识背景:本学期在付老师的指导下学习了运筹学,初步了解运筹学的发展历史及运筹学在生活实例中的应用。

运筹学是一门和社会生活紧密联系的一门科学,学习运筹学不仅是仅仅的学习知识,运筹学的诸多思想在实际决策中很有指导意义。

关键词:运筹学历史特点学习收获前景一、运筹学简介英语全称为:Operational Research(英国)或者是Operations Resear ch(美国)在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。

田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。

可见,筹划安排是十分重要的。

现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。

前者提供模型,后者提供理论和方法。

运筹学的思想在古代就已经产生了。

敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。

但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。

也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。

当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。

运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。

运筹学结课论文

运筹学结课论文

运筹学结课论文运筹学结课论文运筹学结课论文——基于Matlab的运输问题求解方法探究姓名:苍露露学院:理学院学号:2021052204 班级:信息102班指导教师:葛仁东摘要:运输行业的重要性随着中国经济的不断发展而快速提高,为了降低物流成本,我们有必要研究物流运输中如何组织物资调运才能使总运输成本最少这一重要问题。

而传统的手工解决方式存在着效率低、计算繁琐、数据易丢失等缺点,因此利用MATLAB软件来计算出最佳结果是很有必要的。

本论文以运输问题中一个典型的案例为例阐述了基于MATLAB 的定量分析方法,解决了运输最优方案编制中求解这一大难题,可以广泛应用于物流配送领域,对实践工作具有较强的指导意义。

关键字:Matlab 运输问题产销不平衡问题一、线性规划与运输问题:线性规划是运筹学的一个分支,它是最优化问题领域中最简单、最基本和使用最广泛的方法。

在交通运输领域中,运输是一个最基本的功能,也是物流的核心问题。

将同一种物资从几个不同的发货点运到另外几个不同的收货点,因为运费是单位运价和运输量的乘积,所以如何选择一个合理的运输方案,使总运费最省,这是一个很有应用价值的问题,这类问题就称为运输问题。

研究物资运输过程中最优的运输方案,需要在满足各种资源限制的条件下,找到使运输总成本最少的调运方案。

实践中如果建立数学模型,用线性规划的方法来解决这一问题,则可以节省大量的工作,但由于此类问题所涉及的条件变量较多,一般的数学方法运算难度较大,结果不容易求出,而如果能有效的借助MATLAB 软件中强大的运算功能则可以得到事半功倍的效果。

二、 Matlab求解运输问题的原理:在Matlab 中构建函数l(x)用来解决线性规划问题。

众所周知,运输问题的最优解本质属于极值问题,极值有最大和最小两种,而极大值问题的求解可以转化为极小值问题,因此在Matlab 中以求极小值为标准形式,构建的函数l(x)的具体格式如下:[X,v,e,o,l]=l(F,A,b,m,n,M,N,P,Z)式中:X 为问题的解向量;F 为由目标函数的系数构成的向量;A 为一个矩阵;b 为一个向量,表示线性规划中不等式约束条件,A,b 是系数矩阵和右端向量;m 和n 为线性规划中等式约束条件中的系数矩阵和右端向量;M 和N 为约束变量的下界和上界向量;P 为给定的变量的初始值;Z 为控制规划过程的参数系列;v 为优化结束后得到的目标函数值。

运筹学论文

运筹学论文

运筹学论文1. "运筹学在制造业中的应用案例分析"这篇论文可以研究运筹学在制造业中的应用案例,探讨如何运用运筹学方法来优化制造流程、减少生产成本、提高生产效率等方面的实践经验。

2. "运筹学在物流管理中的应用及挑战"这篇论文可以研究运筹学在物流管理中的应用,分析运筹学方法在物流优化、路线规划、货物配送等方面的应用,并讨论实施这些方法面临的挑战和解决方案。

3. "基于运筹学的供应链管理优化研究"这篇论文可以研究基于运筹学的供应链管理优化方法,分析如何利用运筹学方法来改善供应链的效率和响应能力,以及解决供应链中的库存管理、订单分配等问题。

4. "运筹学在项目管理中的应用研究"这篇论文可以研究运筹学在项目管理中的应用,探讨如何利用运筹学方法来优化项目进度安排、资源分配、风险管理等方面的实践经验,并探讨这些方法在项目管理中的效果和局限性。

5. "基于运筹学的决策支持系统研究"这篇论文可以研究基于运筹学的决策支持系统的开发和应用,分析如何利用运筹学方法来辅助决策制定,提供精确的数据分析和模型建立,以及讨论这些系统在实际决策中的应用效果和局限性。

6. "运筹学在金融风险管理中的应用研究"这篇论文可以研究运筹学在金融风险管理中的应用,分析如何利用运筹学方法来评估和控制金融风险,包括市场风险、信用风险等方面,以及讨论这些方法的优点和局限性。

7. "运筹学在医疗资源优化中的应用研究"这篇论文可以研究运筹学在医疗资源优化中的应用,探讨如何利用运筹学方法来优化医疗资源的配置、排班安排、手术室管理等方面,以提高医疗服务的效率和质量。

8. "基于运筹学的环境保护决策研究"这篇论文可以研究基于运筹学的环境保护决策方法,分析如何利用运筹学方法来评估不同环境保护措施的效果,并对环境保护决策进行优化,以达到经济、社会和环境的可持续发展。

运筹学论文

运筹学论文

浅析运筹学【摘要】:早在“孙子兵法”中运筹学思想、方法就被古人实施运用。

他的产生、发展与具体实施运用均随着其在各个领域的推广而深入人心。

运筹学是一种科学决策的方法,是依据给定目标和条件从众多方案中选择最优方案的最优化技术。

通过对本学科的学习,我深刻认识到运筹学思想的重要性和实用性,并将其运用于以后的学习、生活和工作中。

【Abstract】 As early as in "sun tzu's" operations research ideas and methods will be the ancients implement use. His emergence, development and implementation are with its use in various fields of promotion and thorough popular feeling. Operations research is a scientific decision-making method, is based on a given goal and choose from so many conditions scheme of the best plan optimization technology. Based on a subject of study, I realized the importance of operations research ideasand practical, and was applied in the later study, life and work. 【关键词】:运筹学、运用、发展、心得体会【key words】operational research, apply, develop, comments一、运筹学的产生运筹学思想的出现可以追溯到很早——“田忌赛马”(对策论)、孙子兵法等都体现了优化的思想。

运筹学论文

运筹学论文

资源优化配置九江学院二级学院:商学院专业:工商管理姓名:姜博升学号:48号时间:2011-11-20摘要本论文以企业资源优化分配问题与企业经济效益关系理论阐述的基础上,通过建立线性规划函数模型,对优化分配计划对企业经济发展拉动作用的影响进行探讨。

随着资源浪费的问题在世界范围展开,人们越来越重视资源的合理化配置,同时企业也希望在保证产品质量的前提下,能用最少的成本换取尽可能多的利润,综上可以看出资源的优化配置越来越受到关注。

以下论文主要针对企业实际资源分配的主要问题进行分析并且建立数学模型,研究如何有效的分配人员或生产物品从而使得成本最小化。

一、问题设计某快餐店坐落在一个旅游景点中。

这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增。

快餐店主要为旅客提供低价位的快餐服务。

该快餐店雇佣了两名正式员工,正式员工每天工作8小时。

其余工作由临时工担任,临时工每班工作4小时。

在星期六,该快餐店在上午十一时开始营业到下午4时关门。

根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表1所示。

已知一名正式职工11点开始上班,工作4小时后,休息1小时,而后在工作4小时。

又知临时工每小时的工资为4元。

(1)、满足对职工需求的条件下,如何安排临时工的班次,使得临时工成本最小?(2)、这时付给临时工的工资总额是多少?一共需要安排多少临时工班次?(3)、如果临时工每班工作时间可以是3 小时,也可以是4 小时,那么如何安排临时工的班次,使得临时工总成本最小?二、问题分析这个问题的目标是使得工资成本最低,要做的决策就是人力资源分配的问即如何分配个临时工的班次,才能使得快餐店的成本最小。

按题目所给的班次,将决策变量,目标函数和约束条件用数学符号及数字表示出来,可得到下面数学模型。

三、建立数学模型(1)临时工的工作时间为4 小时,正式工的工作时间也是4 小时,则第五个小时需要新人员,临时工只要招用,无论工作多长时间,都按照4小时给予工资每位临时工招用以后,就需要支付16 元工资。

运筹学实验心得(精选5篇)

运筹学实验心得(精选5篇)

运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。

本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。

2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。

我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。

3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。

例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。

同时,我们也收获了一些理论知识和实践经验。

我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。

4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。

例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。

因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。

总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。

运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。

以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。

关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。

它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。

然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。

实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。

理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。

运筹学教学方法研究的论文

运筹学教学方法研究的论文

运筹学教学方法研究的论文运筹学教学方法研究的论文运筹学教学方法研究的论文篇1论文关键词:运筹学教学实践论文摘要:运筹学是经管系普遍开设的一门主干课程、学位课程,教学中存在着课程难度较大,教学方式单一等问题,本文从教学实践出发,总结了目前教学过程中存在的一些问题,并对课程教学方法进行了研究。

运筹学课程以定量化为主的管理科学方法与信息技术相结合,寻求现实中的满意决策方案,培养学生分析、解决实际问题的能力,使他们在处理日常事务时能够自觉地优化问题,也为今后从事经济管理工作的学生奠定扎实的基础。

1、运筹学在教学过程中存在的问题目前,运筹学课程建设正在逐步完善,但实际教学效果有时往往达不到预期的目标。

本课程教学中存在以下几个方面的问题。

(1)课程难度大,学生积极性不高。

运筹学课程和数学知识联系密切,很多例题都是由数学运算得出的,而这门课程一般在大二时才开设,由于学生大多数都是高中时努力学习,上大学后只求及格,所以在大一开设的数学类基础课没有好好学,以至于到开设运筹学课程时基础差,学起来很困难。

(2)教学方式单一化。

运筹学教学仍是教师在板书授课内容,学生记笔记,这样大部分时间用在推导和计算上,令学生感觉枯燥。

(3)与实践联系不很紧密。

运筹学尽管是以应用性为主的学科,但由于学时的限制,老师在每节课多数时间是在讲解某种类型例题的求解方法和计算过程,由于题较复杂,在90分钟时间内只能讲解一、两种类型例题,再加上学生练习,所以时间很紧迫,老师和学生都把会做题作为课程学习的目标,从而认为课程与实际联系不大。

2、教学改革思路对于运筹学教学中出现的问题,笔者认为可以采取以下措施。

(1)针对“课程难度大,学生积极性不高”这一点,我们应适当加入案例。

经过查阅大量资料和教学实践,笔者认为理论和案例的比例在1:2比较合适,即每节课90分中,用30分左右讲解理论,其余时间讲解案例。

这样可以让学生将所学的理论知识有的放矢,既懂得了理论,又能将其应用到实际生活中。

运筹学论文(合集5篇)

运筹学论文(合集5篇)

运筹学论文(合集5篇)第一篇:运筹学论文摘要:运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。

运筹学可以用来很好的解决生活中的许多问题。

运筹学有着广泛的应用,对现代化建设有重要作用。

关键词:运筹学;应用;最优方案人们无论从事任何工作,不管采取什么行动,都希望所制订的工作或行动方案,是一切可行方案中的最优方案,以期获得满意的结果诸如此类的问题,通常称为最优化问题。

运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。

求解最优化问题的关键,一是建立粗细适宜的数学模型,把实际问题化为数学问题;二是选择正确而简便的解法,以通过计算确定最优解和最优值。

最优解与最优值相结合,便是最优方案。

人们按照最优方案行事,即可达到预期的目标。

运筹学是现代数学的一个重要分支,属于信息科学和数学的综合科学,是20世纪4O年代发展起来的一门具有较强实践性的综合学科,它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物等的组织管理、筹划调度问题,以发挥系统的最大效益。

它的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。

对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。

通常在遇到这些复杂繁琐的事的时候,人们不会考虑太多,仅是凭着第一直觉去处理,结果也因为处理方式的不同而不同。

有的人第一直觉好,就能把事情处理的很好,而有的人却只能接受糟糕的结果。

生活中,如果我们能理智的去分析问题,找到处理问题的最佳办法,那么我们将会避免很多损失和烦恼,取得更大的成功和收获。

运筹学教学实践(3篇)

运筹学教学实践(3篇)

第1篇摘要:运筹学作为一门应用广泛的学科,在各个领域都有广泛的应用。

本文以某高校运筹学课程为例,探讨运筹学教学实践的过程,分析教学过程中遇到的问题及解决方法,旨在为运筹学教学提供有益的借鉴。

一、引言运筹学是一门研究如何通过合理组织、协调和优化资源配置,以提高系统运行效率的学科。

随着社会经济的发展,运筹学在各个领域的应用越来越广泛,对运筹学人才的需求也日益增长。

因此,如何提高运筹学教学质量,培养具有实际应用能力的运筹学人才,成为高校运筹学教学的重要任务。

本文以某高校运筹学课程为例,探讨运筹学教学实践的过程。

二、教学实践过程1. 课程设计(1)明确课程目标。

根据人才培养目标和市场需求,确定运筹学课程的目标,主要包括:掌握运筹学的基本概念、原理和方法;具备解决实际问题的能力;提高学生的逻辑思维和创新能力。

(2)合理设置教学内容。

结合教材和教学大纲,将运筹学的基本理论、方法和应用案例相结合,形成完整的教学体系。

同时,注重理论与实践相结合,加强案例分析、实验和实践环节。

(3)优化教学手段。

运用多媒体、网络等现代教育技术,丰富教学内容,提高教学效果。

2. 教学实施(1)课堂教学。

采用启发式、讨论式等教学方法,激发学生的学习兴趣,培养学生的逻辑思维和创新能力。

在课堂上,注重引导学生分析问题、解决问题,提高学生的实践能力。

(2)实验与实践。

组织学生进行实验、案例分析、项目实践等,让学生在实际操作中掌握运筹学知识,提高解决实际问题的能力。

(3)课外辅导。

针对学生在学习过程中遇到的问题,进行个别辅导,帮助学生克服学习困难。

3. 教学评价(1)过程评价。

通过课堂表现、实验报告、项目实践等,评价学生的学习过程。

(2)结果评价。

通过考试、论文、答辩等方式,评价学生的学习成果。

三、教学实践中遇到的问题及解决方法1. 学生基础参差不齐解决方法:针对不同基础的学生,采用分层教学,对基础知识薄弱的学生加强辅导,对基础较好的学生进行拓展训练。

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇)运筹学是一门应用性很强的学科,在培养学生分析和解决问题的能力,提高学生应用和创新能力方面发挥着重大的作用.本文针对运筹学教学的特点和现今存在的问题,提出了一系列改革建议及方案,构建了理论与实践相结合的教学体系,该体系能够使学生学以致用,增强学生的实践能力,为培养应用创新型人才创造良好条件.第1篇:新业态下民航类专业运筹学教学模式改革研究从网络售票到微信值机,从单一的“售舱位”到运用大数据“提供综合服务”,互联网在深刻改变整个社会的同时,也在冲击传统的航空运输业,航空公司开始关注乘客的兴趣爱好、企业的运输需求,重新定义飞行。

在移动互联网时代,随着消费者对服务要求的不断提高,从关注服务本身,向客户体验和价值链两端不断延伸,服务提供方需要把标准化的服务产品或项目细化拆分,让客户选择自由结合。

航空运输业要想取得竞争优势,也必须不断创新服务理念,发展新业态。

新业态是指基于不同产业间的组合、企业内部价值链和外部产业链环节的分化、融合、行业跨界整合以及嫁接信息及互联网技术所形成的新型企业、商业乃至产业的组织形态。

信息技术革命、产业升级、消费者需求倒逼不断推动新业态产生和发展,也要求高校教育与人才培养模式必须进行与之相适应的变革。

运筹学是民航类专业的一门专业基础课,它是民航运营活动有关数量方面的理论,运用科学的方法来决定如何最佳地运营和设计各种系统的一门学科,对系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

通常以最优、最佳等作为决策目标,避开最劣的方案[1]。

近年来,郑州航院运筹学课程组秉承“航空为本管工结合”的办学理念,针对民航类专业的特点进行了一系列教育教学改革,达到了预期效果。

本文旨在介绍《运筹学》课程的教学改革过程,研究总结成功经验,并提出未来改革发展的思路。

一、运筹学教育教学现况郑州航院交通运输(航空物流)专业、安全工程(民航方向)及工业工程(航空方向)着重培养能够从事民航运输管理、机场运营管理、航空安全管理、跨境电商等经营与管理应用型人才。

运筹学期末论文

运筹学期末论文

运筹管理学论文引言:运筹学是一门寻求由于运筹学研究的广泛性和复杂性,人们至今没有形成一个统一的定义。

以下给出几种定义:运筹学是一种科学决策的方法。

运筹学是依据给定目标和条件从众多方案中选择最优方案的最优化技术。

运筹学是一门寻求在给定资源条件下,在给定资源条件下,如何设计和运行一个系统的科学决策的方法。

运筹学与管理科学(Management Science MS)关系:管理科学涵盖的领域比运筹学更宽一些。

可以说,运筹学是管理科学最重要的组成部分。

运筹学研究的特点:科学性(1)它是在科学方法论的指导下通过一系列规范化步骤进行的;(2)它是广泛利用多种学科的科学技术知识进行的研究。

运筹学研究不仅仅涉及数学,还要涉及经济科学、系统科学、工程物理科学等其他学科。

实践性运筹学以实际问题为分析对象,通过鉴别问题的性质、系统的目标以及系统内主要变量之间的关系,利用数学方法达到对系统进行最优化的目的。

更为重要的是分析获得的结果要能被实践检验,并被用来指导实际系统的运行。

系统性运筹学用系统的观点来分析一个组织(或系统),它着眼于整个系统而不是一个局部,通过协调各组成部分之间的关系和利害冲突,使整个系统达到最优状态。

综合性运筹学研究是一种综合性的研究,它涉及问题的方方面面,应用多学科的知识,因此,要由一个各方面的专家组成的小组来完成。

下面我们通过一个运筹学案例和它的分析过程,来反应运筹学的一些特点和性质。

配矿计划编制一、问题的提出某大型冶金矿山公司共有14个出矿点,年产量及各矿点矿石的平均品位(含铁量的百分比)均为已知(见表1)。

定的品位值T Fe进行不同品位矿石的混合配料,然后进入烧结工序,最后,将小球状的烧结球团矿送入高炉进行高温冶炼,生产出生铁。

该企业要求:将这14个矿点的矿石进行混合配矿。

依据现有生产设备及生产工艺的要求,混合矿石的平均品位T Fe规定为45%。

问:如何配矿才能获得最佳的效益?二、分析与建立模型我们可以很快判定此项目属于运筹学中最成熟的分支之一——线性规划的范畴。

运筹学毕业论文

运筹学毕业论文

运筹学毕业论文运筹学毕业论文运筹学是一门研究如何在有限资源下做出最优决策的学科。

它涵盖了数学、统计学和计算机科学等多个学科的知识,通过建立数学模型和运用各种优化方法,帮助人们解决实际问题。

作为一门交叉学科,运筹学在现代社会中扮演着重要的角色,对于提高效率、优化资源利用以及解决各种决策问题具有重要意义。

一、运筹学的基本原理运筹学的基本原理可以概括为三个要素:模型建立、优化方法和决策分析。

首先,模型建立是运筹学的基础。

通过对问题进行抽象和建模,将实际问题转化为数学问题,从而能够运用数学方法进行求解。

模型建立需要考虑问题的目标、约束条件以及相关的变量和参数,以此来描述问题的本质和特点。

其次,优化方法是解决运筹学问题的核心。

优化方法包括线性规划、整数规划、动态规划、图论等多种方法,根据问题的性质和特点选择不同的方法进行求解。

优化方法的目标是寻找问题的最优解,即在满足约束条件的前提下,使目标函数达到最小或最大值。

最后,决策分析是对优化结果进行评估和决策的过程。

通过对优化结果进行分析,评估其对问题的解决程度和可行性,从而为决策者提供决策依据。

决策分析需要综合考虑问题的经济、社会和环境等方面因素,以及决策者的偏好和目标。

二、运筹学在实际问题中的应用运筹学在各个领域都有广泛的应用,下面以物流管理和生产调度为例,介绍其在实际问题中的应用。

物流管理是指对物流过程进行规划、组织、实施和控制的管理活动。

在物流管理中,通过建立供应链网络模型和运用优化方法,可以实现最优的物流路径选择、仓库位置布局、运输调度等,从而降低物流成本、提高物流效率。

例如,通过运筹学方法,可以确定最佳的配送路线和配送车辆数量,使得物流成本最小化,同时满足客户需求。

生产调度是指对生产过程进行规划和控制的管理活动。

在生产调度中,通过建立生产调度模型和运用优化方法,可以实现最优的生产计划和生产调度,从而提高生产效率、降低生产成本。

例如,在工厂生产调度中,通过运筹学方法可以确定最佳的生产顺序和机器调度,使得生产效率最大化,同时满足交货期限和资源约束。

运筹学论文及案例

运筹学论文及案例

运筹学课程论文与案例分析专业:姓名:学号:指导老师:运筹学课程论文与案例分析摘要:运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。

运筹学思想贯穿了企业管理的始终,它在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用。

本文主要通过对运筹学的分析,结合企业管理,浅谈了运筹学对企业管理的影响。

掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。

关键词:管理运筹学线性规划正文:现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法解决。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。

从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。

”运筹学的具体内容包括:规划论,包括线性规划、非线性规划、整数规划和动态规划、库存论、图论、决策论、对策论、排队论、可靠性理论等。

而《应用运筹学》作为运筹学的一部分,则重点介绍了管理运筹的思想与建模方法。

具体包括了线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。

其主要特点是注重运筹学原理及方法在解决实际管理问题时应用,突出了管理问题的分析和运筹模型的构建过程,淡化了模型的理论推导和数学计算。

借助于十分普及的Excel软件来求解模型,使得运筹学模型的应用更加简明直观。

线性规划是运筹学的一个重要分支。

线性规划解决的是,在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。

简单的设计2个变量的线性规划问题可以直接运用图解法得到。

运筹学期末论文

运筹学期末论文

运筹学的发展与运用【摘要】运筹学是系统工程学的一门重要专业基础课。

它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。

他的产生、发展与具体实施运用均随着其在各个领域的推广而深入人心。

通过对本学科的学习,我深刻认识到运筹学思想的重要性和实用性,并将其运用于以后的学习、生活和工作中。

【Abstract】Systems Engineering Operations Research is important for a basic course. It is the beginning of the 1930s developed a new discipline, its main purpose is to provide decision-making in the scientific basis for the management is to achieve effective management, one of the important methods correct decision and modern management. His emergence, development and application of specific implementation are with their promotion in various fields and popular. . Through the discipline of study, I deeply understand the importance and usefulness of operations research ideas and applied their future learning, life and work.【关键词】运筹学、运用、发展、心得体会【key words】operational research, apply, develop, comments一、运筹学的产生运筹学原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目标2:土方的利用,以减少土方的重复挖填和运输。选择合理的挖方区与填方区的方案可以减少费用成本;
设从挖方区W 到填方区T 的运输量为 :
(1)系统约束——产量约束,由于填方区必须被填满,故挖方区的挖方量必须等于填方量。
(2)目标约束——需求约束,由于受填方量的限制,填方区为目标约束量。
综上所诉、该问题的数学模型为:
产地5
70
80
60
50
90
产地6
110
100
80
50
70
3.3运行结果报告及敏感性报告
运用运行结果报告更能直观的分析挖方区与填方区的合理运输量如下表(3)和表(4):
表(3)运算结果报告
Microsoft Excel 12.0 运算结果报告
工作表 [运输问题.xlsx]Excel模型
报告的建立: 2014/6/2 18:52:39
0
20.00000002
80.00000002
1E+30
20.00000002
$D$10
产地5 销地3
410
0
60
10.00000001
9.999999979
$E$10
产地5 销地4
340
0
50
9.999999979
10.00000001
$F$10
产地5 销地5
0
20
90
1E+30
20
$B$11
产地6 销地1
土方调配——运输问题分析
摘要:运用运输规划中的产销平衡模型,通过Execel软件计算挖方区和填方区的土方工程量,明确挖方区和填方区的土方调配方向和运输量,从而找到最有掉配方案(即总运输量最小),最终达到缩短工期和降低成本的目的。
关键词:土方调配运输规划产销平衡模型ExecelORM求解
1案例问题
土方调配是土方规划中的一个重要内容,它关系到整个工程的工期长短和工程造价的高低。土方调配应满足以下原则:力求挖填平衡、运距最短、费用最省;考虑土方的利用,以减少土方的重复挖填和运输。
目标函数:
约束条件:
s.t.
3Excel模型分析与步骤
3.1Excel模型设计步骤与数据输入
利用关文忠的自编软件运筹学Excel模型生成系统ExcelORM V2.0如下图(1):
图(1)
此问题为普通的运输规划中的“产销平衡”的问题,其填方区和挖方区,分别可视为销地和产地;其目标要求为运输费用最小化原则;所以其Excel表格设计如下:
一个土方工程项目中,往往会有多个挖方区和填方区,特别是当工程为分期分批施工时,先期工程与后期工程之间的土方堆放和调配运输问题应当全面考虑,力求避免重复挖运和场地混乱。然而,在实际土方施工过程中,工程施工人员往往根据实际工作经验和感觉进行土方的挖填、堆放和调配运输,没有进行规划设计,这样就不可避免的会导致场地的混乱、工期延长和成本增加。因此,为使土方总运输量最小或土方施工费用最低,在土方施工前先进行土方调配设计是非常必要的。这里,运用运筹学的运输问题中的“产销平衡模型”进行土方调配设计,确定挖填方区的土方调配方向和数量,可以达到缩短工期和降低造价的目的。
需求量bj
560
430
710
850
650
3200
单位运价表:
Cij
销地1
销地2
销地3
销地4
销地5
产地1
50
70
100
80
60
产地2
70
40
90
70
50
产地3
60
110
70
100
90
产地4
80
100
40
40
60
产地5
70
80
60
50
90
产地6
110
100
80
50
70
3.2对于该模型下的问题求解报告
进行目标规划求解得出Excel模型的分析报告表如下表(2):
0
49.99999999
110
1E+30
49.99999999
$C$11
产地6 销地2
0
40.00000001
100
1E+30
40.00000001
$D$11
产地6 销地3
0
19.99999999
79.99999999
1E+30
19.99999999
$E$11
产地6 销地4
510
0
50
10.00000001
50.00000001
$E$6
产地1 销地4
0
40.00000002
80.00000002
1E+30
40.00000002
$F$6
产地1 销地5
340
0
60
10.00000001
10.00000001
$B$7
产地2 销地1
0
30.00000001
70.00000001
1E+30
30.00000001
0
750
750
产地6
0
0
0
510
140
650
650
∑运量
560
430
710
850
650
3200
需求量bj
560
430
710
850
650
3200
单位运价表:
Cij
销地1
销地2
销地3
销地4
销地5
产地1
50
70
100
80
60
产地2
70
40
90
70
50
产地3
60
110
70
100
90
产地4
80
100
40
40
60
430
430
$D$7
产地2 销地3
0
0
$E$7
产地2 销地4
0
0
$F$7
产地2 销地5
170
170
$B$8
产地3 销地1
400
400
$C$8
产地3 销地2
0
0
$D$8
产地3 销地3
0
0
$E$8
产地3 销地4
0
0
$F$8
产地3 销地5
0
0
$B$9
产地4 销地1
0
0
$C$9
产地4 销地2
0
0
$D$9
产地4 销地3
以下通过一实例来解决一个具体土方调配问题
已知某土方施工场地的挖方区W 、W2、W3、W4,填方区T1、T2、T3,其挖填方量及每一调配区之间的平均运距如下表所示:
T1
T2
T3
T4
T5
挖方区( )
W1
50
70
100
80
60
500
W2
70
40
90
70
50
600
W3
60
110
70
100
90
400
W4
80
100
$F$8
产地3 销地5
0
20
90
1E+30
20
$B$9
产地4 销地1
0
40.00000002
80.00000002
1E+30
40.00000002
$C$9
产地4 销地2
0
60.00000001
100
1E+30
60.00000001
$D$9
产地4 销地3
300
0
40
9.999999979
1E+30
$E$9
可变单元格

递减
目标式
允许的
允许的
单元格
名字

成本
系数
增量
减量
$B$6
产地1 销地1
160
0
50
10.00000001
10.00000001
$C$6
产地1 销地2
0
20.00000001
70.00000001
1E+30
20.00000001
$D$6
产地1 销地3
0
50.00000001
100
1E+30
9.999999997
$F$11
产地6 销地5
140
0
70
9.999999997
10.00000001
约束

阴影
约束
允许的
允许的
单元格
名字

价格
限制值
增量
减量
$G$6
产地1 ∑运量
500
50
500
0
160
$G$7
产地2 ∑运量
600
40
600
0
160
$G$8
产地3 ∑运量
400
60
400
0
400
$G$9
40
40
60
300
W5
70
80
60
50
90
750
W6
110
100
80
50
70
650
填方区( )
560
430
710
850
650
相关文档
最新文档