广东海洋大学819数学物理方法2012到2014,2016到2017五套考研真题
广东海洋大学10--15第二学期高数

广东海洋大学2014—2015学年第二学期《高等数学》课程试题课程号:x2□√考试□√A 卷□√闭卷□考查□B 卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数24 14 28 286100实得分数一 . 填空(3×8=24分)1.设1,2,1a ,0,1,x b ,b a,则x2.设1,0,2a,0,1,0b,则ba3.曲面222y xz在点)2,1,1(处的切平面方程为4.将xoz 平面上的曲线1422zx绕x 轴旋转一周所得的旋转曲面的方程为5.函数)3ln(22y xz的驻点为6.设L 为连接)0,1(到点)1,0(的直线段,则dsx y L)(7.幂级数13n nn x的收敛半径为8.微分方程xey3的通解为y二 .计算题(7×2=14分)1.设)ln(22y xy z,求dz .2.设函数),(y x f z 是由方程333a xyz z所确定的具有连续偏导数的函数,求22,xzxz.姓名:学号:试题共5 页加白纸3 张密封线GDOU-B-11-302三 .计算下列积分(7×4=28分)1.dxdy x yD)(2,其中D 是由0y, 2x y及1x所围成的闭区域。
2.证明曲线积分dy xy xdxy xy )2()2(2)1,1()0.0(2在整个xoy 平面内与路径无关,并计算积分值。
3.计算dxdyz dzdx y dydzx )3()2()1(,其中是球面9222zyx的外侧。
4.计算dxdy yxD2211,其中D 是由2522yx围成的闭区域。
四 .计算题(7×4=28分)1.判别级数2121)1(nn n是否收敛? 若收敛,是绝对收敛还是条件收敛? 2.将函数31)(xx f 展开为x 的幂级数。
3. 求微分方程62ydxdy满足初始条件20xy的特解。
4.求微分方程xe yy 的通解。
五.证明)()()(ydx x f x dxx f dy(6分)2014-2015学年第二学期《高等数学》A 卷(参考答案及评分标准课程号:×2一、填空(3×8=24分)1. 2;2. 2,0,1;3.02zyx;4. 4.14222zyx;5.)0,0(;6.2;7.3;8. 21391c x c ex二、计算题(14分)1.222yxxyx z ,222222)ln(yxyy xy z ,(4分)dy yxyy xdxyxxydz]2)[ln(22222222(3分)2.令),,(z y x F 333a x yz z (1分),得y zF F zx 33,12,则yzF F xzzx 3312,(4分)则322222)33(6)33(6y zz y zx z z xz. (2分)三.计算下列积分(7×4=28分)1.原式101)21()21()(4101022分3210分422dx x dxy x ydyx y dxxx2.设xy xy x Q y xy y x P 2),(,2),(22,有y xxQ yP22,所以曲线积分与路径无关。
广东海洋大学14-15第二学期高数期末考试试题A,B卷(含答案)汇编

广东海洋大学2014—2015学年第二学期《高等数学》课程试题课程号:19221101x2□√考试□√A 卷□√闭卷□考查□B 卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数2118357685100实得分数一、填空题(共21分每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π.3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f )6,4,2(.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.班级:姓名:学号:试题共6页加白纸3张密封线GDOU-B-11-302解:设所求平面的法向量为n,则{}3,2,1111121=--=k j i n(4分)所求平面方程为32=++z y x (6分)2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解:πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rzz r r f r r θθθπ(6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D 解⎰⎰-=2020d d 2rr eI r πθ⎰⎰--=-20220)(d d 212r e r πθ(4分)⎰-⋅-=202d 221r e π)1(4--=e π(6分)三、解答题(共35分每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂(3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂(6分)yxy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++=(7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yzx z ∂∂∂∂,.解:令xyz e z y x F z-=),,(,(2分)则,yz F x -=,xz F y -=,xy e F z z -=(5分)xye yzF F x z zz x -=-=∂∂,xye xzF F y z zz y -=-=∂∂.(7分)3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL yx x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022(7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解:由xQ y P ∂∂=∂∂得)()(x f x f e x'=+,即xex f x f =-')()((3分)所以)d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=,(6分)代入初始条件,解得1=C ,所以)1()(+=x e x f x.(7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解:因为)!2()!()!22(])!1[(limlim 221n n n n u u n nn n ++=∞→+∞→(3分))12)(22()1(lim 2+++=∞→n n n n 141<=(6分)故该级数收敛.(7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d yx z x z y z y x ⎰⎰∑++-1d d d d d d yx z x z y z y x (4分)d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=.(7分)五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x ,且面积为)sin sin (sin 212z y x R A ++=,令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z y x (4分)得32π===z y x .此时,其边长为R R 3232=⋅.由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大.(6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解:1)1(lim lim1=+==∞→+∞→nn a a R n n n n ,故收敛半径为1=R .(2分)当1-=x 时,根据莱布尼茨判别法,级数收敛;当1=x 时,级数为调和级数,发散.故原级数的收敛域为)1,1[-.(5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11,(6分)再积分得⎰'=x xx S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分)七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x ytt f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f .解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰(2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(.(3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C .因此所求的函数为)1(ln 3)(+=x x f .(5分)广东海洋大学2014—2015学年第二学期《高等数学》课程试题课程号:19221101x2□√考试□A 卷□√闭卷□考查□√B 卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数271577181214100实得分数一、填空题.(每小题3分,共27分)1.二元函数2241y x z --=的定义域是}4),({22<+y x y x 2.设向量)1,2,1(-=→a ,)2,1,1(=→b ,则→→⨯b a =(-5,-1,3)3.过点(1,1,1)且以)11,4,1(-=→n 为法线向量的平面方程为6114=+-+z y x 4.将yoz 坐标面上的抛物线z y 22=绕z 轴旋转所成的曲面方程是:zy x 222=+5.极限=++→→2222001sin)(lim yx y x y x 06.设函数)ln(xy z =,则yz∂∂=y 17.曲线32,1,t z t y t x =-==在点(1,0,1)处的切线方程是:31121-=-=-z y x 8.改变累次积分I=⎰⎰101),(ydx y x f dy的次序为I =⎰⎰10),(xdyy x f dx 9.微分方程xy y 2='的通解是2x ce二、单项选择题(每小题3分,共15分)班级:姓名:学号:试题共5页加白纸3张密封线GDOU-B-11-3021.设函数⎰=Φ3)()(x a dt t f x ,则=Φ')(x (D )(A))(x f (B))(3x f (C))(32x f x (D))(332x f x 2.设函数y x z sin 2=,则yx z∂∂∂2等于(B )(A)y x cos 2+(B)y x cos 2(C)x2(D)ycos 3.直线11121-+==-z y x 与平面1=+-z y x 的位置关系是(B )(A)垂直(B)平行(C)夹角为4π(D)夹角为4π-4.设D 是第二象限内的一个有界区域,而且10<<y ,记⎰⎰=Dyxd I σ1,⎰⎰=Dxd y I σ22,⎰⎰=Dxd y I σ213,则321,,I I I 之间的大小顺序为(C )(A)321I I I ≤≤(B)312I I I ≤≤(C)213I I I ≤≤(D)123I I I ≤≤5.微分方程0ln =-'y y y x 是(A )(A)变量分离方程(B)齐次方程(C)一阶齐次线性微分方程(D)一阶非齐次线性微分方程三.计算由两条抛物线x y =2,2x y =所围成的图形的面积。
广东海洋大学10--15第二学期高数(试题与答案)

广东海洋大学2014—2015学年第二学期《高等数学》课程试题课程号:考试 A 卷 闭卷二.计算题(7×2=14分) 1. 设)ln(22y x y z +=,求dz .2.设函数),(y x f z =是由方程333a x yz z =+-所确定的具有连续偏导数的函数,求22,xz x z ∂∂∂∂.姓名:学号:试题共5页加白纸3张密封线GDOU-B-11-302三.计算下列积分(7×4=28分)1.dxdy x y D)(2⎰⎰-,其中D 是由0=y ,2x y =及1=x 所围成的闭区域。
2.证明曲线积分dy xy x dx y xy )2()2(2)1,1()0.0(2-+-⎰在整个xoy 平面内与路径无关,并计算积分值。
《高等数学》A 卷(参考答案及评分标准课程号:19221101×2一、 填空(3×8=24分)1.2-;2.}{2,0,1; 3. 02=-+z y x ;4. 4.14222=+-z y x ;5.)0,0(;6.2;7.3;8.2131c x c e x ++-所以曲线积分与路径无关。
(4分) 原式=0)21(10=-⎰dy y (3分)3.设V 表示∑围成的闭区域并表示它的体积,由高斯公式有原式⎰⎰⎰⎰⎰⎰-=-=∂-∂+∂-∂+∂-∂=V V dvdv zz y y x x π108)3()3()2()1((分3分44.原式26ln )1ln(21211202分320502分4ππθπ=+=+=⎰⎰r rdr rd四.1.令221nu n +=,则1`+>n n u u ,且0lim =∞→n n u ,所以级数2121)1(n n n+-∑∞=收敛。
(3分)又1121lim2=+∞→n n ,而级数∑∞=11n n发散,所以级数2121nn +∑∞=发散。
(3分)所以对应的齐次方程的通解为+=21.(4分) 设x ae y =*是x e y y ='+''的特解,则21=a 所以原方程的通解为xx e e c c y 2121++=-(3分) 五.积分区D 域为:y x y ≤≤≤≤0,0π,更换积分次序有⎰⎰⎰⎰⎰-==πππππ0)()()()(dx x f x dy x f dx dx x f dy xy(6分)广东海洋大学2013—2014学年第二学期《高等数学》课程试题课程号:考试 A 卷 闭卷 ()且与x 轴垂直相交的直线方程为2.设),(y x f z =是由方程0z e x yz -+=所确定的具有连续偏导数的函数,求,z z x y∂∂∂∂. 三.计算下列积分(7×4=28分)班级:姓名:学号:试题共5页加白纸3张密封线GDOU-B-11-3021.()Dx y d σ-⎰⎰,其中D 是由x 轴y 轴以及直线22x y +=所围成的闭区域。
广东海洋大学高数历年考题+答案

广东海洋大学 2011—2012学年第 二 学期《 高 等 数 学 》试题答案和评分标准课程号: 19221101x2□√ 考试□ A 卷□√ 闭卷□ 考查□√ B 卷□ 开卷一、填空(3×7=21分)1. 设{1,2,0},{1,1,1}a b ==- ,则=⋅b a-1 ,=⨯b a {2,1,3}--2. 过点(1,0,1)且与平面10x y z ++-=垂直的直线方程为11111x y z --== 3. 设曲线L :cos ,sin (02)x t y t t π==≤≤,则222()Lx y ds +⎰ =2π 4. 改变积分次序2100(,)x dx f x y dy ⎰⎰=110(,)dy f x y dx ⎰5. 函数()y x x ππ=-≤≤的傅立叶级数在x=π处收敛于 06. 函数22z x y =+在点(1,1)处的梯度为{2,2}7. 微分方程sin 5y x ''=通解为=y 211sin 525x c x c -++ 二 .计算题(7×2=14分) 1. 设22xz x y =+,求dz . 解:2222,()z y x x y ∂=∂+ (2) 224()z xy y x y ∂-=∂+ (2) z zdz dx dy x y∂∂=+∂∂ (2) =2222224()()y xydx dy x y x y -+++ (1)班级:姓名:学号:试题共 6页加白纸 3 张密封线GDOU-B-11-3022.设),(y x f z =是由方程10z z xye ++=所确定的具有连续偏导数的函数,求yz x z ∂∂∂∂,. 解: 在方程两边对x 求偏导数, (1)0z z z z ye xye x x∂∂++=∂∂ (2) 得,1z zz ye x xye∂-=∂+ (1) 在方程两边对y 求偏导数,0z z z z xe xye y y∂∂++=∂∂ (2) 得,1z zz xe y xye∂-=∂+ (1)三 .计算下列积分(7×4=28分) 1.()Dx y d σ+⎰⎰,其中D 是由直线y 0,y x ==以及1x =所围成的闭区域。
广东海洋大学往年高数第二学期期末考试试题 含A B卷 完整版

广东海洋大学2010—2011学年第二学期《高等数学Ⅱ》课程试题课程号:19221102x2□√考试□A 卷□√闭卷□考查□√B 卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数243046100实得分数一.填空(3×8=24分)1.多元函数在0P 处有偏导数是该函数在0P 处可微的条件。
2.微分方程212x y xy e -'+=的通解为。
3.22044x dx -⎰=。
4.已知()F x 是2x e -的原函数,()F x dx ⎰=。
5.()f x dx '=⎰,(())f x dx '=⎰。
6.方程5650y y y '''++=的通解为。
7.函数(,)f x y 具有连续的一阶偏导数是该函数可微的条件。
8.020sin lim x x tdt x →=⎰。
二.求积分(6×5=30分)1.⎰+-dx e x x)51( 2.⎰dxx2cos 2班级:姓名:学号:试题共4页加白纸2张密封线3.⎰xdx x sin4.⎰+3032dx x x 5.121(sin )x x x dx -+⎰ 6.sin x e xdx⎰三.求解下列各题(46分)1.已知某函数满足方程(1)y ydx y xdy e dy++=,且当1y =时,12e e x -+=。
求解此函数(10分)。
2.已知sin ,,ln x y x ux v u e v x =++==,求dy dx(6分)。
3.已知曲线3223y x =。
(1)利用定积分求曲线与1,3x x ==及x 轴所围图形的面积.(5分);(2)利用二重积分再算该图形的面积(5分)。
4.计算221Dx y dxdy ++⎰⎰,其中D 是由圆周224x y +=及坐标轴所围成的在第一象限内的闭区域。
(10分)5.研究函数32321111(,)63232f x y x x x y y =--++的极值(10分)。
广东海洋大学高等数学往年试卷

广东海洋大学2006 ——2007学年第一学期《高等数学》课程试题课程号: 1920008□ 考试□ A 卷□ 闭卷□ 考查□ B 卷□ 开卷一. 计算(20分,各4分).1.x x x x sin 2cos 1lim0-→. 2.⎰+x dx2cos 1.3.⎰-++1121sin 1dx xx . 4.x x x x )1232(lim ++∞→. 5.⎰262cos ππxdx .二.计算(20分,各5分). 1.求)arcsin(tan x y =的导数。
2.求由方程0=-+e xy e y所确定的隐函数y 的二阶导数22dxyd 。
3.已知⎩⎨⎧==te y t e x tt cos sin ,求当3π=t 时dx dy的值。
4.设x y y x z 33-=,求xy zx z ∂∂∂∂∂2,.三.计算.(25分,各5分).1. dx x x ⎰+9232.dx e x ⎰班级:计科1141 姓名: 阿稻学号:2014xx试题共2页加白纸4张密封线GDOU-B-11-3023.dttedt e xt xt x ⎰⎰→020222)(lim .4.求]1)1ln(1[lim 0xx x -+→. 5.dx x ⎰-202sin 1π.四.解答(14分,各7分).1.问12+=x xy ()0≥x 在何处取得最小值?最小值为多少? 2.证明x x xx<+<+)1ln(1.五.解答(21分,各7分).1.求由2x y =与x y 2=围成图形的面积。
2.求由x x x y ),0(,sin π≤≤=轴围成的图形绕x 轴所产生的旋转体的体积。
3.计算σd y x D⎰⎰+)(22,其中D 是矩形闭区域:1,1≤≤y x .《高等数学》课程试题A 卷答案一. 计算 (20分 各4分)1.原式=2sin sin 220lim =→x x x x 2.原式=c x xdx +=⎰tan 21sec 212 3. 原式=201arctan 211112π⎰-==+x dx x 4. 原式=e x x x =++∞→)1221(lim 5. 原式=83622cos 126-=+⎰πππdx x 二、计算 (20分 各5分) 1.x xy 22sec tan 11'-=2.两边对x 求导,得:0''=++xy y y e y yex yy +-=' 2)()'1()('''y y y e x y e y e x y y ++-+-= 32)(22y yy e x e y ye xy +-+= 3.tt tt t e t e t e t e dx dy tt t t sin cos sin cos cos sin sin cos +-=+-=2331313-=+-==πt dx dy 4.323y y x xz -=∂∂222233y x y x z x y z -=∂∂∂=∂∂∂三、计算 (20分 各5分)1.原式=c x x dx x x x x ++-=+-+⎰)9ln(29219992223 2. 原式=c e e x c e te dt te x xt t t +-=+-=⎰)(2)(223. 原式=2222220lim=⎰→x xt xx xedte e4. 原式=212111)1ln(lim lim20=+-=+-→→x x x x x x x 5. 原式=222)cos (sin )sin (cos cos sin 244020-=-+-=-⎰⎰⎰ππππdx x x dx x x dx x x四、解答 (14分 各7分)1.解:0)x (1x 1'y 222=+-= 1x ±= 1x -=(舍)又 00x y 211x y ==== 故:函数在1x =取到最大值,最大值为21。
广东海洋大学数学物理方法2012--2014,2016,2017年考研真题

819《数学物理方法》 第 1 页 共 9 页 广东海洋大学2012年攻读硕士学位研究生入学考试
《数学物理方法》(819)试卷
(请将答案写在答题纸上,写在试卷上不给分。
本科目满分150分)
一、名词解释(30分,每小题6分)
1、定解问题
2、微分方程的古典解
3、位势方程
4、线性微分方程
5、Poisson 方程
二、填空题(20分,每空4分)
1、与热传导方程相似的物理问题有: 、 等。
2、Fourier 变换的积分表达式: 。
3、Dirichlet 边界条件表达式为: 。
4、微分方程特征函数为: 。
三、简答题(30分,每小题10分)
1、简述非齐次线性微分方程的定义,并指出下列方程的性质:
激波方程: 0t x u uu +=
KdV 方程: 60
t x xxx u uu u -+= 多空介质方程:
m
t u k u =∆ 2、简述二阶线性偏微分方程的分类方法,并指出下列方程的类型:43260+-++=xx xy yy x y u u u u u 。
3、简述分离变量法求解含有齐次边界条件的齐次线性偏微分方程的
步骤。
四、写出二维Laplace 方程的差分方程。
(10分)
五、设有一根拉紧的均匀柔软而有弹性的细弦,平衡时沿直线拉紧,
当它在铅直平面内作微小振动时,求弦上各点运动规律。
(15分)
六、用行波法求解下面的Cauchy 问题: (15分) 22222200230, ,3, 0==⎧∂∂∂+-=∈⎪∂∂∂∂⎨⎪==⎩x x x u u u x t R t t x x u t u。
广东海洋大学大学物理历年考题答案

广东海洋大学2010——2011 学年第 二 学期《大学物理III 》课程试卷课程号:√ 考试√ A 卷√ 闭卷□ 考查B 卷□ 开卷一、选择题(每小题3分,共30分)1、有一质点在平面上运动,运动方程为j t i t r 2343+=,则该质点作( )A 曲线运动;B 匀速直线运动 ;C 匀变速直线运动 ;D 变加速直线运动。
2、对于一个质点系,系统的内力可以改变系统的( )A 总动量;B 总动能;C 总角动量;D 总质量 3、 0.5mol 的氧气,处于温度为T 的平衡态,则内能为( )RT DRT C RT BRT A45,5.0,25,234、麦克斯韦速率分布中最概然速率V p 的概念,下面表述正确的是( )A 是气体分子中大部分分子所具有的速率。
B 是气体分子速率的最大值。
C 是麦克斯韦速率分布函数的最大值。
D 速率大小与最概然速率相近的气体分子的相对数量最大。
5、两个点电荷相距一定的距离,如果在这两个点电荷连线的中垂线上的电场强度为0,那么这两个点电荷的带电情况是( )A 电量相同,电性相同;B 电量相同,电性不同;C 电量不同,电性相同;D 电量不同,电性不同。
6、稳恒磁场中,若闭合回路L 上满足⎰=⋅Ll d B 0,则一定有( )A 回路L 上每处的磁感强度均为零。
GDOU-B-11-302班级:姓名:学号:试题共 6页加白纸 2 张密封线B 回路L 上每处的磁感强度均与积分路径垂直。
C 这个磁场是保守场。
D 回路L 包围的电流代数和一定为零。
7、两个简谐运动方向相同,频率相同,振幅也相同且等于1,其相位差为60°,则这两个简谐运动合成的振幅为( )A 0.5;B 1 ;C 3;D 2。
8、一平面简谐波在弹性媒质中传播,在媒质中某质元从平衡位置运动到最大位移处的过程中,( )A 它的动能逐渐转化成势能。
B 它的能量逐渐增大。
C 它的势能逐渐转化成动能。
D 它的能量逐渐减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
819《数学物理方法》 第 1 页 共 2 页 广东海洋大学2012年攻读硕士学位研究生入学考试
《数学物理方法》(819)试卷
(请将答案写在答题纸上,写在试卷上不给分。
本科目满分150分)
一、名词解释(30分,每小题6分)
1、定解问题
2、微分方程的古典解
3、位势方程
4、线性微分方程
5、Poisson 方程
二、填空题(20分,每空4分)
1、与热传导方程相似的物理问题有: 、 等。
2、Fourier 变换的积分表达式: 。
3、Dirichlet 边界条件表达式为: 。
4、微分方程特征函数为: 。
三、简答题(30分,每小题10分)
1、简述非齐次线性微分方程的定义,并指出下列方程的性质:
激波方程: 0t x u uu +=
KdV 方程: 60t x xxx u uu u −+=
多空介质方程: m t u k u =∆
2、简述二阶线性偏微分方程的分类方法,并指出下列方程的类型:43260+−++=xx xy yy x y u u u u u 。
3、简述分离变量法求解含有齐次边界条件的齐次线性偏微分方程的
步骤。
四、写出二维Laplace 方程的差分方程。
(10分)
五、设有一根拉紧的均匀柔软而有弹性的细弦,平衡时沿直线拉紧,。