10_压力容器应力分析_典型局部应力
压力容器基础知识题目及答案
压力容器基础知识题目及答案1.压力容器有哪几种常见的应力?对压力容器安全性有什么影响?薄膜应力:受内压的压力容器,由于壳体在介质压力的作用下要向外扩张,容器抵抗扩张而在器壁上产生的拉伸应力。
薄膜:由于直径对壁厚而言绝对的大,将壁厚视为薄膜,忽略了延容器直径方向的尺寸(壁厚),即容器直径方向的剪切应力,这样只有平面的拉伸应力了。
薄膜应力是压力容器的主应力。
温差应力:热胀冷缩使物体的固有特性,如果物体的温度发生变化,而它又受到相邻不见的牵制约束而不能自由地热胀冷缩,则此物体内部就产生了应力。
局部应力:由于容器局部受力,在材料内部产生的应力称为局部应力。
各种应力可以叠加形成应力集中,应力集中的部位容易产生缺陷并使已有缺陷扩展,最终形成事故。
焊缝和几何形状不连续的部位如开孔的边缘就是应力集中的部位。
2.对于用于焊接结构压力容器主要受压元件的碳素钢和低合金钢的含碳量,《压力容器安全技术监督规程》中是如何要求的?用于焊接结构压力容器主要受压元件的碳素钢和低合金钢,其含碳量不应大于0.25%。
在特殊条件下,如选用含碳量大于0.25%的钢材,应限定碳当量不大于0.45%,在制造单位征得用户同意,并经过制造单位压力容器技术型噢能够负责人批准,提供材料抗裂性试验报告和焊接工艺评定报告,再按照规程中相关规定办理批准手续。
3.实际操作中操作工常易发生哪些违章的错误操作?①.错误操作阀门;②.带压紧固螺栓和法兰紧固结构;③.快开式压力容器紧固啮合不到位升压;开盖时表压不为零开盖;④.用安全泄压装置进行工艺排放;⑤. 擅自运行缺陷和故障设备;⑥. 颠倒工艺程序或改变工艺条件。
4实际操作中遇到安全阀密封泄漏,不能保证工作压力的情况,你应怎样正确操作及处理?原因:安全阀故障密封泄漏。
处理:应立即停车泄压后更换安全阀。
安全阀送修送检。
禁止压重物密封或拆阀运行。
5.实际操作中遇到停车关闭进气阀,打开排气阀排放介质后长时间压力表指针不回零的情况请你判断其原因是什么?你应怎样正确操作及处理?原因:A. 压力表失灵;B.进、排气阀损坏。
压力容器应力分析与安全设计
钢制压力容器 用材料许用应 力的取值方法
碳素钢或低合金钢>420℃,铬钼合金钢>450℃, 奥氏体不锈钢>550℃时,同时考虑基于高温蠕变极限
或持久强度
的许用应力
即
或
压力容器应力分析与安全设计
表9-2 钢制压力容器用材料许用应力的取值方法
材料
许用应力 取下列各值中的最小值/MPa
压力容器应力分析与安全设计
3. 对边缘应力的处理
若用塑性好的材料制造筒体,可减少容器发生破坏的危险 性。 正是由于边缘应力的局部性与自限性,设计中一般不 按局部应力来确定厚度,而是在结构上作局部处理。但对 于脆性材料,必须考虑边缘应力的影响。
压力容器应力分析与安全设计
第二节 压力容器的安全设计
压力容器设计是保障压力容器安全的首要环 节。压力容器设计从安全角度包括强度安全设计和 结构安全设计,两者都离不开正确选材,不同材料 的容器的承载能力与结构可靠程度是不同的。
碳素钢、低合金 钢、铁素体高合
金钢
奥氏体高合金钢
压力容器应力分析与安全设计
4、焊接接头系数——焊缝金属与母材强度的比值,反映容器 强度受削弱的程度。
焊缝缺陷
夹渣、未熔透、 裂纹、气孔等
焊缝热影响区晶粒粗大
薄弱环节
母材强度或塑性降低
影响因素
接头形式 无损检测要求及长度比例
压力容器应力分析与安全设计
焊缝系数的大小与材料的焊接性能、被焊母材的厚度、焊接 结构、坡 口型式、焊接方法、焊缝无损检测长度比例以及焊前 预热处理及焊后热处理等因素有关。目前我国《钢制压力容器》 中的焊缝系数主要依据焊缝结构、坡口型式、无损检测的要求等 确定。焊缝系数的选择见下表。
2、压力容器应力分析
r——平行圆半径; R1(经线在B点的曲率半径)——第一曲率半径; R2(与经线在B点处的切线相垂直的平面截交回转曲面得一平面曲线,该
平面曲线在B点的曲率半径)——第二曲率半径,R2=r/sinφ 考虑 壁厚,含纬线的正交圆锥面能截出真实壁厚,含 平行圆的横截面不能截出真实壁厚。
24
b. 球形壳体
压力容器应力分析
任一点M:p=ρgR(1-cosφ)
注:充满液体
25
经推导得:
gR 2
6t
(1 2 cos2 ) 1 cos
gR 2
6t
(5 6 cos 2 cos2 ) 1 cos
gR 2
6t
(5 2 cos2 ) 1 cos
t
gx
, 则
(0 gx)R
t
注:容器上方是封闭的
23
p0
t
R
σφ
σφ
径向朝外的p0相互抵消,产生σθ而与σφ无关,朝下的p0由筒底承担, 筒底将力又传给支座和基础,朝上的p0与σφ相平衡:
2πRtσφ=πR2p0
则
p0R 2t
若容器上方是开口的,或无气体压力(p0=0)时,σφ=0
薄壁圆筒 厚壁圆筒
Do/Di≤1.1 Do/Di>1.1
压力容器应力分析 t——壳体厚度 R——中间面曲率半径
Do——圆筒外径 Di——圆筒内径
3
2.1.1 薄壁圆筒的应力
压力容器应力分析
σφ ——经向应力(轴向应力);σθ——环向应力(周向应力)σr— —径向应力,很小、忽略
4
压力容器应力分析
第2章 压力容器应力分析
郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
图2-12 组合壳
图2-13 连接边缘的变形
郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
w1 w2
1 2
Q M 0 w1p w1 0 w1M 0 w2p wQ2 w2 0 Q M 1p 1Q 1M 2p 2 2
图2-11 储存液体的球壳
郑州大学化工与能源学院
过程设备设计
2.2.4 无力矩理论的应用
三、无力矩理论的 应用条件 为保证回转薄壳处于薄膜状态,壳体形状、 加载方式及支承一般应满足如下条件: 1、几何形状、载荷、材料连续; 2、壳体的边界处不受横向剪力、弯矩和扭 矩作用。 3、壳体的边界处的约束沿经线的切线方向, 不得限制边界处的扭角与挠度。
第2章 压力容器应力分析
第2.2节
回转薄壳应力分析
过程设备设计
第2-2节 回转薄壳应力分析
压力容器的各种壳体,多属于回转薄壳。 壳体—以两个曲面为界,且曲面之间的距 离远比其他方向尺寸小得多的构件。 壳体的厚度—两曲面之间的距离,用“t或 δ”表示。 壳体的中面—与壳体内、外两个曲面等距 离的曲面。
过程设备设计
第2章
压力容器应力分析
第2章 压力容器应力分析
第2.1节 载荷分析
过程设备设计
第2-1节 载荷分析
载荷:能够在压力容器上产生应力、 应变的 因素,如:压力、风载荷、地震载荷等。 2.1.1 载荷分类:压力载荷和非压力载荷。 1、压力载荷:它是压力容器承受的基本载荷。 一般采用表压。 压力容器中的压力载荷主要来源有: ①泵或压缩机; ②液体膨胀或汽化; ③饱和蒸汽压。 (另外,液体重量产生液体静压力) 压力容器上的压力,可能是内压、外压或两 者都有。
第二章压力容器应力分析
《过程设备设计基础》教案2—压力容器应力分析课程名称:过程设备设计基础专业:过程装备与控制工程任课教师:第2章 压力容器应力分析§2-1 回转薄壳应力分析一、回转薄壳的概念薄壳:(t/R )≤0.1 R----中间面曲率半径 薄壁圆筒:(D 0/D i )max ≤1.1~1.2 二、薄壁圆筒的应力图2-1、图2-2 材料力学的“截面法”三、回转薄壳的无力矩理论1、回转薄壳的几何要素(1)回转曲面、回转壳体、中间面、壳体厚度 * 对于薄壳,可用中间面表示壳体的几何特性。
tpD td pR tpD Dt D p i 22sin 24422====⨯⎰θπθϕϕσσαασπσπ(2)母线、经线、法线、纬线、平行圆(3)第一曲率半径R1、第二曲率半径R2、平行圆半径r(4)周向坐标和经向坐标2、无力矩理论和有力矩理论(1)轴对称问题轴对称几何形状----回转壳体载荷----气压或液压应力和变形----对称于回转轴(2)无力矩理论和有力矩理论a、外力(载荷)----主要指沿壳体表面连续分布的、垂直于壳体表面的压力,如气压、液压等。
P Z= P Z(φ)b、内力薄膜内力----Nφ、Nθ(沿壳体厚度均匀分布)弯曲内力---- Qφ、Mφ、Mθ(沿壳体厚度非均匀分布)c、无力矩理论和有力矩理论有力矩理论(弯曲理论)----考虑上述全部内力无力矩理论(薄膜理论)----略去弯曲内力,只考虑薄膜内力●在壳体很薄,形状和载荷连续的情况下,弯曲应力和薄膜应力相比很小,可以忽略,即可采用无力矩理论。
●无力矩理论是一种近似理论,采用无力矩理论可是壳地应力分析大为简化,薄壁容器的应力分析和计算均以无力矩理论为基础。
在无力矩状态下,应力沿厚度均匀分布,壳体材料强度可以得到合理的利用,是最理想的应力状态。
(3)无力矩理论的基本方程a、无力矩理论的基本假设小位移假设----壳体受载后,壳体中各点的位移远小于壁厚。
考虑变形后的平衡状态时壳用变形前的尺寸代替变形后的尺寸直法线假设----变形前垂直于中面的直线变形后仍为直线,且垂直于变形后的中面。
压力管道局部应力分析
I.
采用有限元法对特殊管件进行分析,得到应力集中系数;
II. 应力增大系数等于应力集中系数的一半。
应力增大系数应用的注意事项!
根据GB 50316、ASME B31.1和ASME B31.3的规定,计算二次应力时应 采用应力增大系数。这是由于采用应力增大系数的目的,是考虑局部应力 集中的影响,而局部应力集中主要对管件的疲劳破坏产生作用。因为局部 的高应力循环,将使材料产生裂纹并不断扩展,最终导致破坏。校核二次 应力的目的正是为了防止疲劳破坏,因此在计算二次应力时必须考虑应力 集中的影响,应该采用应力增大系数。另外,根据ASME B31.3的标准释 义,计算一次应力可不考虑应力增大系数。这主要是因为校核一次应力是 为了控制管道的整体破坏,局部的应力集中对管道的整体破坏影响不大。 另外一次应力采用弹性分析方法,认为某一点达到屈服管道失效,已经非 常保守,如果在考虑应力集中的影响将导致过分保守。
l 为了能够表示出WRC107、297计算的误差,使用有 限元分析软件(NozzlePro/FEpipe)来进行对比计算。
l 有限元法严格按照理论分析方法,结合ASME Ⅷ-2 中的应力分类来对特定结构进行应力计算,当满足 理想化假设条件时,其结果与真实应力十分接近, 并且有限元分析法不受任何几何条件的限制,计算 精度与网格划分的疏密程度相关。
可以提高至0.6
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC297应用范围及限制条件
l WRC297继承了WRC107的一些限制条件,另外,当连接区 域的接管壁厚小于补强壁厚时,其局部应力计算值可能过于 保守
压力容器应力分析典型局部应力
压力容器应力分析典型局部应力
三、数值计算
应力数值计算的方法比较多,如差分法、变分法、有限单 元法和边界元法等。但目前使用最广泛的是有限单元法。
有限单元法的基本思路: 将连续体离散为有限个单元的组合体,以单元结点的参
量为基本未知量,单元内的相应参量用单元结点上的数值插 值,将一个连续体的无限自由度问题变成有限自由度的问题, 再利用整体分析求出未知量。显然,随着单元数量的增加, 解的近似程度将不断改进,如单元满足收敛要求,近似解也 最终收敛于精确解。
为边缘效应的衰减长度。故开孔系数 表示开孔 大小和壳体局部应力衰减长度的比值。
压力容器应力分析典型局部应力
随着开孔系数的增大而增大
Kt 随壁厚比t/T的增大而减小
内伸式接管的应力集中系数较小 即:增大接管和壳体的壁厚,减小接管半径,
有利于降低应力集中系数
压力容器应力分析典型局部应力
球壳带接管的应力集 中系数曲线适用范围:
压力容器应力分析典型局部应力
二、减少附件传递的局部载荷
如果对与壳体相连的附件采取一定的措施,就可以减少 附件所传递的局部载荷对壳体的影响,从而降低局部应力。 例如:
● 对管道、阀门等设备附件设置支撑或支架,可降低这些附
件的重量对壳体的影响;
● 对接管等附件加设热补偿元件可降低因热胀冷缩所产生的
热载荷。
压力容器应力分析典型局部应力
一、应力集中系数法
1、应力集中系数 ——受内压壳体与接管连接处的最大弹性应力 ——该壳体不开孔时的环向薄膜应力
通过理论计算,数据整理,得到一系列曲线。通过应力集中 系数曲线图查Kt,就可得到最大应力
压力容器应力分析
载荷
2.1.1 载荷
压力(包括内压、外压和液体静压力)
非压力载荷 载荷
重力载荷 风载荷 地震载荷 运输载荷 波动载荷 管系载荷 支座反力 吊装力
整体载荷 局部载荷
压力容器
应力、应变的变化
上述载荷中,有的是大小和/或方向随时间变化的交 变载荷,有的是大小和方向基本上不随时间变化的静载荷
压力容器交变载荷的典型实例:
分析载荷作用下压力容器的应力和变形, 是压力容器设计的重要理论基础。
●2.1 载荷分析
2.1.1 载荷 2.1.2 载荷工 况
●2.2 回转薄壳应力分析
●2.3 厚壁圆筒应力分析 ●2.4 平板应力分析 ●2.5 壳体的稳定性分析 ●2.6 典型局部应力
2.2.1 薄壳圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
a.正常操作工况:
容器正常操作时的载荷包括:设计压力、液体静压力、重力 载荷(包括隔热材料、衬里、内件、物料、平台、梯子、管 系及支承在容器上的其他设备重量)、风载荷和地震载荷及 其他操作时容器所承受的载荷。
b. 特殊载荷工况
特殊载荷工况包括压力试验、开停工及检修等工况。 制造完工的容器在制造厂进行压力试验时,载荷一般包括试 验压力、容器自身的重量。
有力矩理论或 弯曲理论 (静不定)
无力矩理论所讨论的问题都是围绕着中面进行的。 因壁很薄,沿壁厚方向的应力与其它应力相比很小, 其它应力不随厚度而变,因此中面上的应力和变形可 以代表薄壳的应力和变形。
二、无力矩理论与有力矩理论 平行圆
j
j
jq
Nq
q
qj
压力容器的局部应力应变寿命分析
第5 期
金维国 压 力容器的局部应力应变寿命 分析
. 5一 2
式 中:^ 理论应 力集中系数; , 厂 环强度 系 数 ;/ 循环 应变硬化 系数 ;E 弹性模 量; △ 0一 7 L 一 局部 应力 历程 ; A e 一局 部应 变历 程 。
式 中 :血 一 每 个载 荷 块 中的第 i 级应 力 的循 环 次 数 ;M 一 第i 级应 力下 的疲 劳 寿命 ;卜 应力 水平 级数。
Байду номын сангаас
3方 程 求 解
由式(X ) ( = 0 Bo E e 1 2 ̄f 1: + _ o) l 1 ( ). 4 式中 E 1 +1 A f S , 、 △
. .
6举 例
内径 为 1 0 0 6 0 mm,壁 厚 6 0 m 的 圆 筒 =1 r a 形 压 力 容 器 ,材 料 为 3 C Mn i 2 0 r SNiA,其E= 2×
2 一 ■ 论文广场 4
一
2 O 第1 石1 化 3备 0 与 工卷 油年 设
压力容器的局部应力应变寿命分析
金维 国
( 宁石油化工大学机械工程学院 , 辽宁 抚顺 1 3 0 ) 辽 01 1
[ 摘 要] 基 于局部应 力一 变法理论 ,阐述 了疲劳寿命估算的方法和思路 ,研究 了动态数据采样 与处理 方法,以实例计算 应
b=. 1 0. 026 Pa, c 0. M =一 781 6,
7 = /t
一
=一 2647. 69M Pa,
4采 用 雨流 计 数 法 进 行 载 荷 谱 循环 计 数
由于产 生疲劳损 伤 的主要 因素是 循环次 数 、应 力 幅值及 幅值等 , 因此必须 将 以上计算 出的应 力一 时 间历程简 化为 一系列 不 同大小应 力幅值 的全 循环 或 半 循环 载 荷 ,这 一 简 化 的 过 程称 为 “ 数 法 ” 计 ( onig to ) C u t h d,一般采用简化 雨流计数 法 。 n Me 在 进 行 雨 流 计 数 时 , 取 时 间 为 纵 坐 标 , 垂 直 向下 ,载 荷一 时 间 历程 形 如宝 塔 屋 顶 。雨 滴 以 峰 、谷 为起 点 , 向下 流动 。
压力容器设计中的应力分析与优化
压力容器设计中的应力分析与优化摘要:压力容器作为储存和运输压力物质的设备,在工业生产中扮演着重要角色。
由于其特殊性和复杂工作环境,容器壁面常受高压力和负荷作用,容易出现应力集中和应力腐蚀等问题,从而导致容器失效和严重事故的发生。
为确保压力容器的安全性和可靠性,应力分析与优化成为关键的设计环节。
本文探讨了压力容器设计中的应力分析方法,包括有限元法、解析法和试验方法,并提出了相应的优化策略,包括材料选择、结构设计、加强筋设计和压力分布均衡等方面。
强调了数值仿真与实验验证在优化策略中的重要性,通过综合运用这些方法,可以有效提高压力容器的性能和可靠性,确保其在各种复杂工况下安全运行。
关键字:压力容器,应力分析,优化策略,有限元法,解析法一、引言随着工业技术的不断发展和应用的不断扩大,压力容器作为一种重要的储存和运输压力物质的设备,在各行各业都扮演着不可或缺的角色。
由于压力容器的特殊性和工作环境的复杂性,容器壁面常常受到高压力和负荷的作用,导致应力集中和应力腐蚀等问题。
这些问题会导致容器的失效,从而引发严重的事故,对人员和环境安全造成严重威胁。
二、应力分析方法在压力容器设计中,应力分析是评估容器壁面应力分布和变形情况的关键步骤。
准确的应力分析可以揭示潜在的应力集中区域,为后续优化设计提供依据。
在应力分析中,常见的方法包括有限元法、解析法和试验方法。
2.1 有限元法:有限元法是目前最为广泛应用的应力分析方法。
它将复杂的容器结构离散为有限个简单单元,通过数值模拟的方式求解得出容器的应力分布。
有限元法能够考虑材料的非线性特性、几何的非线性变形以及复杂的边界条件,适用于各种复杂结构的压力容器。
在有限元分析中,需要建立容器的几何模型,将其划分为有限元网格。
根据材料特性、加载条件和边界条件,设定模拟参数。
通过迭代计算,求解得到容器内部应力和变形的数值结果。
有限元法具有高精度和较好的灵活性,可以在设计过程中快速验证多种设计方案的性能,是压力容器设计中不可或缺的分析手段。
第二章 压力容器应力分析2.1-2.2
2.2 回转薄壳应力分析
2.2 回转薄壳应力分析
2.2.1 薄壁圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
过程设备设计
40
2.2 回转薄壳应力分析
2.2.3 无力矩理论的基本方程
过程设备设计
求解思路
制造安装 正常操作
开停工 压力试验
检修 等等
正常操作工况 特殊载荷工况 意外载荷工况
根据不同载荷工况,分别计算载荷
21
2.1 载荷分析
过程设备设计
1、正常操作工况
载荷
设计压力 液体静压力 重力载荷 风载荷 地震载荷 其他载荷
隔热材料、衬里、内件、物 料、平台、梯子、管系、支 承在容器上的其他设备重量 等
绝对压力
以绝对真空为 基准测得的压 力。 通常用于过程 工艺计算。
表压
以大气压为基准 测得的压力。 压力容器机械设 计中,一般采用 表压。
8
2.1 载荷分析
压力容器中的压力来源
过程设备设计
1
流体经泵或压 缩机,通过与 容器相连接的 管道,输入容 器内而产生压 力,如氨合成 塔、尿素储罐 等。
2
3
加热盛装液体 的密闭容器, 液体膨胀或汽 化后使容器内 压力升高,如 人造水晶釜。
30
2.2 回转薄壳应力分析
过程设备设计
B点受力分析
B点
内压P
轴向:经向应力或轴向应力σφ 圆周的切线方向:周向应力或环向应力σθ 壁厚方向:径向应力σr
σθ 、σφ >>σr 三向应力状态
二向应力状态
31
2.2 回转薄壳应力分析
《压力容器应力分析》课件
CHAPTER
06
压力容器应力分析的实践应用
压力容器设计中的应力分析
总结词
在压力容器设计中,应力分析是关键环节,用于评估容器在不同工况下的受力情况,确保容器的安全性和稳定性 。
详细描述
在压力容器设计阶段,应力分析的目的是确定容器在不同压力、温度和介质等工况下的应力分布,以及由此产生 的变形和疲劳损伤。通过使用有限元分析等数值方法,可以预测容器的应力水平和可能出现的应力集中区域,从 而优化设计,避免因过度应力而导致的容器破裂或失效。
CHAPTER
05
压力容器应力分析的结论与展 望
结论
01
压力容器应力分析是确保压力容器安 全运行的重要手段,通过对压力容器 的应力分析,可以评估容器的安全性 能和可靠性,预防因应力集中、疲劳 损伤等问题引起的容器破裂和泄漏等 事故。
02
压力容器的应力分析方法包括有限元 分析、有限差分法、边界元法等数值 计算方法和实验方法。这些方法可以 模拟和预测压力容器的应力分布和强 度,为容器的设计、制造、检验和使 用提供科学依据。
目的
确保压力容器的安全运行,防止因过 大的应力导致容器破裂或失效,提高 容器的使用寿命和可靠性。
应力分类
一次应力
01
由外部载荷引起的应力,如压力、重力和惯性力等。
二次应力
02
由容器内部压力引起的应力,通常是由于容器结构不连续或约
束条件引起的。
峰值应力
03
由于结构局部不连续或温度梯度引起的应力,通常在容器的高
在此添加您的文本16字
总结词:分析结果
在此添加您的文本16字
总结词:应用实例
在此添加您的文本16字
详细描述:展示简单压力容器应力分析的结果,包括应力 分布、应力强度和安全系数的计算等。
2压力容器应力分析
2.2.1 薄壁圆筒的应力
A t
B 点 受力 分析
A
Di
Di D Do
图2-1 薄壁圆筒在内压作用下的应力 B点
轴向:经向应力或轴向应力σ
φ θ
内压P
圆周的切线方向:周向应力或环向应力σ 壁厚方向:径向应力σ r
σ
三向应力状态
θ 、 φ
σ >>σ r
二向应力状态
θ
因而薄壳圆筒B点受力简化成二向应力σ φ 和σ
2、压力容器应力分析
CHAPTER Ⅱ
STRESS ANALYSIS OF
PRESSURE VESSELS
河北科技大学装控系
1
压力容器受到介质压力、支座反力等 多种载荷的作用。 确定全寿命周期内压力容器所受的各种 载荷,是正确设计压力容器的前提。 分析载荷作用下压力容器的应力和变形, 是压力容器设计的重要理论基础。
p R1 R2 t
(2-3)
■ 微元平衡方程,又称拉普拉斯方程。
三、区域平衡方程(图2-6)
图2-6 部分容器静力平衡
环带所受压力在0-0′轴方向的分量:
d V 2 r p d l c o s
压力在0-0′轴方向产生的合力:
r m 0
dr cos dl
V 2 prdr
2.2 回转薄壳应力分析 2.2.4 无力矩理论的应用
◇ 分析几种工程中典型回转薄壳的薄膜应力: 球形壳体 承受气体内压的回转薄壳 薄壁圆筒 锥形壳体 椭球形壳体 圆筒形壳体 储存液体的回转薄壳
球形壳体
2.2.4 无力矩理论的应用
一、承受气体内压的回转薄壳
压力容器应力分析
(2-69)
2 压力容器应力分析
2.3 平板应力分析
可以看出,最大弯矩和相应的最大应力均在板中心处r=0处 , 2 pR ax M M 3 r m ax m 16
2 3 3 pR ax r m ax m 2 8 t
Te——锥壳当量厚度 te t cos
适用于:
60o
o 若 60 按平板计算,平板直径取锥壳最大直径
2 压力容器应力分析
注意: 除受外压作用外,只要壳体在较大区域内存在压缩薄膜应 2.4 壳体稳定性分析 力,也有可能产生失稳。 例如:塔受风载时,迎风侧产生拉应力,而背风侧产生压 缩应力,当压缩应力达到临界值时,塔就丧失稳定性。 受内压的标准椭圆形封头,在赤道处 稳。 即:不仅受外压的壳体可能失稳,受内压的壳体也可能 失稳。 为压应力,可能失
Et R
R 500 t
修正系数C=0.25
Et cr 0.25 R
(2-101)
2 压力容器应力分析
2.4 壳体稳定性分析
b、联合载荷作用下圆筒的失稳 一般先确定单一载荷作用下的失效应力,计算 单一载荷引起的应力和相应的失效应力之比,再求 出所有比值之和。 若比值的和<1,则筒体不会失稳 若比值的和≥1,则筒体会失稳
2 压力容器应力分析
2.4 壳体稳定性分析
p
p
p a
轴向
周向
b
周向 轴
c
本节讨论:受周向均匀外压薄壁回转壳体的弹性失稳问题
2 压力容器应力分析
2.4 壳体稳定性分析
二、临界压力 1、临界压力
壳体失稳时所承受的相应压力,称为临界压力, 用pcr表示。 外载荷达到某一临界值,发生径向挠曲,并 迅速增加,沿周向出现压扁或波纹。 见表2-5
压力容器的应力分析
按应用情况
反应压力容器(R)完成物理、化学反应,如反应器、反应釜、分解锅、聚合釜、变换炉等; 换热压力容器(E)热量交换,如热交换器、管壳式余热锅炉、冷却器、冷凝器、蒸发器等; 分离压力容器(S)流体压力平衡缓冲和气体净化分离,如分离器、过滤器、缓冲器、吸收塔、干燥塔等; 储存压力容器:(C,球罐为B)储存、盛装气体、液体、液化气体等介质,如各种形式的贮罐、贮槽、高位槽、计量槽、槽车等。
图片
压力容器的结构图
零部件的二个基本参数:公称直径DN
对于用钢板卷制的容器筒体而言,其公称直径的数值等于筒体内径。 当容器筒体直径较小时,可直接采用无缝钢管制作时,这时容器的公称直径等于钢管的外径。 管子的公称直径(通径)既不是管子的内径也不是管子的外径,而是一个略小于外径的数值。 见P181 表14-1压力容器的公称直径DN
球形壳体
球壳R1=R2=D/2,得: 直径与内压相同,球壳内应力仅是圆筒形壳体环向应力的一半,即球形壳体的厚度仅需圆筒容器厚度的一半。 当容器容积相同时,球表面积最小,故大型贮罐制成球形较为经济。
圆锥形壳体
圆锥形壳半锥角为a,A点处半径为r,厚度为d,则在A点处:
圆锥形壳体
锥形壳体环向应力是经向应力两倍,随半锥角a的增大而增大;a角要选择合适,不宜太大。 在锥形壳体大端r=R时,应力最大,在锥顶处,应力为零。因此,一般在锥顶开孔。
工程上常用的应力分析方法:
有力矩理沦:不仅承受拉应力,还承受弯矩和弯曲应力; 无力矩理沦:只承受拉压应力,不能承受力矩的作用 无力矩理沦有近似性和局限性,其误差在工程计算允许的范围内,计算方法大大简化,该方法常被采用。 应用条件:
圆筒的应力计算
作用力: 由内压作用在端盖上产生轴向拉应力 ,称为经向应力或轴向应力; 由内压作用使圆筒向外均匀膨胀,在圆周切线方向所产生的拉力称为环形应力或周向应力,用表示 常为薄壁容器,筒壁较薄, 可认为 是均匀分布的,径向应力 可忽略不计
压力容器应力分析及其设计
压力容器应力分析及其设计引言压力容器是一种用于储存或运输压力流体或气体的设备,广泛应用于化工、石油、制药等领域。
由于其工作环境的特殊性,压力容器的设计和应力分析至关重要,直接关系到设备的安全性和稳定性。
本文将介绍压力容器应力分析的基本概念和方法,并探讨压力容器设计的一些考虑因素。
压力容器应力分析在压力容器的设计和使用过程中,应力分析是非常重要的一步。
应力分析的目的是确定容器的强度和稳定性,以确保其在工作压力范围内能够安全可靠地运行。
1. 基本概念在压力容器中,由于内、外侧的压力差异,容器壁面会受到应力的作用。
应力是物体内部原子或分子间相互作用的结果,它可以表现为拉伸、压缩、剪切等形式。
常见的应力包括轴向应力、周向应力和切向应力。
轴向应力是指沿着容器轴线方向的应力,周向应力是指沿着容器周向的应力,切向应力是指垂直于容器壁面的应力。
2. 应力分析方法压力容器的应力分析可以采用数值模拟方法或者经验公式计算。
数值模拟方法通常基于有限元分析(Finite Element Analysis,简称FEA),通过划分网格、建立数学模型并求解,得到各个位置的应力值。
经验公式计算相对简便,适用于一些简单几何形状的压力容器。
常用的经验公式有ASME VIII-1标准中的公式和欧洲标准EN 13445中的公式等。
无论采用数值模拟方法还是经验公式计算,都需要考虑容器的材料特性、内外压力、温度、容器几何形状等因素。
3. 应力分析结果的评估进行应力分析后,需要对分析结果进行评估。
常见的评估指标有应力强度安全系数、应力集中系数、损伤累积等。
应力强度安全系数是指容器的实际应力值与允许应力值之间的比值。
一般要求安全系数大于1,以确保容器在额定工作条件下不会发生破坏。
应力集中系数用于评估容器上的应力集中程度。
过高的应力集中系数可能导致局部破坏和疲劳寿命的降低。
损伤累积是指容器在循环荷载作用下承受的损伤累计量。
如果损伤累积超过一定限制,容器可能发生疲劳破坏。
压力容器的设计—边缘应力
边缘应的产生
自
变
由
形
变
协
形
调
边缘处产生附加内力: M0-附加弯矩; Q0-附加剪力。
4
5
二、边缘应力特点
(1).局部性 只产生在一局部区 域内,边缘应力衰 减很快。见如下测 试结果:
衰减长度大约为:
l 2.5 rs 式中r - -圆筒半径;
s - -圆筒壁厚。
6
(2).自限性
边缘应力是由于不连续点的 两侧产生相互约束而出现的附 加应力。
项目二 压力容器的设计 单元十 边缘应力
1
第二节 内压圆筒边缘应力及其处理
一、边缘应力概念 压力容器边缘——指“不连续处”,主要是几何不连续及载荷(支
撑)不连续处,以及温度不连续,材料不连续等处。 例如:几何不连续处:
几
支
何
气体内压
撑
不
作用 P
不
连
连
续
续
2
温度不连续:
材料不连续:
在不连续点处,由于介质压力及温度作 用,除了产生薄膜应力外,还发生变形协调, 导致了附加内力的产生。
更要注意边缘的处理。 ◎ 对大多数塑性较好的材料,如低碳钢、奥氏体不锈钢、
铝等制作的压力容器,一般不对边缘作特殊考虑。
3.边缘应力的危害性
边缘应力的危害性低于薄膜应力。 1)薄膜应力无自限性,正比于介质压力。属于一次应力。 2)边缘应力具有局部性和自限性,属于二次应力。
9
当边缘处的附加应力达到材 料屈服极限时,相互约束便缓 解了,不会无限制地增大。
7
三、对边缘应力的处理
1.利用局部性特点——局部处理。 如:改变边缘结构,边缘局部加强,筒体纵向焊缝
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6 典型局部应力
2.6.3 降低局部应力的措施
2.6.3 降低局部应力的措施 (1) 合理的结构设计 ① 减少两连接件的刚度差; ② 尽量采用圆弧过渡;
2.6 典型局部应力
2.6.3 降低局部应力的措施
③ 局部区域补强; ④ 选择合适的开孔方位。
2.6 典型局部应力
2.6.3 降低局部应力的措施
2.6 典型局部应力
2.6.2 受内压壳体与接管连接处的局部应力
取带小孔平板的 1/4 作为有限元 分析模型,在单向拉伸条件下, 计算得到板内 x方向的应力分布 云图。可见,小孔顶端最大 x方 向应力为单向拉伸力的3倍。
2.6 典型局部应力
2.6.2 内压壳体与接管连接处的局部应力
(3) 壳体开孔接管有限元应力计算
2.6 典型局部应力
2.6.2 内压壳体与接管连接处的连接处的局部应力
(4) 应力集中系数法 目前,工程上对局部应力的分析,主要采用的方 法是应力集中系数法。它是结合了理论分析、数值计 算、实验测试等方法,归纳总结而成。
max Kt
2.6 典型局部应力
2.6.2 受内压壳体与接管连接处的局部应力
2.6.2 受内压壳体与接管连接处的局部应力 (1) 受内压壳体开孔接管连接处结构分析 ① 开孔部位强度削弱; ② 开孔附近产生应力集中; ③ 壳体与接管变形不协调产生边缘力系; ④ 开孔结构制造过程中产生缺陷和残余应力。 (2) 平板开小孔的应力集中问题 以弹性力学中“无限大”平板单向承受拉伸载荷 时的应力分布为例,直接给出其弹性力学精确解。
2.6 典型局部应力
2.6.2 受内压壳体与接管连接处的局部应力
2.6 典型局部应力
2.6.2 受内压壳体与接管连接处的局部应力
(a) r=a时σϴ沿孔边的分布
(b) 在水平和垂直方向σϴ, σr分布趋势
在r a,
2 应力集中具有明显的局部性,远离小孔应力集中迅速衰减。
时,有最大拉应力 3q,显然应力集中系数为3。
(2) 减少附件传递的局部载荷 (3) 尽量减少结构中的缺陷
2.6 典型局部应力
2.6.1 概述
2.6.1 概述
(1) 什么是局部载荷 容器除了受内压或外压外,在其制造、安装和使用过程 中还受到许多通过附件传来的其他载荷。这些附件包括 支座、托架、吊耳和接管等。这些载荷称为局部载荷。
2.6 典型局部应力
2.6.1 概述
(2) 局部载荷的特点 局部载荷对壳件的影响通常仅限于附件与壳体连 接处附近的局部地区,局部载荷将在壳体相接管等附 件中产生较高的局部应力。 (3) 局部载荷的计算方法 理论计算过于繁复,解决的范围较窄,而且结果 与实际相差较大。 现在通常采用数值解与实验结合的方式,归纳整 理出经验公式和大量的工程分析用图表。 本节以受内压壳体开孔接管连接处局部应力 的分 析为例,介绍工程设计和结构分析中,计算局部载荷 的方法。