第一章 大气边界层与边界层气象学研究
动力气象学 (8.1)--大气边界层

• 边界条件:
上边界,在离开地面足够高的地方(边界层顶)湍流粘性 力足够小,那里的风变为地转风
当z 时,u ug , v vg
下边界,当z=0时,u=0,v=0
• 为了数学处理方便,还可以进一步简化,取x轴与等压线 平行,有 vg=0
• 引进复数算法求解方程
令 u iv,D (u ug ) i(v vg ) ua iva
(2)风向有规则地随高度右旋;
(3)受地面热力作用影响大,低层大气温度分布呈现出很 大的垂直梯度;
重要性:
(1)人类活动区 (2)43%入射太阳能在此被吸收、而后返回大气 (3)几乎所有水汽在此被接受,并通过水汽提供大气
内能的50% (4)由于摩擦力的存在,几乎消耗整个大气动能的一
半左右 行星边界层既是整个大气的主要能量源,也是大气的动 量汇,它在地球表面和自由大气之间的热量、水汽和动量的 交换中起着重要作用,对天气系统的发展演变有很大影响。
§1.1 常值通量层中的风速垂直分布(对数律和综合幂次律)
• 中性大气中的对数律:
自由大气
u u * ,
z z
边界条件 z z0时,u 0
推出 u u * ln z
z0
Ekman层 (100m-1km)
边 界
层
近地层(2-100m)
贴地层(0-2m)
• 层结大气中的综合幂次律
一、Ekman抽吸
利用不可压连续方程:
u v w 0 w (u v )
x y z
z x y
hT w
hT u v
0
z
dz
0
(
x
大气边界层气象学研究综述

文章编号:1006-7639(2003)-03-0074-05大气边界层气象学研究综述张 强(中国气象局兰州干旱气象研究所,甘肃兰州 730020)摘 要:文中回顾了大气边界层气象学的发展历史,总结了目前大气边界层气象学的主要进展,并指出国内外在未来大气边界层气象学研究方面面临的一些主要科学问题,以及对未来大气边界层气象学的发展方向提出若干建议,同时还指出了大气边界层气象学在思想上和方法上应该注意的一些相关问题。
关键词:大气边界气象学;研究进展;主要问题;发展方向中图分类号:P404 文献标识码:A引 言什么是边界层?广义讲:在流体介质中,受边界相对运动以及热量和物质交换影响最明显的那一层流体。
具体到大气边界层,是指受地球表面摩擦以及热过程和蒸发显著影响的大气层。
大气边界层厚度,一般白天约为1.0km ,夜间大约在0.2km 左右,地表提供的物质和能量主要消耗和扩散在大气边界层内。
大气边界层是地球-大气之间物质和能量交换的桥梁。
全球变化的区域响应以及地表变化和人类活动对气候的影响均是通过大气边界层过程来实现的。
1 大气边界层气象学发展历史大气边界层气象学是大气科学中一门重要的基础理论学科,大气边界层气象学的发展,不仅受到观测系统和探测技术的制约,也受到数学、物理学等基础支撑学科发展水平的影响,并随着它们的发展而发展。
大气边界层气象学是以湍流理论为基础的,研究大气和它下垫面(陆面和洋面)相互作用以及地球—大气之间物质和能量交换的一门新型气象学科分支。
什么是湍流?英文湍流为“turbulence ”,日文为“乱流”,湍流简单定义:流体微团进行的有别于一般宏观运动的不规则的随机运动,从宏观上看,它没有稳定的运动方向,但它能够象分子运动一样通过其随机运动过程有规律地传递物质和能量。
从1915年由Taylor [1]提出大气中的湍流现象到1959年Priestley [2]提出自由对流大气湍流理论,可以说,到20世纪50年代以前经典的湍流理论基本上已经形成。
第一章 大气边界层与边界层气象学研究

T :实测的温度
e、P :当时的水汽压、大气压
Tv > T
密度:水蒸汽 < 干空气 浮力:未饱和湿空气 > 干空气
绝对温度T
<
虚温Tv
3. 虚位温 θ v :液态水比空气的密度大,这样,有云 的气块浮升就比相应的无云气块浮升要小,气块中悬 浮的云滴会引起虚位温的降低。对于饱和空气而言 (存在云的情况下),定义虚位温θv为:
森林-10月14日 Qe<Qh
6:00 12:00 18:00 0:00
Qs:太阳辐射 Qh:显热通量 Qe:潜热通量 Qg:土壤热通量
3 低层大气温度
气温垂直分布三种情形: ① 气温随高度递减 ② 气温随高度基本不变 ③ 气温随高度逆增
温度垂直梯度的大小与太阳辐射、云况、 风速和土壤热性质有关,具有明显的日变化。
Ro U fL
惯性力 f :柯氏参数 (地转偏向力)
柯氏力
Ro大柯氏加速度影响小,风切变(旋转所致)的影响 可不计。Ro趋向无穷大Ro自行满足
Ro≤1,柯氏力影响较大,地球旋转作用不可忽略
1.5 相似性参数
3. 弗罗德数(Fr)相似性
Fr U
2
惯性力 g :重力加速度
gL
重力
Fr大(>>1),重力影响小 Fr小(≈1或<<1),重力影响大,不可忽略
u
u
) 0.5
1.5 相似性参数
• 物理实验(风洞、水槽等)中,为保证得 到正确结果而且与实际大气系统可比较, 则需要满足相似性条件 • 几何相似 • 运动学相似 • 动力学相似 • 热力学相似 • 边界条件相似
天气预报员考试复习资料

第一部分 气象学地球的大气成分;大气分层和结构;大气静力学;辐射过程;大气的热力学;大气边界层第一章 地球的大气成分一、了解大气的基本组成干洁空气水汽和大气气溶胶二、理解大气水汽的重要性 在地球大气的气体成分中,水汽是最重要、最活跃的,相变造成雨云雷电,潜热方式传递热量的载体,而且在地球的生态系统中起着重要作用。
三、了解气溶胶粒子在大气过程中的作用水汽相变的凝结核,吸收和散射太阳辐射,影响大气能见度,影响大气化学过程第二章 大气分层和结构一、了解大气的分层由于地球自转以及不同高度大气对太阳辐射吸收程度的差异,使得大气在水平方向比较均匀,而在垂直方向呈明显的层状分布,故可以按大气的热力性质、电离状况、大气组成等特征分成若干层次。
1按中性成分的热力结构,把大气分成对流层、平流层、中间层、热层,外逸层;2按大气的化学成分,把大气分为均质层和非均质层;二、掌握对流层的基本特征对流层的主要特点是:1大气温度随高度降低;2大气的垂直混合作用强;3气象要素水平分布不均匀。
三、理解温度、气压、湿度、风、云、降水、水平能见度等主要气象要素的概念 温度:温度是表示物体冷热程度的物理量,温度反映物体内部分子平均动能。
气压:一个位置的气压是该处单位面积上所承受的其上空的大气柱的重量湿度:大气中水汽含量多少的物理量。
风 :空气的水平运动称为风。
云 :水汽凝结物悬浮在自由大气中即形成云。
降水:从云中降落到地面的水汽凝结物(固态的或液态的)统称降水,常见的有雨、雪、冰雹等。
水平能见度:气象学上把人的正常视力所能看到的水平方向上目标物的最大距离叫做水平能见度。
四、掌握大气温度、湿度的表示方法大气湿度:通常采用以下特征量来定量表示空气湿度大小。
1、饱和水汽压(e ):010atb t E E +=⨯ (1.2.1)式中:0E 为0℃时的饱和水汽压,其值为6.11hPa ;t 为蒸发面温度;a 、b 为两个经验参数,平水面:7.45a =,237.3b =;平冰面:9.5a =,265.0b =。
第1章 大气边界层

z
=
z0
时仍满足对数分布规律:
∂V ∂z
z = z0
=
V* kz0
又∵
∂V ∂z
β = z = z0
V* z01−ε
∴ β = kz0ε
l
=
kz
⎛ ⎜ ⎝
z z0
⎞−ε ⎟ ⎠
(1.13) (1.14)
6
《动力气象学》电子教案 -编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:林蟒、李国平
(u
+
iv)
=
−if
ug + ivg
(1.22)
为求解方便,取
x
轴平行等压线,则
∂p ∂x
=
0, vg
=
0 (即此时地转风只有东西向分量),有
kz
∂2V * ∂z 2
−
ifV
*
=
−ifug
(1.23)
或
kz
d 2V * dz 2
− ifV *
=
−ifug
(1.23)’
方程的性质:一元二次非齐次常微分方程
) >> ∂ (
) ∂(
,
)。
∂z
∂x ∂y
5).湍流运动明显,地气相互作用强烈,调整较快,呈准定常。
4 Ekman 层的主要特点
2
《动力气象学》电子教案 -编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:林蟒、李国平
1).湍流摩擦力,气压梯度力和科氏力同等重要。 2).物理量垂直梯度>>水平梯度。 3).下垫面对自由大气的影响通过该层向上输送。 4).风向、风速随高度的变化呈 Ekman 螺线规律。
大气边界层特征及其对气象现象的影响

大气边界层特征及其对气象现象的影响当我们仰望天空,感受着风的吹拂,体验着气温的变化,观察着云朵的飘动,这些看似平常的气象现象背后,都有着大气边界层的“身影”。
大气边界层,这个在气象学中占据重要地位的概念,它的特征以及对气象现象的影响,值得我们深入探究。
大气边界层,简单来说,就是靠近地球表面、受到下垫面强烈影响的大气层。
它的厚度从几百米到一两千米不等,就像是地球的“外衣”,与我们的日常生活息息相关。
大气边界层的一个显著特征就是风的变化。
在这一层中,风的速度和方向都会受到地表粗糙度、地形等因素的影响。
比如在城市中,高楼大厦林立,地表粗糙度大,风在流经时会受到阻碍,风速会减小,风向也可能发生改变。
而在开阔的平原地区,地表粗糙度小,风能够较为顺畅地流动,风速相对较大。
这种风的变化对于污染物的扩散、风能的利用等都有着重要的影响。
如果风在城市中流动不畅,污染物就容易积聚,导致空气质量下降;而在风能丰富的地区,准确把握风的特征则有助于高效地开发和利用风能。
大气边界层中的温度分布也是其重要特征之一。
在白天,太阳辐射强烈,地表受热升温快,靠近地面的空气温度较高,形成温度随高度升高而降低的“递减层结”。
这时候,大气处于不稳定状态,容易产生对流,将热量向上传递,形成对流云甚至雷雨等天气现象。
而在夜间,地表散热快,温度下降,形成温度随高度升高而升高的“逆温层结”。
逆温层就像一个盖子,阻止了上下层空气的交换,使得污染物难以扩散,容易造成雾霾等恶劣天气。
大气边界层中的水汽含量也是变化多端的。
靠近地表的水汽含量通常较高,这是因为地表的水体蒸发、植物蒸腾等作用会向大气中补充水汽。
当水汽充足且遇到合适的条件时,就会形成云、雾、降水等天气现象。
比如在山区,由于地形的抬升作用,空气上升冷却,水汽凝结形成降雨,这就是地形雨的形成机制。
大气边界层的湍流特征也不容忽视。
湍流就像是大气中的“搅拌器”,使得大气中的热量、水汽、污染物等得以混合和交换。
边界层重要知识点归纳

边边界界层层重重要要知知识识点点归归纳纳第第一一章章大气边界层的定义:大气的最低部分受下垫面(地面)影响的层次,或者说大气与下垫面相互作用的层次。
大气边界层的厚度差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。
还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。
大气边界层的主要特征:(1)大气边界层的主要运动形态一般是湍流:不规则性和脉动性(2)大气边界层的日变化:气象要素的空间分布具有明显的日变化。
【大气边界层湍流:①机械湍流:风切变,机械运动;②热力湍流:辐射特性的差异;】大气边界层的分层:(1)粘性副层(微观层)(2)近地层(常通量层)(3)Ekman 层(上部摩擦层)【(1).粘性副层(微观层):分子输送过程处于支配地位,分子切应力远大于湍流切应力。
(2).近地层(常通量层):大气受地表动力和热力影响强烈,气象要素随高度变化激烈,运动尺度小,科氏力可略。
(3).Ekman 层(上部摩擦层):在这一层里,湍流粘性力、科氏力和气压梯度力同等重要,需要考虑风随高度的切变。
】大气边界层厚度:边界层厚度的时空变化很大,空间范围从几百米到几千米。
海洋上:由于海水上层强烈混合使海面温度日变化很小。
陆地上,边界层具有轮廓分明、周日循环发展的结构。
大气边界层结构:(1)混合层: (2)残留层:日落前半小时,湍流在混合层中衰减形成的空气层,属中性层结。
(3)稳定边界层:夜间,与地面接触的残留层底部逐渐变为稳定边界层。
其特点为在静力稳定大气中有零散的湍流,虽然夜间近地面层风速常常减弱或静风,但高空200m 左右,风却由于低空急流或夜间急流能达到超地转风。
第二章湍流:流体运动杂乱而无规律性(运动具有脉动性),不同层次的流体质点发生激烈的混合现象,流体质点的运动轨迹杂乱无章,其对应的物理量随空间激烈变化。
雷诺数:——湍流判据,特征Re 数定义: =特征惯性力/特征粘性力;它表示了流体粘性在流动中的相对重要性:(1)Re 》1,粘性力相对小(可忽略),大Re 数流体,弱粘性流;(2)Re 《1,惯性力相对小(可忽略),小Re 数流体,强粘性流; ν/Re UL ≡(3)Re=1,二者同等重要,一般粘性流;湍流的基本特征:(1)随机性;(2)非线性;(3)扩散性;(4)涡旋性;(5)耗散性湍流的定量描述:湍流运动的极不规则性和不稳定性,并且每一点的物理量随时间、空间激烈变化,湍流的杂乱无章极随机性可以用概率论及数理统计的方法加以研究。
边界层气象学课件:CH01_1绪论及湍流基础

课程目的与教学基本要求
边界层气象学是研究大气边界层的科学。它 以观测事实、实验室模拟、数值模拟等为出 发点,通过半经验理论、相似理论及统计理 论等,对边界层大气的湍流运动特性、能量 收支、物质输送和交换等方面的规律进行研 究。它是大气科学、环境科学等领域的重要 基础课程。 基本要求的三个档次,即掌握、熟悉、了解
边界层气象学
Boundary Layer Meteorology
参考书目
1、盛裴轩 等,大气物理学(其中的第三篇 大气边界 层物理),北京大学出版社,2003.
2、[美] Rolland B. Stull著,徐静琦,杨殿荣译, 边界层气象学导论,青岛海洋大学出版社,1991.
3、T R Oke, Boundary Layer Climates,1987
图8.1 热线风速计在大气中测量的风速记录 1992 年 8 月 13 日 在 戈壁 ( 甘 肃 ) , 使 用 超声 风 速 仪 、 白 金 丝 温度 仪 和 Layman-湿度表观测得到的资料,以及由这些记录计算得到的瞬时风向。
其他复杂现象: 股票指数、地震记录 DNA序列、心脑电图
海岸线、气候序列 。。。
不规则性、多尺度性 注:你知道分形几何吗?
你知道混沌吗?
法国数学家曼德布劳特(B. B. Mandelbrot) 经历了不平凡的潜心研究,于1975年出版了 他的关于分形几何的专著《分形、机遇和维 数》,标志着分形理论的诞生
Fractal Geometry:破碎、不规则几何学
整数维 分数维 自相似
3、雷诺圆管实验(粘性不可压缩流体)
雷诺于1883年进行圆管实验:圆管 内的粘性流体在不同速度U、不同 直径D、不同粘性ν的(运动学粘 性系数)流体进行大量实验,发现 流体运动形态决定于参数 UD/ν ,1908年索末菲定义为:
大气边界层中的风速和风向变化

大气边界层中的风速和风向变化大气边界层是指大气与地表相互作用的区域,也是气象学中研究风向和风速变化的重要领域。
本文旨在探讨大气边界层中风速和风向的变化规律,分析其对气象现象和人类活动的影响。
一、风速的变化大气边界层中的风速变化受到多种因素的影响,包括地形、地表特征、时间尺度等。
以下是一些相关因素的介绍:1.地形地形是影响大气边界层风速变化的重要因素之一。
在山地地区,由于地表的高低起伏,风速会受到地形的阻挡和加速效应影响,形成各种地形风。
如山谷风由于谷道内空气的密度高于山脊上方的空气而形成,导致风速增大。
而在山脊附近,则会出现下脊风,即山脊上方风速减小的现象。
2.地表特征地表特征也对大气边界层风速变化产生显著影响。
例如,海洋表面上的风速较内陆地区要大。
这是因为海洋表面没有高耗散的陆地面层,风在海上没有遇到阻碍,加之海洋表面的蒸发和释放的热量也会增加风速。
3.时间尺度大气边界层中的风速还会因不同时间尺度上的气象系统而有所变化。
在日常尺度上,太阳辐射的变化会导致风速的日变化,即白天风速较大,夜晚风速较小。
而在季节尺度上,地球周围的大气环流系统如洋流,冷暖气团的运动等都会对风速产生影响。
二、风向的变化风向是指风的来向,同样也受到多种因素的影响。
以下是一些相关因素的介绍:1.地理环境地理环境是影响风向变化的重要因素之一。
比如,赤道附近的地区因受到地球自转和辐射的影响,形成一气候带风向恒定的副高系统,即信风。
信风会导致风向常年保持相对稳定,一般为东北风或偏东风。
2.气象系统大气环流系统也是风向变化的重要原因。
例如,在某些地区,气候带风向的变化受到季风的影响,即冬季风与夏季风的交替引起了风向的变化。
冬季时,这些地区的风向主要来自陆地,而夏季时则来自海洋。
3.地表特征地表特征也会对风向的变化产生影响。
山地、平原或沙漠等地的地表特征会对风向形成阻挡和改变的作用。
其结果是在山地、平原或沙漠等地区,风向会出现不稳定的变化。
大气边界层

列出三阶量方程,则 出现四阶量, 建立二阶量和平均量之间 的关系,称为一阶闭合 (first-order closure), 梯度输送理论( gradienttransfer theory ),K理论 ( K-theory ),K闭合, 混合长理论( mixinglength theory )
不同高度处温度的时间序列
瞬时值 平均值
( instantaneous valuev)
扰动值 方差 variance
速度方差基本不随时间变化,湍流 是平稳的。速度方差在空间上是均 匀的,即 湍流是各 向同性的(isotropic)。
协方差
9.1.3 Turbulence kinetic energy and turbulence intensity 湍能和湍流强度
9.1.4 Turbulent transport and fluxes 湍流输送和通量
热通量(heat flux)
热通量大于零,热量向上输送。 热通量小于零,热量向下输送。
9.1.5 Turbulence closure 湍流闭合
建立关于平均量的大气运动和热力学方程组, 称为雷诺平均方程(Reynolds averaging)
潜热通量
B:波恩比(Bowen ratio),感热和潜热之比。 B经常根据试验获得 the Bowen ratio ranges from about 0.1 over tropical oceans, through 0.2 over irrigated crops, 0.5 over grassland, 5.0 over semi-arid regions, and 10 over deserts.
边界层气象学教程

边界层气象学教程边界层气象学是研究大气中近地面层分布与变化的学科。
它不仅对于气象学研究具有重要意义,而且对于污染物扩散预测、环境保护等方面也有着广泛的应用。
下面就让我们来了解一下边界层气象学的基础知识。
一、边界层气象学的基本概念边界层气象学是指研究大气中近地面层上升下沉运动、温度、湿度、风速、风向等的变化规律和特征的学科。
二、边界层的形成和特征边界层是指大气中接近地面的一层空气,其厚度一般为数百米到数千米。
边界层对气象要素有明显的影响,如溶质扩散、光学传输、人体健康等。
三、边界层的分层结构边界层的分层结构可以分为三层,即表层、中层和底层。
其中表层的高度约为地表摩擦层,中层高度在数百到数千米之间,底层高度则由地形、时间、季节等因素决定。
四、边界层的物理过程边界层的物理过程包括热力过程和动力过程。
热力过程包括辐射传热、湍流传热、热传输等,动力过程包括地表摩擦力、气旋运动、惯性力等。
五、边界层的观测和模拟方法边界层的观测方法主要有风廓线雷达、气象探空等。
模拟方法主要包括数值模拟、解析模拟等。
这些方法可以提供边界层物理过程的详细信息,为边界层预报和研究提供了支持。
六、边界层的预报和应用边界层在气象、环境、能源等领域中具有广泛的应用前景。
边界层的预报可以用来预测城市污染物扩散、风力发电等。
此外,边界层研究还与农业、航空、海洋等领域有关。
总结:边界层气象学研究大气中近地面层分布与变化的学科,对气象、环境保护等领域具有广泛的应用。
了解边界层形成和特征、分层结构、物理过程、观测和模拟方法以及预报和应用等方面,有助于我们更深入地了解其重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力ห้องสมุดไป่ตู้定义
Prandtl(1904)首次引入空气动力学
大气运动尺度分析角度定义
Orlanski(1975)尺度定义
大尺度 中尺度 小尺度
α大尺度
β大尺度
α中尺度
β中尺度
γ中尺度
α小尺度
β小尺度
γ小尺度
macro- α
macro- β
meso- α
meso- β
meso- γ
micro- α
micro- β
S7
PBL结构变化特征:
• 见书上P31-34:⑴⑵⑶⑷⑸⑹
总之:分析大气边界层结构变化 特征,具体问题具体分析。 考虑天气条件,下垫面,地形以 及季节、层结稳定度条件等的变化对 大气边界层的影响。
2-2 爱克曼螺线和爱克曼层(了解)
在中性层结、下垫面水平均匀、大气定常, 且粘滞系数为常数的情况下所求得的风随 高度变化的解,即为经典的Ekman风廓线解。
雷诺应力定义
u' 2 u' v' u' w' 2 ' - v'u' v' v' w' 2 w' u ' w' v' w'
三 温度、位温、虚位温…(自学) 四 Boussinesq近似(自学) 五 准静力平衡(自学)
重点(理解,掌握)
• • • • • • 大气边界层 边界层中的风与气流 湍流 泰勒假说 湍流通量 雷诺应力
• 近几十年来,由于计算机速度的不断提高, 大气边界层的数值模拟研究方法成为一种常用的 研究手段。
由地面粗糙度或摩擦作用产生的小尺度湍流以及地面增热造成的热
力对流活动。
③各种湍流通量传输随高度变化而数值不变,称常通量层。一旦脱
离该层,各个湍流通量传输将逐渐减弱,直至大气边界层顶的极值
④风向随高度近乎不变,气流结构不受柯氏加速度影响
激光雷达观测气溶胶粒子垂直分布
2000 云层
自由大气
夹卷层 盖顶逆温 残余层
1-2 风与气流(重点掌握)
u u u u
平均风 波动 湍流
平均风:明显的日变化 风速和风向及其相关边界层属性具有明显的垂直梯度 一般量级:水平风为米的量级 垂直风为毫米-米的量级 波动:有规则和一定的周期变化,形式多样,常见: 重力波、惯性波 湍流:大气边界层的主要运动形态,剪切和不稳定特性等, 湍流对大气边界层的发展和演变有关键作用。 大气湍流和波动叠加在平均场上,表现为风的起伏和扰动。
2km ~ 20km 重力波、地形 Meso 尺度 200m ~ 2km 对流
20m ~ 200m 对流单体 2m ~ < 20m 烟气扩散 2m 湍流
有时ABL高度难以判断
定义:大气边界层位于对流层的最底部,由
于直接与地面相贴而强烈受到分子粘性、 湍流摩擦、辐射增热、水汽交换、物质扩 散各种交换作用和地形的影响,致使湍流 应力成为重要因子而不可忽略,与之相联 系形成ABL。即直接受地面影响的那部分对 流层,它响应地面的作用而且时间尺度为1 小时或者更短。
micro-γ
>10000k m
2000~ 10000km
200~2000k m
20~200k m
2~20km
200m~ 2km
20m~200m
20m
水平尺度
水平尺度
水平尺度
大气科学中小尺度分类
> 200km 台风
20km ~ 200km 低空急流
Meso 尺度
Meso 尺度 Micro 尺度 Micro 尺度 Micro 尺度 Micro 尺度
• 城市边界层、海洋边界层、极地边界 层、沙漠边界层、绿洲边界层……….
第三节 边界层气象学研究
边界层和自由大气比较
边界层研究主要方法(掌握)
• • 大气边界层的研究方法通常是采用理论和实验 理论研究 相结合,并以实验为主,理论上有以混合长理论 • 观测试验 和相似理论(量纲分析)为基础的半经验理论及 • 以概率论数理统计为基础的湍流统计理论。 物理模拟 • 在应用中又以半经验理论为主。实验方法则 • 数值模拟 是以野外观测及室内模型实验同时进行。
边界层研究的主要方法
南京大学风洞试验(以北京芳古园小区为对象,相似比250:1)
对流边界层结构的水槽模拟实验
PIV测量技术 (Particle Image Velocimetry)
本质上是图像分析技术的一种。首先向流场中均匀播散示踪 粒子,用脉冲激光照明流场中某一截面上的粒子,然后由CCD摄 像系统曝光粒子的位置,从图像平面中粒子的位移可以确定流 场中的位移。在获取了粒子图像之后,通过计算两次记录的相 似程度来确定粒子的位移
白天
-QS QH QE -QS QH QE Thin boundary QG evaporation QG condensation
夜间
3 低层大气温度
气温垂直分布三种情形: ① 气温随高度递减 ② 气温随高度基本不变 ③ 气温随高度逆增
温度垂直梯度的大小与太阳辐射、云况、 风速和土壤热性质有关,具有明显的日变化。
1-7 大气能量收支与温度(理解)
(1)辐射平衡
太阳短波辐射-向下 地表反射短波辐射-向上 地球表面长波辐射-向上
辐射四 分量仪
大气长波辐射-向下
(2) 能量平衡
下垫面能量平衡分配:
-QS + QA = QH + QE - QG + △QS
净辐射 人为热源 感热 潜热 储热 冠层内储存热量
白天和夜间的能量平衡
• 适用条件: 各向同性湍流、平稳湍流、X方向空间均 匀条件下可靠,湍强不太大
1-5 相似性参数(了解)
• 物理实验(风洞、水槽等)中,为保证得 到正确结果而且与实际大气系统可比较, 则需要满足相似性条件 • 几何相似 • 运动学相似 • 动力学相似 • 热力学相似 • 边界条件相似
座落于南京大学浦口校区的NJU大气环境风洞试验段内景照片
高度(m)
1000 大涡对流 混合层 0 稳定 ( 夜间 )边界层
夹 卷 层
混合层 表面层 表面层
表面层
日落 午夜
中午
日出
中午
陆上高压区大气边界层由三部分组成:大涡对流混合层;含有原 先混合层空气的残余层;具有间隙性湍流的夜间稳定边界层。
边界层的发展具有明显的日变化特点(高压区、小风、无云条件)
对流边界层,稳定边界层,中性边界层 白天:对流边界层 近地面层、混合层、夹卷层
第二节 大气边界层结构
2-1大气边界层分层及结构(重点) 垂直分层 日变化 高压 低压-边界层
大气边界层的概念化分层
夹卷层
动量、热量、
zi
水分、物质交换
混合层
局地自由对流层
1/10zi
近地面层
粗糙度层
近地面层(near surface layer)主要特征(P28)
①大气边界层最下面部分,受到下垫面影响最直接 ②层内风速、温度和其余气象要素场随高度变化十分剧烈,存在有
层内存在显著平均 梯度,风速极值分布
湍涡尺度小,伴随叠 加重力波
2-4 地面影响与PBL结构(了解)
地面的性质 反照率、 辐射率、 粗糙度、 热传导率、 热容量、 渗透率、 植被阻抗 等
辐射平衡 动量通量 能量平衡 热量通量 地表粘滞 应力 湍流应力
边界层
结构 变化
水汽通量
• 下垫面不同,边界层结构不同!!!
1-3 湍流输送(重点掌握)
定义:
湍流是叠加在平均风上的阵风, 是一种随机的不规则运动。湍流响应 地面作用及其变化,是动量、热量、 水汽和物质从地面反馈进入大气并以 时空混合的主要大气过程。湍流以各 种尺度相互叠加的湍涡形式存在。
按照能量学的观点,大气湍流的 存在和维持有三大类型:
• 机械的或地面粗糙度的影响
z三个方向。风速矢量有三个分量(u、v和w),因此对于动
量通量则具有9个分量,即任一方向的气流运动可以带动传输u
,v和w方向的动量输送,因而具有二阶张量性质。
u 2 u v u w v u v 2 v w 2 wu w v w
湍流通量
( ' u' , ' v' , ' w' )
可定性给出边界层运动的一些性质, 但并非很合适的解。
2-3 大气稳定度与PBL结构(逐渐掌握)
• 稳定度,采用M-O长度L作为判据
不稳定(对流)、中性、稳定
不稳定边界层结构及其流场图象。(引自Wyngaard, 1990)
盖帽逆温 上部稳定层结 中的波动及下 部大对流湍涡
稳定边界层结构及其流场图象。(引自Wyngaard, 1990) 湍流层较浅
第一章
大气边界层与边界层气象 学研究
第一节 大气边界层及其特性
1-1 大气边界层(重点掌握)
平流层
自由大气 ~ 10 km 边界层 1~2 km
• 大气边界层(ABL) Atmospheric boundary layer • 行星边界层(PBL) Planetary boundary layer.
• 热力不稳定性
地表加热或冷却
• 水平和垂直风切变-波产生湍流
密度界面上的开尔文-亥姆霍兹波
1-4 泰勒假说(掌握)
欧拉,拉格朗日方法
主要内容
• 出发点: 某点长时间观测易于瞬时大范围观 测 • Taylor(1938): 在湍涡发展时间尺度大于其平移过传感器 时间的特定情况下,当湍流平移过传感器时, 可以把它看做是凝固的.这样,就可以把本来 用做时间函数对湍流的测量变为相应的空 间上的测量