厌氧生物处理机理研究厌氧反应四个阶段

合集下载

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们得青睐,由于其具有良好得去除效果,更高得反应速率与对毒性物质更好得适应,更重要得就是由于其相对好氧生物处理废水来说不需要为氧得传递提供大量得能耗,使得厌氧生物处理在水处理行业中应用十分广泛。

但由于总体反应式基于莫诺方程得厌氧处理受到低浓度废水Ks得限制,所以厌氧在处理低浓度废水方面没有太大得空间,可最近得一些报道与试验表明,厌氧如果提供合适得外部条件,在处理低浓度废水方面仍然有非常高得处理效果。

我们可以根据厌氧反应得原理加以动力学方程推导出厌氧生物处理低浓度废水尤其在处理生活污水方面得合适条件。

二、厌氧反应四个阶段一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌得细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。

废水中典型得有机物质比如纤维素被纤维素酶分解成纤维二糖与葡萄糖,淀粉被分解成麦芽糖与葡萄糖,蛋白质被分解成短肽与氨基酸。

分解后得这些小分子能够通过细胞壁进入到细胞得体内进行下一步得分解。

(2)酸化阶段:上述得小分子有机物进入到细胞体内转化成更为简单得化合物并被分配到细胞外,这一阶段得主要产物为挥发性脂肪酸(VFA),同时还有部分得醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。

(3)产乙酸阶段:在此阶段,上一步得产物进一步被转化成乙酸、碳酸、氢气以及新得细胞物质。

(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸与甲醇都被转化成甲烷、二氧化碳与新得细胞物质、这一阶段也就是整个厌氧过程最为重要得阶段与整个厌氧反应过程得限速阶段。

再上述四个阶段中,有人认为第二个阶段与第三个阶段可以分为一个阶段,在这两个阶段得反应就是在同一类细菌体类完成得。

前三个阶段得反应速度很快,如果用莫诺方程来模拟前三个阶段得反应速率得话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS、d、而第四个反应阶段通常很慢,同时也就是最为重要得反应过程,在前面几个阶段中,废水得中污染物质只就是形态上发生变化,COD几乎没有什么去除,只就是在第四个阶段中污染物质变成甲烷等气体,使废水中COD大幅度下降。

厌氧发酵工艺流程

厌氧发酵工艺流程

厌氧发酵工艺流程厌氧发酵是一种在缺氧条件下进行的生物反应过程,通常用于生物质、有机废物和废水的处理,以及生物氢气和甲烷的产生。

在这篇文章中,我们将详细介绍厌氧发酵工艺流程,包括工艺原理、操作步骤和应用范围。

1. 工艺原理厌氧发酵是一种微生物代谢过程,通过这种过程,有机物质在缺氧条件下被微生物分解产生气体和有机酸。

这种过程一般分为四个阶段:水解、酸化、醇化和甲烷发酵。

在水解阶段,有机物质被水解成小分子有机物;在酸化阶段,这些小分子有机物被酸化成醋酸、丙酸等有机酸;在醇化阶段,有机酸被进一步分解成醇和二氧化碳;最后,在甲烷发酵阶段,醇和二氧化碳被甲烷菌发酵产生甲烷。

2. 操作步骤厌氧发酵工艺通常包括反应器、搅拌系统、温控系统、气体收集系统等设备。

操作步骤如下:(1)原料处理:将有机废物经过粉碎、均质等处理,使其适合于微生物的生长和代谢。

(2)投料:将处理好的有机废物投入反应器中,注意保持一定的固液比和适宜的pH值。

(3)密封:密封反应器,排除其中的氧气,创造缺氧条件。

(4)发酵:在适宜的温度和pH条件下,微生物开始对有机废物进行厌氧发酵,产生甲烷等气体。

(5)气体收集:收集产生的甲烷等气体,用于能源生产或其他用途。

(6)产物处理:处理反应器中的固体产物,如沉淀物或渣滓,可以进行堆肥、焚烧等处理。

3. 应用范围厌氧发酵工艺在生物质能源生产、有机废物处理和废水处理等领域有着广泛的应用。

在生物质能源生产中,厌氧发酵可以用于生产生物氢气和甲烷,这些气体可以作为清洁能源使用。

在有机废物处理和废水处理中,厌氧发酵可以将有机废物和废水中的有机物质转化为甲烷等气体,减少污染物的排放。

总之,厌氧发酵工艺是一种重要的生物技术,具有广阔的应用前景。

通过对厌氧发酵工艺流程的研究和优化,可以更好地实现有机废物的资源化利用和环境保护。

希望本文能够对厌氧发酵工艺有所了解,并为相关领域的研究和应用提供一定的参考价值。

UASB厌氧反应器厌氧生物处理的三个阶段

UASB厌氧反应器厌氧生物处理的三个阶段

UASB厌氧反应器厌氧生物处理的三个阶段一、前期阶段UASB厌氧反应器是一种高效节能的生物处理工艺,能有效地处理各种有机废水及污泥,广泛应用于食品、饮料、制药等行业,具有确定的经济效益和社会效益。

在UASB厌氧反应器生物处理过程中,前期阶段是至关紧要的,其紧要目的是进行启动,建立稳定的微生物群落,为后续的正常运行奠定基础。

前期阶段的紧要特点如下:1.1. 投料前期阶段的第一步是进行投料,投入确定量的废水和污泥,并加入确定量的底物质,以支持微生物生长和繁殖。

投料时应注意掌控投放量和频率,保证废水与污泥的比例合适,尽可能削减挤压和浸泡的时间,避开气体固定和污泥沉积。

1.2. 水解酸化阶段水解酸化是前期阶段的紧要环节,其紧要作用是将有机废水分子分解为较小的有机酸和酚类物质,为后续的产气反应供应充分的有机物质。

在水解酸化阶段,细菌和真菌等微生物分解废水,产生有机酸和酚类物质,此时,反应器内的PH值会渐渐降低,化合物显现酸化现象,和H2S、H2等气体产生。

1.3. 乳酸阶段当反应器内的PH值渐渐下降到5.05.5时,水解酸化阶段进入乳酸阶段,此时有机酸会发酵成为乳酸,再由一些存在乳酸型菌群来替代其他微生物,那么乳酸型菌群会在反应器体内大量生长,开始占据优势地位,同时也会促进反应器内的周,之后生物质量明显加添。

产气反应加速。

乳酸阶段通常持续13二、适应阶段在UASB厌氧反应器中,适应阶段是指在前期阶段结束之后,微生物群落渐渐适应环境并形成稳定的结构和种群比例。

适应阶段的紧要特点如下:2.1. 厌氧过渡阶段在前期阶段完成后会进入到适应阶段,这时候反应器内的微生物群体已经得到了有效的选择和生长,会渐渐向更合适环境的菌群演化,从而在新的环境中,它们可以更好地适应新的微生态环境。

厌氧过渡阶段的特点是反应器内生物质量快速加添,对进料物质的处理本领也开始渐渐加强。

2.2. 稳定性产气阶段当反应器内的微生物群落渐渐稳定下来,细菌和真菌等微生物之间相互协调关系更加紧密,产气反应开始进入稳定性产气阶段。

厌氧生物处理

厌氧生物处理

(2)升流式厌氧污泥床(UASB) • 该工艺由于具有厌氧过滤及厌氧活性污 泥法的双重特点,作为能够将污水中的 污染物转化成再生清洁能源——沼气的 一项技术。对于不同含固量污水的适应 性也强,且其结构、运行操作维护管理 相对简单,造价也相对较低,技术已经 成熟,正日益受到污水处理业界的重视 ,得到广泛的欢迎和应用。
ABR反应器示意图
⑥厌氧迁移式污泥床反应器(AMBR)
• AMBR工艺类似ABR工艺,在每个隔室里增加了机 械搅拌,通过周期性改变进出水的方向来保持大 量的污泥,使每个上流式污泥床保持一致。有实 验证明,AMBR处理工艺在15℃和20℃时处理脱 脂牛奶,水力停留时间4~12h,有机负荷为 1·0~3·0kgCOD/m3·d,在更高COD负荷,在15℃时 COD的去除率为59%;在20℃时,COD负荷为1·0~2·0 kg COD/m3·d COD的去除率为80~95%。
注:(a)EGSB; (b)IC; ©UFB 第三代反应器结构示意图
④ASBR反应器
• ASBR法的主要特征是以序批式间歇的方 式运行,通常由一个或几个ASBR反应器组 成.运行时,废水分批进入反应器,与其中的 厌氧颗粒污泥发生生化反应,直到净化后 的上清液排出,完成一个运行期。ASBR法 一个完整的运行操作周期按次序应分为四 个阶段:进水期、反应期、沉降期和排水 期,如下图所示:
五、现代厌氧反应器技术的发展方向
5.1 两相或多级厌氧处理技术
第三代厌氧反应器特点比较
• 厌氧反应器的处理效率主要决定于反应器所能保有的 微生物浓度及其生化反应速率,而传质条件对生化反应 速率起着重要的作用。针对这些因素,新一代的反应 器具有一些共同的特性: • 1)微生物均以颗粒污泥固定化的方式存在于反应器中, 单位容积达微生物持有量更高; • 2)能承受更高的水力负荷,具有较高的有机污染物净化 效能; • 3)具有较大的高径比,占地面积小,动力消耗小; • 4)颗粒污泥与有机物之间具有更好的传质,使反应器的 处理能力大大提高. • 他们也具有各自的特点,也有各自的不足,具体见下 表:

污水处理-厌氧生物处理方法

污水处理-厌氧生物处理方法
1)厌氧生物处理的早期目的和过程
2、气化阶段: 有机酸、醇、醛等中间产物在甲烷菌的作用下转化为生物气,也可称消化气,主体是CH4,因此气化阶段常称甲烷化阶段。该阶段除产生CH4外,还产生CO2和微量H2S。
1)厌氧生物处理的早期目的和过程
液化阶段: 兼性厌氧菌作用,大量氢产生,也称氢发酵阶段,有机酸大量积累,pH迅速下降,污泥带有粘性,呈灰黄色,并发出恶臭,污泥称为酸性发酵污泥。 气化阶段: 专性厌氧菌作用,需隔绝光和空气,最佳pH值7.2-7.5,有机酸浓度不超过2000mg/L,最佳50-500mg/L, 碱度不应超过5000mg/L,最佳2000-3000mg/L 污泥呈黑色,稳定不易腐化,无甚恶臭,易于脱水,这种污泥成为熟污泥或消化污泥。
早期的厌氧处理研究主要针对污泥消化,即将污泥中的固态有机物降解为液态和气态的物质。 污泥的消化过程明显分为两个阶段:固态有机物先液化,称液化阶段;接着降解产物气化,称气化阶段;整个过程历时半年以上。
1)厌氧生物处理的早期目的和过程
1、液化阶段 最显著的特征是液态污泥的PH值迅速下降,不到10天,降到最低值(例如在室温下,露在空气中的食物几天内就变馊发酸),所以又称酸化阶段。 污泥中的固态有机物如淀粉、纤维素、油脂、蛋白质等,在无氧环境中降解时,转化为有机酸、醇、醛、水分子等液态产物和C02、H2、NH3、H2S等气体分子。由于转化产物中有机酸是主体,所以导致PH值下降。 又由于产生的NH3溶解于水后产生的NH4OH具有碱性,产生中和反应并经过长时间的过程后使PH值回升,并进入气化阶段。
2、酸碱度、pH值
三、厌氧消化的影响因素与控制要求
厌氧装置适宜在中性或稍偏碱性的状态下运行。最适pH值为7.0~7.2,pH6.6~7.4较为适宜。 pH值和温度是影响甲烷细菌生长的两个重要环境因素。 影响微生物对营养物的吸收; pH强烈地影响酶的活性,进而影响微生物细胞内的生物化学过程。

第五章 厌氧生物处理

第五章 厌氧生物处理

1.水解阶段
产酸细菌胞外水解酶 简单有机物 (糖、肽、氨基酸)
2.产酸发酵阶段
产酸发酵细菌 挥发性脂肪酸和醇,H2、CO2 (乙酸、丙酸、丁酸、戊酸和乙醇)
3.产氢产乙酸阶段 4.产甲烷阶段
产氢产乙酸细菌 乙酸、H2、CO2
产甲烷细菌
CH4、CO2
厌氧生物处理的微生物
产酸发酵菌群
多为兼性厌氧或专性厌氧细菌,其主要功能是:
二、影响产甲烷细菌的主要生态因子
1.pH和碱度
产甲烷菌pH 6.5~7.5
2.氧化还原电位ORP(溶解氧)
-300~-500mV
3.负荷率
厌氧反应的负荷率决定厌氧反应池的容积。
容积负荷 表 达
参数为投配率(%)
每日投加的生污泥(污染物)与池容之比,其 倒数相当于污泥在消化池中的平均停留时间 污泥负荷 参数为有机负荷率 (kgCOD/kgSS·d)
(截止1999年3月共1303个项目)
EGSB 11% FB 2% HYBR 4% LAG 6%
CSTR 10%
UASB 59%
AF 8%
国内厌氧反应器的应用(共219个项目)
AF+UASB 1% AF 1% UBF 1% « ì È » 29%
UASB 58%
ä ü Æ Ë 10%
一、悬浮生长厌氧生物处理法
度废水由于产气量小,搅拌强度小,使得污泥不能很好
悬浮,泥水接触不均,有效处理容积大为减弱。
(4)第四阶段(高效) 改进:保持污水和活性污泥的良好接触,加强传质效果,
大大提高反应器的容积利用率,抗负荷冲击能力强。
代表:厌氧颗粒污泥膨胀床、复合式厌氧反应器
特点:水力停留时间短,容积负荷高,可间歇性运行,

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段第一个阶段是HYD(氢气阶段)。

在这个阶段,厌氧微生物通过底物
的氧化产生氢气。

底物可以是有机废物中的碳水化合物,如葡萄糖、乳糖等。

微生物通过产生氢气来释放电子,并产生负电位,为后续的酸化反应
提供能量。

第二个阶段是酸化阶段。

在这个阶段,厌氧微生物将底物进一步转化
为短链脂肪酸,如乙酸和丙酸。

这些短链脂肪酸是可溶性的有机酸,可以
通过微生物的代谢来进一步转化为甲酸、乙酸和丙酸。

第三个阶段是乙酸酸化阶段。

在这个阶段,乙酸是最主要的代谢产物。

厌氧微生物利用乙酸来产生甲酸和氢气。

这个阶段对于产生甲烷至关重要,因为甲烷是厌氧微生物产生的最终产物。

最后一个阶段是甲烷生成阶段。

在这个阶段,厌氧微生物利用之前产
生的乙酸和甲酸来产生甲烷。

甲烷是一种无色、无臭的气体,具有高燃烧性。

厌氧微生物在这个阶段通过产生甲烷来释放剩余的电子和产生负电位。

总之,厌氧生物处理的四个阶段包括HYD、酸化、乙酸酸化和甲烷生成。

这些阶段是相互关联的,通过微生物的代谢来将有机废物转化为甲烷
等有用产物。

通过研究这些阶段的机理,我们可以更好地理解厌氧生物处
理的过程,并优化其应用。

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们的青睐,由于其具有良好的去除效果,更高的反应速率和对毒性物质更好的适应,更重要的是由于其相对好氧生物处理废水来说不需要为氧的传递提供大量的能耗,使得厌氧生物处理在水处理行业中应用十分广泛。

但由于总体反应式基于莫诺方程的厌氧处理受到低浓度废水Ks的限制,所以厌氧在处理低浓度废水方面没有太大的空间,可最近的一些报道和试验表明,厌氧如果提供合适的外部条件,在处理低浓度废水方面仍然有非常高的处理效果。

我们可以根据厌氧反应的原理加以动力学方程推导出厌氧生物处理低浓度废水尤其在处理生活污水方面的合适条件。

二、厌氧反应四个阶段一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。

废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。

分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。

(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。

(3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。

(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。

这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。

再上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反应是在同一类细菌体类完成的。

前三个阶段的反应速度很快,如果用莫诺方程来模拟前三个阶段的反应速率的话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS.d。

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们的青睐,由于其具有良好的去除效果,更高的反应速率和对毒性物质更好的适应,更重要的是由于其相对好氧生物处理废水来说不需要为氧的传递提供大量的能耗,使得厌氧生物处理在水处理行业中应用十分广泛。

但由于总体反应式基于莫诺方程的厌氧处理受到低浓度废水Ks的限制,所以厌氧在处理低浓度废水方面没有太大的空间,可最近的一些报道和试验表明,厌氧如果提供合适的外部条件,在处理低浓度废水方面仍然有非常高的处理效果。

我们可以根据厌氧反应的原理加以动力学方程推导出厌氧生物处理低浓度废水尤其在处理生活污水方面的合适条件。

二、厌氧反应四个阶段一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。

废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。

分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。

(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。

(3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。

(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。

这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。

再上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反应是在同一类细菌体类完成的。

前三个阶段的反应速度很快,如果用莫诺方程来模拟前三个阶段的反应速率的话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS.d。

污水处理技术中厌氧生物处理技术的基本原理

污水处理技术中厌氧生物处理技术的基本原理

污水处理技术中厌氧生物处理技术的基本原理1.厌氧生物处理过程解说厌氧生物处理又称厌氧消化,是在厌氧条件下由多种微生物共同作用,使有机物分解生成CH4和CO2的过程。

这种过程广泛地存在于自然界中,直到1881年法国报道了Louis Mouras发明的自动净水器,人类才开始利用厌氧消化处理污水,至今已有一百余年了。

20世纪60年代前人们认为厌氧消化的过程为两个阶段。

第一阶段称发酵阶段或产酸阶段,在此阶段中,不溶性的复杂有机物先在微生物作用下得到水解,继而被转化为简单的有机物,如脂肪酸、醇类、CO2和H2等,这一阶段起作用的微生物统称为发酵细菌或产酸细菌。

第二阶段称为产甲烷阶段,在此阶段中由产甲烷菌将第一阶段的产物转化为CH4和CO2。

人们在对厌氧消化过程及厌氧微生物的深入研究中发现,上述两个阶段学说并没有全面反映厌氧生物处理过程的全貌与本质。

研究表明,产甲烷菌能够利用甲酸、乙酸、甲醇、甲基胺类,在厌氧微生物方面的新发现基础上,1979年布利安特等提出了厌氧消化的三阶段理论(图2-1)。

图2-1 三阶段理论三阶段理论认为,厌氧消化过程是按以下步骤进行的。

第一阶段可称为水解发酵阶段,与两阶段理论相同,亦是在微生物的作用下复杂有机物进行水解和发酵的过程,多糖先水解为单糖,再通过酵解途径进一步发酵成乙醇和脂肪酸,如丙酸、丁酸、乳酸等,蛋白质则先水解为氨基酸再经脱氨基酸作用产生脂肪酸和氨。

第二阶段称为产氢、产乙酸阶段,是由一类专门的细菌称之产氢、产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇转化为CH3COOH、H2和CO2。

第三阶段称为产甲烷阶段,由产甲烷菌利用乙酸和H2、CO2产生甲烷(CH4)。

研究表明,厌氧生物处理过程中约有20%CH4来自乙酸的分解,其余少量则产自H2和CO2的合成。

至今三阶段理论已被公认,是对厌氧生物处理过程较全面和较正确的描述。

厌氧废水处理是将环境保护、能源回收与生态良性循环结合起来的综合系统的核心技术,是具有较好环境效益和经济效益的污水处理技术。

厌氧生物处理的三阶段四阶段理论

厌氧生物处理的三阶段四阶段理论

厌氧生物处理的三阶段四阶段理论厌氧生物处理的三阶段四阶段理论厌氧生物处理的基本原理:厌氧生物处理(Anaerobic Process)是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,通过厌氧菌和兼性菌代谢作用,对有机物进行生化降解的过程。

厌氧处理基本生物过程:厌氧生物处理在早期被称为厌氧消化或厌氧发酵,指的是在厌氧条件下,在多种微生物(厌氧微生物、兼性微生物)的作用下,将有机物转化为甲烷和二氧化碳的过程。

由此可见,厌氧处理过程中产生的是一种气体,主要成分是甲烷和二氧化碳,也就是我们常说的沼气。

厌氧生物处理的基本生物过程有一个很明显的特点,就是其具有阶段性,根据不同的依据,可以分为两阶段、三阶段甚至四阶段。

两阶段理论:该理论认为有机物在厌氧条件下首先进行酸性发酵阶段(产酸阶段),然后进行碱性发酵阶段(产气阶段)。

产酸阶段的主要微生物为发酵细菌或产酸细菌,这些微生物生长快,适应性很强,对环境条件不是非常敏感。

会将有机物进行水解和酸化,产生脂肪酸、醇类、二氧化碳和氢气。

产气阶段的主要微生物为产甲烷细菌,其生长非常缓慢,生长倍增时间会达到几天,而且对于环境条件的变化非常敏感。

会将产酸阶段产生的中间产物转化为甲烷和二氧化碳。

两阶段理论,虽然形象且直接的描述了厌氧生物处理的过程,但是有学者发现,产甲烷细菌只能利用一些简单的有机物(比如甲酸、乙酸、甲醇、甲基胺类等)来产生甲烷,并不能利用两个碳以上的脂肪酸(乙酸除外)和醇类(甲醇除外)直接作为它的底物(参与生化反应的物质称为底物)。

还有一种“奥式产甲烷菌”,其实是由两种细菌组合而成,其中一种细菌将乙醇氧化为乙酸和氢气,另一种细菌则利用氢气和环境中的二氧化碳来产生甲烷。

、所以说,两阶段理论是存在一定局限性的,因此1979年,Bryant又提出了“三阶段理论”。

三阶段理论:该理论认为,除了产酸细菌和产甲烷细菌之外,还存在第三种细菌,称为产氢产乙酸细菌,三阶段的过程如下图所示:厌氧生物处理三阶段理论过程图.分为水解、发酵阶段(Ⅰ),产氢产乙酸阶段(Ⅱ)和产甲烷阶段(Ⅲ)。

好氧池-厌氧池的作用-原理

好氧池-厌氧池的作用-原理

好氧池的作用是让活性污泥进行有氧呼吸,进一步把有机物分解成无机物。

去除污染物的功能。

运行好是要控制好含氧量及微生物的其他各需条件的最佳,这样才能是微生物具有最大效益的进行有氧呼吸.厌氧处理是利用厌氧菌的作用,去除废水中的有机物,通常需要时间较长。

厌氧过程可分为水解阶段、酸化阶段和甲烷化阶段。

水解酸化的产物主要是小分子有机物,使废水中溶解性有机物显著提高,而微生物对有机物的摄取只有溶解性的小分子物质才可直接进入细胞内,而不溶性大分子物质首先要通过胞外酶的分解才得以进入微生物体内代谢。

例如天然胶联剂(主要为淀粉类),首先被转化为多糖,再水解为单糖.纤维素被纤维素酶水解成纤维二糖与葡萄糖.半纤维素被聚木糖酶等水解成低聚糖和单糖。

水解过程较缓慢,同时受多种因素的影响,是厌氧降解的限速阶段。

在酸化这一阶段,上述第一阶段形成的小分子化合物在发酵细菌即酸化菌的细胞内转化为更简单的化合物并分泌到细菌体外,主要包括挥发性有机酸(VFA)、乳醇、醇类等,接着进一步转化为乙酸、氢气、碳酸等。

酸化过程是由大量发酵细菌和产乙酸菌完成的,他们绝大多数是严格厌氧菌,可分解糖、氨基酸和有机酸。

工作原理厌氧反应四个阶段一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。

废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。

分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解.(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生.(3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质.(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。

厌氧生物处理技术、

厌氧生物处理技术、

共享知识分享快乐废水的厌氧生物处理技术厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。

1厌氧生物处理的基本原理1.1两阶段理论在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。

第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。

第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。

1.2三阶段理论三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。

有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。

产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。

该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。

1.3四阶段理论几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。

与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria), 该菌群的代谢特点是能将H2/CO2合成为乙酸。

但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。

目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。

2厌氧生物处理的优缺点卑微如蝼蚁、坚强似大象共享知识分享快乐厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。

(1)厌氧法的主要优点:①应用范围较广:适用于处理污泥及有机废水;可处理好氧法难降解的有机物,也可处理含有毒有害物质较高的有机废水。

②运行成本与能耗较低:厌氧处理的污泥产率低;厌氧法所需营养成分较少,一般可不必投加营养分;厌氧法不需要供氧设备,因而能耗较少。

厌氧生物处理的基本原理

厌氧生物处理的基本原理

厌氧生物处理的基本原理厌氧生物处理是一种利用厌氧微生物进行废水或废气处理的技术。

厌氧生物处理的基本原理是通过厌氧微生物在无氧环境中进行代谢反应,将有机物质转化为二氧化碳、甲烷以及其他产物,从而去除污染物。

厌氧微生物是一类在缺氧条件下生长和代谢的微生物,与厌氧环境中的其他微生物相比,厌氧微生物一般具有更强的反应能力和更广泛的适应性。

在厌氧生物处理中,这些厌氧微生物起到了至关重要的作用。

在厌氧生物处理过程中,厌氧微生物通过一系列代谢反应将有机污染物分解为简单的无机物质。

这个过程可以分为四个阶段:亚甲基四碳体酮阶段、丙酸阶段、乙酸阶段和甲酸阶段。

在亚甲基四碳体酮阶段,厌氧微生物将有机物质进行氧解反应,得到乙酸、氢气和二氧化碳。

乙酸进一步被厌氧微生物代谢为丙酸。

在丙酸阶段,丙酸进一步分解为乙酸、氢气和二氧化碳。

最后,在乙酸阶段和甲酸阶段,乙酸被厌氧微生物进一步转化为甲酸和甲烷。

这些代谢反应是在厌氧微生物的作用下进行的,这些微生物能够利用有机污染物作为它们的能量来源,通过对有机物质分解的过程中释放出的能量进行生长和代谢。

同时,厌氧微生物还能通过这些代谢反应将有机物质转化为二氧化碳和甲烷等无害的产物,从而达到废水或废气处理的目的。

厌氧生物处理的关键是提供适宜的环境条件以促进厌氧微生物的生长和代谢。

这些条件包括温度、pH值、营养物质、厌氧微生物的种类和数量等。

同时,厌氧反应器的设计和操作也对厌氧生物处理的效果有重要影响,例如反应器的容积、进料方式、厌氧微生物的悬浮方式等。

厌氧生物处理相对于其他处理方法具有许多优点。

首先,厌氧生物处理可以在较低的温度和无氧环境下进行,这降低了处理成本。

其次,厌氧生物处理不需要外部供氧,减少了能源的消耗。

此外,厌氧微生物还可以将废物转化为有价值的产物,如甲烷可以作为能源利用。

在实际应用中,厌氧生物处理常用于处理有机废水和浓度较高的有机废气。

厌氧生物处理可以与其他处理技术结合使用,以提高处理效果。

第十九章厌氧处理

第十九章厌氧处理

第19章厌氧生物处理19.1 厌氧生物处理基本原理Bryant认为消化经历四个阶段:1.水解阶段,固态有机物被细菌的胞外酶水解;2.酸化;3.乙酸化阶段,指进入甲烷化阶段之前,代谢中间液态产物都要乙酸化4.第四阶段是甲烷化阶段。

根据厌氧消化的两大类菌群,厌氧消化过程又可分为两个阶段,即:酸性发酵阶段和碱性发酵阶段,如(图 19-1)所示。

1.酸性发酵阶段两阶段理论将液化阶段和产酸阶段合称为酸性发酵阶段。

在酸性发酵阶段,高分子有机物首先在兼性厌氧菌胞外酶的作用下水解和液化,然后渗入细胞体内,在胞内酶的作用下转化为醋酸等挥发性有机酸和硫化物。

pH 值下降。

氢的产生,是消化第一阶段的特征,所以第一阶段也称作“氢发酵”。

兼性厌氧菌在分解有机物的过程中产生的能量几乎全部消耗作为有机物发酵所需的能源,只有少部分合成新细胞。

因此酸性消化时,细胞的增殖很少。

产酸菌在低 pH 值时也能生存,具有适应温度、 pH 值迅速变化的能力。

2.碱性消化阶段专性厌氧菌将消化过程第一阶段产生的中间产物和代谢产物均被甲烷菌利用分解成二氧化碳、甲烷和氨,pH 值上升。

由于消化过程第二阶段的特征是产生大量的甲烷气体,所以第二阶段称为“甲烷发酵”。

由于甲烷菌的生长条件特别严格,即使在合适的条件下其增殖速度也非常小,因此甲烷化过程控制污水或者污泥的厌氧消化进程。

图 19-1 厌氧消化两阶段示意图19.1.1废水处理工艺中的厌氧微生物在厌氧消化系统中微生物主要分为两大类:非产甲烷菌( non-menthanogens )和产甲烷细菌( menthanogens )。

厌氧消化过程的非产甲烷菌和产甲烷菌的生理特性有较大的差异,对环境条件的要求迥异,见(表19-1)。

表 19-1 产酸菌和产甲烷菌的特性参数参数产甲烷菌产酸菌对 pH 的敏感性敏感,最佳 pH 为 6.8~7.2 不太敏感,最佳 pH 为5.5~7.0氧化还原电位 Eh < -350mv( 中温 ) , < -560mv( 高温 ) < -150~200mv 对温度的敏感性最佳温度: 30~38 ℃, 50~55 ℃最佳温度: 20~35 ℃非产甲烷菌又称为产酸菌( acidogens ),它们能将有机底物通过发酵作用产生挥发性有机酸( VFA )和醇类物质,使处理系统中液体的 pH 值降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厌氧生物处理机理研究厌氧反应四个阶段一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们得青睐,由于其具有良好得去除效果,更高得反应速率与对毒性物质更好得适应,更重要得就是由于其相对好氧生物处理废水来说不需要为氧得传递提供大量得能耗,使得厌氧生物处理在水处理行业中应用十分广泛。

但由于总体反应式基于莫诺方程得厌氧处理受到低浓度废水Ks得限制,所以厌氧在处理低浓度废水方面没有太大得空间,可最近得一些报道与试验表明,厌氧如果提供合适得外部条件,在处理低浓度废水方面仍然有非常高得处理效果。

我们可以根据厌氧反应得原理加以动力学方程推导出厌氧生物处理低浓度废水尤其在处理生活污水方面得合适条件、二、厌氧反应四个阶段一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌得细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。

废水中典型得有机物质比如纤维素被纤维素酶分解成纤维二糖与葡萄糖,淀粉被分解成麦芽糖与葡萄糖,蛋白质被分解成短肽与氨基酸。

分解后得这些小分子能够通过细胞壁进入到细胞得体内进行下一步得分解。

(2)酸化阶段:上述得小分子有机物进入到细胞体内转化成更为简单得化合物并被分配到细胞外,这一阶段得主要产物为挥发性脂肪酸(VFA),同时还有部分得醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。

(3)产乙酸阶段:在此阶段,上一步得产物进一步被转化成乙酸、碳酸、氢气以及新得细胞物质。

(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸与甲醇都被转化成甲烷、二氧化碳与新得细胞物质、这一阶段也就是整个厌氧过程最为重要得阶段与整个厌氧反应过程得限速阶段。

再上述四个阶段中,有人认为第二个阶段与第三个阶段可以分为一个阶段,在这两个阶段得反应就是在同一类细菌体类完成得。

前三个阶段得反应速度很快,如果用莫诺方程来模拟前三个阶段得反应速率得话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS。

d、而第四个反应阶段通常很慢,同时也就是最为重要得反应过程,在前面几个阶段中,废水得中污染物质只就是形态上发生变化,COD几乎没有什么去除,只就是在第四个阶段中污染物质变成甲烷等气体,使废水中COD大幅度下降。

同时在第四个阶段产生大量得碱度这与前三个阶段产生得有机酸相平衡,维持废水中得PH稳定,保证反应得连续进行。

三水解反应水解可定义为复杂得非溶解性得聚合物被转化成简单得溶解性单体与二聚体得过程。

水解反应针对不同得废水类型差别很大,这要取决于胞外酶能否有效得接触到底物、因此,大得颗粒比小颗粒底物要难降解很多,比如造纸废水、印染废水与制药废水得木质素、大分子纤维素就很难水解、水解速度得可由以下动力学方程加以描述:ρ=ρo/(1+Kh、T)ρ——可降解得非溶解性底物浓度(g/l);ρo—--非溶解性底物得初始浓度(g/l);Kh——水解常数(d—1);T-—停留时间(d)。

一般来说,影响Kh得因素很多,很难确定一个特定得方程来求解Kh,但我们可以根据一些特定条件得Kh,反推导出水解反应器得容积与最佳反应条件、在实际工程实施中,有条件得话,最好针对要处理得废水作一些Kh得测试工作。

通过对国内外一些报道得研究,提出在低温下水解对脂肪与蛋白质得降解速率非常慢,这个时候,可以不考虑厌氧处理方式、对于生活污水来说,在温度15得情况下,Kh=0、2左右、但在水解阶段我们不需要过多得COD去除效果,而且在一个反应器中您很难严格得把厌氧反应得几个阶段区分开来,一旦停留时间过长,对工程得经济性就不太实用。

如果就单独得水解反应针对生活污水来说,COD可以控制到0、1得去除效果就可以了、把这些参数与给定得条件代入到水解动力学方程中,可以得到停留水解停留时间:T=13、44h这对于水解与后续阶段处于一个反应器中厌氧处理单元来说就是一个很短得时间,在实际工程中也完全可以实现、如果有条件得地方我们可以适当提高废水得反应温度,这样反应时间还会大大缩短、而且一般对于城市污水来说,长得排水管网与废水中本生得生物多样性,所以当废水流到废水处理场时,这个过程也在很大程度上完成,到目前为止还没有瞧到关于水解作为生活污水厌氧反应得限速报道、四发酵酸化反应发酵可以被定义为有机化合物既作为电子受体也作为电子供体得生物降解过程,在此过程中有机物被转化成以挥发性脂肪酸为主得末端产物。

酸化过程就是由大量得、多种多样得发酵细菌来完成得,在这些细菌中大部分就是专性厌氧菌,只有1%就是兼性厌氧菌,但正就是这1%得兼性菌在反应器受到氧气得冲击时,能迅速消耗掉这些氧气,保持废水低得氧化还原电位,同时也保护了产甲烷菌得运行条件。

酸化过程得底物取决于厌氧降解得条件、底物种类与参与酸化得微生物种群。

对于一个稳态得反应器来说,乙酸、二氧化碳、氢气则就是酸化反应得最主要产物、这些都就是产甲烷阶段所需要得底物。

在这个阶段产生两种重要得厌氧反应就是否正常得底物就就是挥发性脂肪酸(VFA)与氨氮。

VFA过高会使废水得PH下降,逐渐影响到产甲烷菌得正常进行,使产气量减小,同时整个反应得自然碱度也会较少,系统平衡PH得能力减弱,整个反应会形成恶性循环,使得整个反应器最终失败。

氨氮它起到一个平衡得作用,一方面,它能够中与一部分VFA,使废水PH具有更大得缓冲能力,同时又给生物体合成自生生长需要得营养物质,但过高得氨氮会给微生物带来毒性,废水中得氨氮主要就是由于蛋白质得分解带来得,典型得生活污水中含有20-50mg/l左右得氨氮,这个范围就是厌氧微生物非常理想得范围、另外一个重要指标就就是废水中氢气得浓度,以含碳17得脂肪酸降解为例:CH3(CH2)15COO-+14H2O—>7CH3COO—+CH3CH2COO—+7H++14脂肪酸得降解都会产生大量得氢气,如果要使上述反应得以正常进行,必须在下一反应中消耗掉足够得氢气,来维持这一反应得平衡。

如果废水得氢气指标过高,表明废水得产甲烷反应已经受到严重抑制,需要进行修复,一般来说氢气浓度升高就是伴随PH指标降低得,所以不难监测到废水中氢气得变化情况,但废水本身有一定得缓冲能力,所以完全通过PH下降来判断氢气浓度得变化有一定得滞后性,所以通过监测废水中氢气浓度得变化就是对整个反应器反应状态一个最快捷得表现形式。

五产乙酸反应发酵阶段得产物挥发性脂肪酸VFA在产乙酸阶段进一步降解成乙酸,其常用反应式如以下几种:CH3CHOHCOO—+2H2O—>CH3COO—+HCO3—+H++2H2ΔG'0=—4。

2KJ/MOLCH3CH2OH+H2O—>CH3COO-+H++2H2OΔG’0=9.6KJ/MOLCH3CH2CH2COO-+2H2O->2CH3COO—+H++2H2ΔG’0=48。

1KJ/MOLCH3CH2COO—+3H2O-〉CH3COO—+HCO3—+H++3H2ΔG’0=76.1KJ/MOL4CH3OH+2CO2—〉3CH3COO—+2H2OΔG’0=-2。

9KJ/MOL2HCO3-+4H2+H+—〉CH3COO—+4H2OΔG’0=—70。

3KJ/MOL从上面得反应方程式可以瞧出,乙醇、丁酸与丙酸不会被降解,但由于后续反应中氢得消耗,使得反应能够向右进行,在一阶段,氢得平衡显得更加重要,同时后续得产甲烷过程为这一阶段得转化提供能量、实际上这一阶段与前面得发酵阶段都就是由同一类细菌完成,都在细菌体内进行,并且产物排放到水体中,界限并没有十分清楚,在设计反应器时,没有足够得理由把她们分开。

六产甲烷反应在厌氧反应中,大约有70%左右得甲烷由乙酸歧化菌产生,这也就是这几个阶段中遵循莫诺方程反应得阶段。

另一类产生甲烷得微生物就是由氢气与二氧化碳形成得、在正常条件下,她们大约占30%左右。

其中约有一般得嗜氢细菌也能利用甲酸产生甲烷、最主要得产甲烷过程反应有:CH3COO-+H2O->CH4+HCO3-ΔG’0=-31。

0KJ/MOLHCO3-+H++4H2->CH4+3H2OΔG'0=-135.6KJ/MOL4CH3OH->3CH4+CO2+2H2OΔG’0=—312KJ/MOL4HCOO—+2H+->CH4+CO2+2HCO3-ΔG’0=—32、9KJ/MOL在甲烷得形成过程中,主要得中间产物就是甲基辅酶M(CH3-S-CH2-SO3—)、在甲基辅酶M还原成甲烷得过程中,需要作用非常重要得甲基还原酶,其中含有重要得金属离子Ni+。

这对生活污水来说就是比较缺乏微量金属离子,所以在生活污水得厌氧生物处理过程中补充一定得微量金属离子就是非常必要得、同时可以查瞧中国污水处理工程网更多技术文档。

七低浓度废水反应速率得选择以生活污水为例,一般来说影响废水厌氧反应速率得因素有很多,包括反应温度、废水得毒性、原水基质浓度、原水得PH值、传质效率、营养物质得平衡、微量元素得催化作用等等、对于生活污水来说,影响比较大得因素有反应温度、原水得基质浓度、传质效率以及微量元素得催化、因为生活污水得营养比与PH值被公认为非常适合生物得生长得。

在前面得叙述中,已经提及了厌氧反应得前三个阶段对于生活污水来说,很快就可以完成,尤其水解阶段,不存在传质得限制,同时通常长距离得管网也给水解提供了足够得时间、因此我们提出得厌氧处理低浓度废水设计思想中,主要考虑产甲烷过程作为限速步骤。

由于产甲烷阶段遵循莫诺方程,整个速率得确定以莫诺方程为基础、在上式中,很难把总体反应得Ks值估算出来,因为它受到得影响因素很多,对于不同类型得废水差别很大。

对于生活污水来说可以根据不同得单个因素影响列成很多分式莫诺方程,最后各式相乘再加上修正系数,这个方程可以得出比较接近得Ks值,作为厌氧处理生活污水时得参考设计数据。

具体思想如下:1、假定条件:a、厌氧处理该污水过程中主要受温度、传质速率、基质浓度以及微量元素得影响;b、微量元素可以通过外界条件得干预给予补充;c、反应器为一体化反应器;d、产甲烷单元反应也近似遵循莫诺方程。

2、模型总体方程Kst-温度响应半反应速率常数mg/lKsv-传质速率半反应速率常数mg/lK-修正系数在上式中,Kst针对不同得废水就是可以确定得,Ksv对不同得反应器差别比较大,我们可以通过外界干预给以降低到一固定值偏差不大得范围内,比如通过强制搅拌或就是提高反应器得高径比,出水回流都就是比较好得解决办法。

通过众多得工程实例以及文献报道,初步确定Kst在15摄氏度时针对生活污水值为3200mg/l左右。

Ksv在有搅拌足够得情况下15摄氏度时针对生活污水值为532mg/l。

K值在重庆地区可以取0。

相关文档
最新文档