数字信号处理实验报告一

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验一实验报告

数字信号处理实验一实验报告

实验一离散时间信号与系统时域分析一、实验目的1、学习MATLAB语言编程和调试技巧。

2、学会简单的矩阵输入和图形表示法3、掌握简单的绘图命令。

二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令stem()和plot()。

实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。

其基本原理分别如下:对一个模拟信号x(t)进行采样离散化x(n),为了不失真地从采样信号x(n)中恢复原始信号x(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2备。

一个离散时间系统,输入信号为x(n),输出信号为y(n),运算关系用T【.】表示,则输入与输出的关系可表示为y(n)=T[x(n)]。

三、实验结果实验一x=[3 1 2 0 -4 2 -3];n=-3:1:3;stem(n,x);xlabel('n');ylabel('x(n)');axis([-4 4 -5 5]);grid;n x (n )实验二n=0:9;x=0.5.^n;stem(n,x);xlabel('n');ylabel('x(n)');grid;n x (n )实验三x=[-2 0 1 -1 3];h=[1 2 0 -1];c=conv(x,h);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度’);n 幅度实验四t=0:1/256:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); plot(t,x);grid;实验五T=0.2;t=0:T:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); stem(t,x);grid;实验六N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];n=0:1:N-1;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度');n 幅度实验七n=0:1:40;x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; plot(n,x);N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; n=0:1:40;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度 ');n 幅度。

数字信号处理实验一 实验报告

数字信号处理实验一 实验报告

数字信号处理实验一1.完成本文档内容的自学阅读和其中各例题后子问题;Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

答: clf;n=-10:20;u=[zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([-10 20 0 1.2])Q1.2命令clf,axis,title,xlabel和ylabel的作用是什么?答:clf清除图对象,axis 控制轴刻度和风格的高层指令,title 设置图名,xlabel和ylabel设置横纵坐标轴名称。

Q1.3修改程序P1.1以产生带有延时11个单位样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

答:clf;n=0:30;ud=[zeros(1,11) 1 zeros(1,19)];stem(n,ud);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([0 30 0 1.2])Q1.4修改程序P1.1以产生单位步长序列s[n].运行修改后程序并显示产生的序列。

答:clf;n = 0:30;u = [1.*n];stem(n,u);title('Unit Sample Sequence');axis([0 30 0 30])Q1.5修改程序P1.1,以产生带有超前7个样本的延时单位阶跃序列sd[n]。

运行修改后的程序并显示产生的序列。

答:clf;n = -15:30;s=[zeros(1,8) ones(1,38)];stem(n,s);xlabel('Time index n');ylabel('Amplitude'); title('Unit Sample Sequence');axis([-15 30 0 1.2]);Q1.6 运行程序P1.2,以产生复数值的指数序列。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

最新数字信号处理实验报告

最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。

通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。

二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。

- 利用傅里叶变换(FFT)分析信号的频谱特性。

- 观察并记录信号的时域和频域特性。

2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。

- 通过编程实现上述滤波器,并测试其性能。

- 分析滤波器对信号的影响,并调整参数以优化性能。

3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。

- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。

- 比较重构信号与原始信号的差异,评估处理效果。

三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。

- 生成一系列不同频率和幅度的模拟信号。

- 通过数据采集卡将模拟信号转换为数字信号。

2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。

- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。

3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。

- 利用IFFT对处理后的信号进行重构。

- 通过对比原始信号和重构信号,评估滤波器的性能。

五、实验结果与分析- 展示信号在时域和频域的分析结果。

- 描述滤波器设计参数及其对信号处理的影响。

- 分析重构信号的质量,包括信噪比、失真度等指标。

六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。

- 讨论实验中遇到的问题及其解决方案。

- 提出对实验方法和过程的改进建议。

七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:频谱分析与采样定理一、实验目的1.观察模拟信号经理想采样后的频谱变化关系。

2.验证采样定理,观察欠采样时产生的频谱混叠现象3.加深对DFT算法原理和基本性质的理解4.熟悉FFT算法原理和FFT的应用二、实验原理根据采样定理,对给定信号确定采样频率,观察信号的频谱三、实验内容和步骤实验内容(1)在给定信号为:1.x(t)=cos(100*π*at)2.x(t)=exp(-at)3.x(t)=exp(-at)cos(100*π*at)其中a为实验者的学号,用DFT分析上述各信号的频谱结构,选取不同的采样频率和截取长度,试分析频谱发生的变化。

实验内容(2)设x(n)=cos(0.48*π*n)+ cos(0.52*π*n),对其进行以下频谱分析:10点DFT,64点DFT,及在10点序列后补零至64点的DFT 试分析这三种频谱的特点。

四、实验步骤1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。

2.复习FFT算法原理和基本思想。

3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验程序和结果实验1内容(1)N=L/T+1;t=0:T:L;a=48;D1=2*pi/(N*T); % 求出频率分辨率k1=floor((-(N-1)/2):((N-1)/2)); % 求对称于零频率的FFT位置向量%%%%%%%%%%%%%%%%%%%%%%%%%figure(1),x1=cos(100*pi*a*t);y1=T*fftshift(fft(x1));%虽然原来是周期信号,但做了截断后,仍可当作非周期信号。

subplot(2,1,1),plot(t,x1);title('正弦信号');subplot(2,1,2),plot(k1*D1,abs(y1));title('正弦信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(2), x2=exp(-a*t);y2=T*fftshift(fft(x2));%有限长(长度为N)离散时间信号x1的dft 再乘T 来近似模拟信号的频谱,长度为Nsubplot(2,1,1),plot(t,x2);title('指数信号');subplot(2,1,2),plot(k1*D1,abs(y2));title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(3), x3=x1.*x2;y3=T*fftshift(fft(x3))subplot(2,1,1),plot(t,x3);title('两信号相乘');subplot(2,1,2),plot(k1*D1,abs(y3));title('两信号相乘频谱');0.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.140.160.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.0005 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-2000200040006000800000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51指数信号-8000-6000-4000-20000200040006000800000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-20000200040006000800000.0050.010.015两信号相乘频谱T=0.002 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-2000-1500-1000-50050010001500200000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51-2000-1500-1000-500050010001500200000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-2000-1500-1000-500050010001500200000.0050.010.015两信号相乘频谱T=0.001 L=0.180.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-1000100020003000400000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.180.51指数信号-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.001 L=0.120.020.040.060.080.10.12-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.12-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱实验1内容(2)>> N=10;n=1:NT=1x1=cos(0.48*pi*n*T)+cos(0.52*pi*n*T)X1=fft(x1,10)k=1:N;w=2*pi*k/10subplot(3,2,1);stem(n,x1);axis([0,10,-3,3]);title('信号x(n)');subplot(3,2,2);stem(w/pi,abs(X1));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2=100;n2=1:N2T=1x1=cos(0.48*pi*[1:10]*T)+cos(0.52*pi*[1:10]*T)x2=[x1,zeros(1,90)]X2=fft(x2,N2)k2=1:N2;w2=2*pi*k2/100subplot(3,2,3);stem(x2);axis([0,100,-3,3]);title('信号x(n)补零');subplot(3,2,4);plot(w2/pi,abs(X2));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N3=100;n3=1:N3T=1x3=cos(0.48*pi*n3*T)+cos(0.52*pi*n3*T)X3=fft(x3,100)k3=1:N3;w3=2*pi*k3/100subplot(3,2,5);stem(n3,x3);axis([0,100,-3,3]);title('信号x(n)');subplot(3,2,6);stem(w3/pi,abs(X3));axis([0,1,0,10]);title('DFTx(n)');n =1 2 3 4 5 6 7 8 9 10 T =1510-202信号x(n)0.510510DFTx(n)50100信号x(n)补零0.510510DFTx(n)50100信号x(n)DFTx(n)实验二 卷积定理一、实验目的通过本实验,验证卷积定理,掌握利用DFT 和FFT 计算线性卷积的方法。

数字信号处理实验报告1

数字信号处理实验报告1

离散傅立叶变换的性质及应用实验报告学院:电子信息学院专业:班级:姓名学号实验组实验时间指导教师成绩实验项目名称离散傅立叶变换的性质及应用实验目的1、了解DFT 的性质及其应用。

2、熟悉MATLAB 编程特点。

实验原理2、序列卷积设序列的长度为N,序列的长度为M。

则分别对两个序列作点的DFT得到和,则两序列的线性卷积等于。

即时域卷积频域为相乘关系。

) ( 1 n x ) ( 2 n x 1M N L ) ( 1 k X ) ( 2 k X )(ny)) ( ) ( ( 2 1 k X k X IDFT实验仪器计算机一台;Matlab 软件实验步骤1、用三种不同的DFT程序计算的傅立叶变换X(k),并比较三种程序计算机的运行时间。

(1)编制用for循环语句的M函数文件dft1.m,用循环变量逐点计算X(k);(2)编写用MATLAB 矩阵运算的M 函数文件dft2.m,完成下列矩阵运算:(3)调用FFT库函数,直接计算X(k) ;(4)分别利用上述三种不同方式编写的DFT 程序计算序列x(n)的傅立叶变换X(k),并画出相应的幅频和相频特性,再比较各个程序的计算机运行时间。

2、利用DFT 实现两序列的卷积运算,并研究DFT 点数与混叠的关系。

给定,利用圆周卷积计算线性卷积(快速卷积,频域);计算不同DFT 点数下的圆周卷积输出;并用函数stem(n,y)画出相应图形。

选择不同的DFT点数进行对比,观察其混叠效应。

3、研究高密度频谱与高分辨率频谱设有连续信号以采样频率f kHz s 32 对该信号采样,分析下列三种情况的幅频特性。

(1)采集数据长度N 16点,做N 16点的DFT,并画出幅频特性。

(2)采集数据长度N 16点,补零到256点的DFT,并画出幅频特性。

(3)采集数据长度N 256点,做N 256点的DFT,并画出幅频特性。

观察三幅不同频率特性图,分析和比较它们的特点以及形成的原因。

4、实现序列的内插和抽取所对应的傅立叶变换。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

数字信号处理实验报告实验一

数字信号处理实验报告实验一

实验一:系统响应及系统稳定性1 实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2 实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件,可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的,系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零。

3 实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv 函数求解系统输出响应的主程序。

程序中要有绘制信号波形的功能。

(2)给定一个低通滤波器的差分方程为y(n) = 0.05x(n) + 0.05x(n-1) + 0.9y(n-1)输入信号x1(n) = R8(n) , x8 = u(n)①分别求出x1 = R8(n) 和x8 = u(n) 的系统响应,并画出其波形。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理实验一报告

数字信号处理实验一报告

实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一 信号的产生及傅立叶分析(设计性)一 实验目的1 学会利用计算机仿真信号。

2 理解信号采样思想。

3学会信号的频谱分析方法。

二 实验原理奈奎斯特抽样定理:要想抽样后能够不失真的还原出原信号,则抽样频率必须大于两倍信号谱的最高频率。

离散傅立叶变换(DFT ): 正变换反变换)(n x 和)(k X 都是点数为N 的有限长序列。

实质上有限长序列都是作为周期序列的一个周期来表示的,都隐含有周期性意义。

三 实验内容1 几种常用序列(如正弦、矩形、指数序列等)的产生。

1.用stem 函数来画出序列的波形,通过改变N 和s 得值来改变时间长度、抽样频率 N=500;k=0:N; s=0.03;X=5*sin(s*pi*k);plot(k,X,k,zeros(1,N+1));Xlabel('k'); Ylabel('X[k]'); title('余弦序列');10)()]([)(1-≤≤==∑--=N k Wn x n x DFT k X N n nk N10)(1)]([)(1-≤≤==∑--=-N n Wk X Nk X IDFT n x N k nk N2.指数序列 clear ;clc%c :指数序列的幅度 %a :指数序列的底数%k1:绘制序列的起始序号 %k2:绘制序列的终止序号c=1;a=0.75;k1=0;k2=20;k=k1:k2; x=c*(a.^k);stem(k,x);%'filled'Xlabel('k'); Ylabel('x');title('Ö¸ÊýÐòÁÐ');3各种序列t=0:0.01:1;k=1:200;x1=0.1*exp(-2*t); %指数序列 x2=2*cos(2*pi*4*t); %余弦序列 x3=[ones(1,10) zeros(1,90) ones(1,10) zeros(1,90)]; subplot(3,1,1); plot(t,x1); title('指数序列'); subplot(3,1,2); plot(t,x2); title('余弦序列'); subplot(3,1,3); plot(k,x3); title('矩形序列');kX [k ]kx指数信号余弦信号矩形信号4 编程实现序列的离散傅里叶变换(DFT),输入x(n),输出X(k)并且对于不同序列(如矩形序列等)做DFT.clear; clck=0:31; x1=2*((0.75).^k);subplot 321; stem(k,x1); title('指数序列');y1=fft(x1,32);subplot 322; stem(k,y1); title('指数序列DFT');k=0:31; x2=sin(k);subplot 323; stem(k,x2); title('正弦序列Sin(k)');y2=fft(x2,32);subplot 324; stem(k,y2); title('正弦序列DFT');x3=[ones(1,8) zeros(1,8) ones(1,8) zeros(1,8)];subplot 325; stem(k,x3); title('矩形序列');y3=fft(x3,32);subplot 326; stem(k,y3); title('矩形序列DFT');指数序列指数序列DFT正弦序列Sin(k)010203040正弦序列DFT矩形序列矩形序列DFT实验二 快速傅立叶变换FFT 及频谱分析(设计性)一 实验目的1 进一步加深对DFT 算法原理和基本性质的理解2 熟悉FFT 算法原理和FFT 的子程序应用3 学习用FFT 对连续时间信号进行频谱分析的方法,了解可能出现的分析误差及原因二 实验原理(参考P187,P189)FFT 只是DFT 的一种快速算法,利用FFT 可减少运算量,提高速度。

数字信号处理 实验报告

数字信号处理    实验报告

数字信号处理实验报告实验一 信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。

二、实验原理与方法 1. 时域采样定理:对一个连续信号xa(t)进行理想采样的过程如下: xa1(t)=xa(t)p(t)其中xa1(t)为xa(t)的理想采样,p(t)为周期冲击脉冲。

xa1(t)的傅里叶变换Xa1(j Ω)为:11()[()]m Xa j Xa j m s T +∞=-∞Ω=Ω-Ω∑表明Xa1(j Ω)为Xa(j Ω)的周期延拓,其延拓周期为采样角频率(s Ω=2π/T )。

离散信号和系统在时域均可用序列来表示。

2. LTI 系统的输入输出关系: y(n)=x(n)*h(n)=()()m x m h n m +∞=-∞-∑()()()j j j Y e X e H e ωωω=三、实验内容1. 分析采样序列的特性。

1) 取模拟角频w=70.7*pi rad/s ,采样频率fs=1000Hz>2w ,发现无频谱混叠现象。

2) 改变采样频率, fs=300 Hz<2w ,频谱产生失真。

3) 改变采样频率, fs=200Hz<2w,频谱混叠,产生严重失真2. 时域离散信号、系统和系统响应分析。

1) 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

2) 观察系统ha(n)对信号xc(n)的响应特性。

可发现:信号通过系统,相当于x(n)与系统函数h(n)卷积,时域卷积即对应频域函数相乘。

数字信号处理实验报告

数字信号处理实验报告

实验一:频谱分析与采样定理 subplot(3,1,1),stem(t,x2);title('指数信号'); subplot(3,1,2),stem(f1,y2);title('指数信号频谱'); subplot(3,1,3),plot(f2,y21);title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%%%%%% x3=x1.*x2; y3=T*abs(fft(x3)); y31=fftshift(y3); figure(3), subplot(3,1,1),stem(t,x3);title('两信号相乘'); subplot(3,1,2),stem(f1,y3);title('两信号相乘频谱'); subplot(3,1,3),plot(f2,y31);title('两信号相乘频谱'); 实验结果: T=1/10000,������������ =10000,L=0.10
1/ 5
实验二:卷积定理 Y2=fft(y2); Z2=X2.*Y2; z2=ifft(Z2); figure(3), subplot(321),stem(x2);title('x2'); subplot(322),stem(real(X2));title('X2'); subplot(323),stem(y2);title('y2'); subplot(324),stem(real(Y2));title('Y2'); subplot(325),stem(z2);title('z2'); subplot(326),stem(real(Z2));title('Z2'); N=6; x3=[x zeros(1,N-length(x))]; y3=[y zeros(1,N-length(y))]; X3=fft(x3); Y3=fft(y3); Z3=X3.*Y3; z3=ifft(Z3); figure(4), subplot(321),stem(x3);title('x3'); subplot(322),stem(real(X3));title('X3'); subplot(323),stem(y3);title('y3'); subplot(324),stem(real(Y3));title('Y3'); subplot(325),stem(z3);title('z3'); subplot(326),stem(real(Z3));title('Z3'); N=8; x4=[x zeros(1,N-length(x))]; y4=[y zeros(1,N-length(y))]; X4=fft(x4); Y4=fft(y4); Z4=X4.*Y4; z4=ifft(Z4); figure(5), subplot(321),stem(x4);title('x4'); subplot(322),stem(real(X4));title('X4'); subplot(323),stem(y4);title('y4'); subplot(324),stem(real(Y4));title('Y4'); subplot(325),stem(z4);title('z4'); subplot(326),stem(real(Z4));title('Z4'); %N=6 时

数字信号处理实验报告(全)

数字信号处理实验报告(全)

实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理实验报告一二目录一、实验目的 (2)1.1 了解数字信号处理的基本概念 (2)1.2 掌握数字信号处理的基本流程 (3)1.3 熟悉数字信号处理中常用的算法和实现方法 (5)二、实验目的 (6)2.1 理解数字信号处理技术在通信系统中的作用 (7)2.2 掌握数字信号处理技术在通信系统中的应用实例 (8)2.3 通过实验加深对数字信号处理技术的理解和实际操作能力 (9)三、实验原理和流程 (11)3.1 通信系统的基本工作原理 (12)3.2 数字信号处理技术在通信系统中的应用 (13)3.3 实验准备和实施计划 (14)四、数字滤波器设计与验证 (15)4.1 数字滤波器的设计方法 (17)4.2 滤波器的验证方法 (19)4.3 滤波器的性能测试 (20)五、信号检测与估计技术 (22)5.1 信号检测技术在通信系统中的应用 (23)5.2 信号估计技术的实现 (25)5.3 检测与估计技术的应用案例分析 (26)六、实验结果与讨论 (28)6.1 实验结果的分析与评价 (28)6.2 实验结果的对比与优化 (30)6.3 实验中遇到的问题和解决方案 (31)七、结论与展望 (32)7.1 实验结果的主要发现 (33)7.2 对数字信号处理在通信系统中的应用的认识提升 (34)7.3 对未来实验的思考和展望 (36)一、实验目的本次数字信号处理的实验旨在使学生掌握数字信号处理的基本概念、理论和实验技能,并通过实际操作加深对数字信号处理方法的理解和应用。

具体目的包括:理解数字信号处理的基本原理,包括离散时间信号与系统的概念、抽样定理、数字滤波器设计方法和数字信号处理的应用。

学习各种数字信号处理技术,如脉冲幅度调制、谱分析、滤波器设计与实现等。

使用实验设备实施信号模拟与数字信号处理操作,以便在实际系统中应用这些技术。

通过实验数据分析和处理,培养学生解决实际问题的能力,以及数据解读、实验方案设计和报告撰写的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南大学学生实验报告
姓名:杨剑 学号:222009322072058 班级:1班 专业:电科 实验日期:2011年9月29日 实验学时:2学时
实验名称:基本信号的产生和序列的基本运算。

实验目的:学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算,为信号分析和系统设计奠定基础。

实验原理: MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期矩形波信号等。

这些基本信号是信号处理的基础。

实验内容:
1,用matlab 产生下列连续信号并作图 ⑴ ;51),1(2)(<<---=t t u t x t=-1:0.01:5; x=-2.*(t>=1);
plot(t,x);
axis([-1,5,-2.4,0.4]);
-1
1
2
3
4
5
-2-1.5-1-0.5

30
0),3
2sin(
)(1.0t t e
t x t
<=-
t=0:0.001:30; x1=exp(-0.1*t); w0=2/3;
x2=sin(w0*t); x=x1.*x2;
plot(t,x);
0102030
-0.5
0.5
1
⑶1.01.0),3000cos()100cos()(<<-+=t t t t x t=-0.1:0.001:0.1;
w0=100; w1=3000;
x=cos(w0*100)+cos(w1*t); plot(t,x);
-0.1
-0.0500.050.1
-2-1.5-1-0.50
0.5
2,利用MA TLAB 产生下列离散序列并作图 ⑴1515-][{
55,1,0≤<=≤≤-k k x k 设其他
k=-15:15;
x=[zeros(1,10),ones(1,11),zeros(1,10)]; stem(k,x);
-15
-10-5051015
00.20.40.60.81
⑵2020-)],25.0cos()25.[sin()9.0(][≤<+=k k k o k x k 设ππ k=-20:20;
omega=0.25*pi;
x1=sin(omega*k)+cos(omega*k); x2=(0.9).^k; x=x1.*x2; stem(k,x);
-20
-15-10-505101520
-15-10-50510
3,已知序列:
X[k]=[1,2,0,-1,3,2;k=-2,-1,0,1,2,3], H[k]=[1,-1,1;k=0,1,2]
⑴ 计算序列的卷积和,][][][k h k x k y *=并绘出波形 ⑵ 计算序列的互相关函数并绘出其波形 x=[1,2,0,-1,3,2]; nx=[-2:3]; h=[1,-1,1];
nh=[0:2];
ny1=nx(1)+nh(1);
ny_end=nx(end)+nh(end); ny=[ny1:ny_end]; y=conv(x,h); subplot(2,1,1); stem(ny,y);
title('conv(x,y)'); xlabel('n'); r=xcorr(x,h); subplot(2,1,2); m=(length(r)-1)/2; stem([-m:m],r); title('Rxy[n]'); xlabel('n');
-2
-1012345
-2024conv(x,y)
n -5
-4-3-2-1
012345
-2024Rxy[n]
n
4,数字信号处理的应用之一是从含有加性噪声的信号中去除噪声。

现有被噪声污染的信号:)08.0cos(][][][][k k s k d k s k x π=+=其中
(1)分别产生50点的序列s[k]和白噪声序列d[k],将二者叠加生成x[k],并在同一
长图上绘出s[k],d[k]和x[k]的序列波形。

(2)均值滤波可以有效去除叠加在低频信号上的噪声。

已知3点滑动平均数字滤波器的单位脉冲响应为h[k]=[1,1,1;k=0,1,2]计算y[k]=x[k]*]h[k],在同一张图上绘出前50点s[k]、 y[k]和x[k]的序列波形,比较序列s[k],y[k]。

n=50;
k=0:n-1;
omega=0.08*pi; s=cos(omega*k); subplot(3,1,1); stem(k,s);
title('s[k]');
d=rand(1,n);
subplot(3,1,2);
stem(k,d);
title('d[k]');
x=s+d;
subplot(3,1,3);
stem(k,x);
title('x[k]');
n=50;
k=0:n-1;
omega=0.08*pi;
s=cos(omega*k); subplot(3,1,1);
stem(k,s);
title('s[k]');
d=rand(1,n);
x=s+d;
subplot(3,1,2);
stem(k,x);
title('x[k]');
h=[1,1,1];
y=conv(x,h);
subplot(3,1,3);
stem([0:length(y)-1 ],y);
title('y[k]');
结论:比较s[k]和y[k]知:均值滤波可有效去除加在低频信号上的噪声。

05101520253035404550
-1
1
s[k]
05101520253035404550
0.5
1
d[k]
05101520253035404550
-2
2
x[k]
05101520253035404550
-1
1
s[k]
05101520253035404550
-2
2
x[k]
0102030405060
-5
5
y[k]
实验感想:通过本实验学会了利用matlab产生一些基本信号如:阶跃信号,脉冲信号,指数信号,正弦信号等并实现信号的卷积和互相关等简单的运算,能够按照要求顺利的完成实验,达到预期的效果。

相关文档
最新文档