高等数学函数基本公式--
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 基本初等函数求导公式
(1) 0)(='C (2) 1
)(-='μμμx x
(3) x x cos )(sin ='
(4) x x sin )(cos -='
(5)
x x 2
sec )(tan =' (6)
x x 2csc )(cot -=' (7) x x x tan sec )(sec ='
(8) x x x cot csc )(csc -='
(9)
a a a x
x ln )(=' (10) (e )e x
x '=
(11)
a x x a ln 1
)(log =
'
(12)
x x 1)(ln =
',
(13)
211)(arcsin x x -=
' (14)
211)(arccos x x --
=' (15)
21(arctan )1x x '=
+
(16)
21(arccot )1x x '=-
+
函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则
(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)
(3) v u v u uv '+'=')(
(4) 2v v u v u v u '-'='
⎪⎭⎫ ⎝⎛
反函数求导法则
若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应
区间
x
I 内也可导,且
)(1)(y x f ϕ'=
' 或 dy dx dx dy 1=
复合函数求导法则
设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为
dy dy du dx du dx =
或()()y f u x ϕ'''=
2. 双曲函数与反双曲函数的导数.
双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式:
三、基本初等函数的微分公式与微分运算法则
从函数的微分表达式:
d ()d y f x x '=
可以看出,要计算函数的微分,只要计算函数的导数,再乘以自变量的微分.因此,可得如下的微分公式和微分运算法则. 1. 基本初等函数的微分公式
由基本初等函数的导数公式,可以直接写出基本初等函数的微分公式.为了便于对照,列表于下:
2.函数和、差、积、商的微分法则
由于函数和、差、积、商的求导法则,可推得相应的微分法则.为了便于对照,列成下表(表
中
)
(
),
(x
v
v
x
u
u=
=
都可导).
v
u v u '±'='±)( u C Cu '=')( v u v u uv '+'=')(
2)(v v u v u v u '-'='
d()d d u v u v ±=±
d()d Cu C u = d()d d uv v u u v =+
2d d d()u v u u v
v v -=
现在我们仅证明乘积的微分法则.
3. 复合函数的微分法则(一阶微分形式的不变性)
一阶微分形式不变性:设f 是可微函数,)(u f y =,则无论u 是自变量,或是另一个变量
x 的可微函数,都同样有d ()d y f u u '=.
4. 例题
例3 )12sin(+=x y ,求 d y .
例4
2
ln(1e )x
y =+,求d y . 例5
13e cos x y x -=,求d y .
例6 在下列等式左端的括号中填入适当的函数,使等式成立.
(1)
()d d x x =; (2) (
)d cos d t t ω=.