《勾股定理》培优专题训练(3)
苏科版八年级上册第三章《勾股定理》单元专题培优训练卷【含答案】
苏科版八年级上册第三章《勾股定理》单元专题培优训练卷一.选择题1.下列各组数中,不是勾股数的一组是()A.3,4,5B.4,5,6C.6,8,10D.5,12,132.三个正方形的面积如图所示,则S的值为()A.3B.12C.9D.43.在△ABC中,∠A、∠B、∠C的对边分别记为a、b、c.下列条件中;不能说明△ABC 是直角三角形的是()A.∠A=∠B=∠C B.a2=b2+c2C.∠A+∠B=∠C D.a:b:c=3:4:54.如图,∠C=90o,AB=12,BC=3,CD=4,若∠ABD=90°,则AD的长为()A.8B.10C.13D.155.如图,一棵大树在暴风雨中被台风刮倒,在离地面3米处折断,测得树顶端距离树根4米,已知大树垂直地面,则大树高约多少米?()A.5米B.8米C.9米D.256.若a、b、c是△ABC三条边的长,且满足a2﹣2ab+b2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形7.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是()A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24 8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①x2+y2=49;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是()A.①②B.②④C.①②③D.①③二.填空题9.在没有直角工具之前,聪明的古埃及人用如图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中5这条边所对的角便是直角.依据是.10.在△ABC中,若∠C=90°,∠A=46°,则∠B=°.11.在△ABC中,∠C=90°,若a=5,b=12,则c=.12.如图,是一个直角三角形以三边为边长向外作三个正方形,则字母A所代表的正方形的面积为.13.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=12,BC=5,则CD =.14.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要m.15.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.设这个水池深x尺,则根据题意,可列方程为.16.“赵爽弦图”巧妙的利用面积关系证明了勾股定理.如图所示的“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,若AB=10,EF=2,则AH=.三.解答题17.某中学校园有一块四边形草坪ABCD(加图所示),测得∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m,求这块四边形草坪的面积.18.如图,在四边形ABCD中,已知∠B=90°,AB=3,BC=4,CD=12,AD=13,求证AC⊥CD.19.八(3)班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米;(2)根据手中剩余线的长度计算出风筝线BC的长为65米;(3)牵线放风筝的小明身高1.68米.求风筝的高度CE.20.三水九道谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,经过10秒后游船移动到点D的位置,此时BD=6m,问工作人员拉绳子的速度是多少?21.在甲村至乙村的公路旁有一块山地需要开发,现有一C处需要爆破,已知点C与公路上的停靠点A的距离为800米,与公路上另一停靠点B的距离为600米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径450米范围内不得进入,问在进行爆破时,公路AB段是否有危险需要暂时封锁?请通过计算进行说明.22.我们根据图形的移、拼、补可以简单直观地推理验证数学规律和公式,这种方法称之为“无字证明”,它比严谨的数学证明更为优雅与有条理.下面是用三块全等的直角三角形移、拼、补所形成的“无字证明”图形.(1)此图可以用来证明你学过的什么定理?请写出定理的内容;(2)已知直角三角形直角边长分别为a、b,斜边长为c,图1、图2的面积相等,请你根据此图证明(1)中的定理.参考答案一.选择题1.解:A、32+42=52,能构成直角三角形,是整数,故是勾股数,此选项错误;B、42+52≠62,不是勾股数,此选项正确;C、62+82=102,三边是整数,同时能构成直角三角形,故是勾股数,此选项错误;D、52+122=132,是正整数,故是勾股数,此选项错误.故选:B.2.解:如图,由题意可得:AB=4,AC=5,∵AC2=AB2+BC2,∴BC2=25﹣16=9,∴S=9,故选:C.3.解:A、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,∴△ABC不为直角三角形,故此选项符合题意;B、∵a2=b2+c2,∴△ABC为直角三角形,故此选项不合题意;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC为直角三角形,故此选项不合题意;D、∵a:b:c=3:4:5,设a=3x,b=4x,c=5x,∵(3x)2+(4x)2=(5x)2,∴能构成直角三角形,故此选项不合题意;故选:A.4.解:在Rt△BCD中,∠C=90o,由勾股定理得:BD=,在Rt△ABD中,∠ABD=90°,由勾股定理得:AD=,故选:C.5.解:设大树高约有x米,由勾股定理得:(x﹣3)2=32+42,解得:x=8,答:大树高约8米.故选:B.6.解:∵a2﹣2ab+b2+|a2+b2﹣c2|=0,即(a﹣b)2+|a2+b2﹣c2|=0,∴(a﹣b)2=0,且|a2+b2﹣c2|=0,∴(a﹣b)2=0,且a2+b2=c2,∴a=b,且△ABC是直角三角形,∴△ABC是等腰直角三角形,故选:B.7.解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13(cm),故h=24﹣13=11(cm).故h的取值范围是:11cm≤h≤12cm.故选:C.8.解:由题意知,由①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴x+y=.∴结论①②③正确,④错误.故选:C.二.填空题9.解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故答案为:如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形.10.解:∵∠C=90°,∠A=46°,∴∠B=90°﹣46°=44°,故答案为:44.11.解:在△ABC中,∠C=90°,a=5,b=12,∴,故答案为:13.12.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案是:64.13.解:Rt△ABC中,∠C=90°,由勾股定理得:AB=,由S△ABC=得:∴5×12=13×CD,∴CD=.故答案为:.14.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(米).故答案为:17.15.解:设水池里水的深度是x尺,由题意得,(x+1)2=x2+25,故答案为:(x+1)2=x2+25.16.解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,AH=DE=6,∴AH=8﹣2=6.故答案为:6.三.解答题17.解:连接AC,如图:∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,∴S四边形ABCD=S△ABC+S△ADC=•AB•BC+•AD•DC=×24×7+×20×15=234(m2).答:这块四边形草坪的面积是234m2.18.证明:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,即AC⊥CD.19.解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.68=61.68(米),答:风筝的高度CE为61.68米.20.解:由题意得:∠B=90°,∵BC=8m,BD=6m,∴CD===10m,∵AC=17m,∴绳子移动了AC﹣DC=17﹣10=7(m),用时10秒,∴工作人员拉绳子的速度是7÷10=0.7米/秒.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=800米,AC=600米,所以,根据勾股定理有AB==1000(米).因为S△ABC=AB•CD=BC•AC所以CD===480(米).由于400米<480米,故没有危险,因此AB段公路不需要暂时封锁.22.解:(1)勾股定理:直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2;(2)图1的面积为:S1=,图2的面积为S2=,∵图1、图2的面积相等,∴=,∴a2+b2=c2.。
中考数学数学勾股定理的专项培优练习题(及答案
中考数学数学勾股定理的专项培优练习题(及答案一、选择题1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6 2.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm3.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .44.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A .(22)2013B .(22)2014C .(12)2013D .(12)2014 5.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为( )A .6B .27C .5D .256.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13D .3,2,13 7.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )A .5.3尺B .6.8尺C .4.7尺D .3.2尺8.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对9.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .310.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C '处,B C '交AD 于点E ,则线段DE 的长为( )A.3 B.154C.5 D.152二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,在四边形ABCD中,22AD=,3CD=,45ABC ACB ADC∠=∠=∠=︒,则BD的长为__________.13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 14.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.15.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.16.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.①线段OA 的取值范围是______________;②若BD -AC =1,则AC •BD = _________.17.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.18.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.19.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.20.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.23.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.24.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225, (1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.25.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.26.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.27.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-. (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知2+=21,大正方形的面积为13,可以得以直角三角形的面积,进而求出答案。
八上第3章 勾股定理培优题含答案
第3章勾股定理综合提优卷(时间:60分钟满分:100分)一、填空题(每题3分,共30分)1.如图,在一次暴风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底4米处,那么这棵树折断之前的高度是_______米.2.直角三角形一条直角边与斜边分别为4 cm和5 cm,则斜边上的高等于_______cm.3.如图,在直角三角形ABC中,∠C=90°,AC=12,BC=5,则以AB为直径的半圆的面积为_______.4.如图,在四边形ABCD中,∠A=90°,若AB=4 cm,AD=3 cm,CD=12 cm,BC =13 cm,则四边形ABCD的面积是_______.5.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 cm,对角线为100 cm,则这个桌面_______.(填“合格”或“不合格”)6.甲、乙两人同时从同一地点出发,甲往东走了8 km,乙往南走了6 km,这时两人相距_______km.7.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了_______步路(假设2步为1米),却踩伤了花草.8.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为_______.9.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD =5,则CD=_______.10.动手操作:在矩形纸片ABCD 中,AB =3,BD =5.如图所示,折叠纸片使点A 落在边BC 上的A'处,折痕为PQ .当点A'在边BC 上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在边AB 、AD 上移动,则点A'在边BC 上可移动的最大距离为_______.二、选择题(每题3分,共30分)11.下列各组数中,可以构成勾股数的是( ).A .13,16,19B .17,21,23C .18,24,36D .12,35,3712.下列命题中,是假命题的是( ).A .在△ABC 中,若∠B =∠C =∠A ,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠A :∠B :∠C =3:4:5,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形13.一直角三角形的三边分别为2,3,x ,那么以x 为边长的正方形的面积为( ).A .13B .5C .13或5D .414.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D的边长分别是3,5,2,3,则最大的正方形E 的面积是( ).A .13B .26C .47D .9415.在Rt △ABC 中,∠C =90°,AC =3,BC =4,则点C 到AB 的距离是( ).A .125B .425C .34D . 9416.已知一直角三角形的木板,三边的平方和为1800 cm 2,则斜边长为( ).A .30 cmB .80 cmC .90 cmD .120 cm17.底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A 爬到点B ,则蚂蚁爬行的最短距离是( ).A .10B .8C .5D .418.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC ,交AD 于点E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .619.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为( ).A.B.4 C.D.4.520.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ).A.0 B.1 C D三、解答题(共40分)21.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.22.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a +b,则a,b的值可能是多少?23.如图所示,一轮船以16 n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12 n mi1e/h的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距多远?24.如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a ,b ,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)证明勾股定理.25.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC =1 km ,BD =3 km ,CD =3 km 现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20 000元/千米,请你在河CD 边上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用?26.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否回受到噪声的影响?说明理由.如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?参考答案1.8 2.2.4 3.16984.36 cm 2 5.合格 6. 10 7.8 8.22a 9.1.4 10.211.D 12.C 13.C 14.C 15.A 16.A 17.A 18.C 19.B 20.C21.(1)12 (2)2522.a=84,b=8523.2h后24.略25.作点A关于河CD的对称点A',连接A'B交河CD于O点,点O就是水厂的位置,26.24秒。
勾股定理的培优专题
勾股定理的培优专题勾股定理培优专题一、基础知识1.勾股定理的逆定理是:如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形。
2.勾股定理的逆定理和勾股定理的题设和结论相反,被称为互逆命题。
3.如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。
4.能够成为直角三角形三条边长的三个正整数3、4、5 等,称为勾股数。
巩固练:1.如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形,这个定理叫做勾股定理的逆定理。
2.如果两个命题中,第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。
如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 1、2、3 号。
4.若△ABC 中,(b-a)(b+a)=c,则∠B=90°。
5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是直角三角形。
6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以 a-2、a、a+2 为边的三角形的面积为 6(a-1)。
7.写出下列命题的逆命题,并判断逆命题的真假。
1) 两直线平行,同位角相等。
逆命题为:同位角相等,则两直线平行。
真。
2) 若 a>b,则 a>b。
逆命题为:若a≤b,则a≤b。
假。
二、例题和训练考点一:证明三角形是直角三角形例1:已知:如图,在△ABC 中,CD 是 AB 边上的高,且 CD=AD·BD。
求证:△ABC 是直角三角形。
训练:已知:在△ABC 中,∠A、∠B、∠C 的对边分别是 a、b、c,满足a+b+c+3√3=10a+24b+26c。
试判断△ABC 的形状。
例2:如图,在直角△ABC 中,∠B=90°,BD 垂直于AC,且 AD=CD。
(完整版)第三讲勾股定理及其应用培优辅导含答案.doc
(完整版)第三讲勾股定理及其应用培优辅导含答案.doc第1页共14页第三讲勾股定理及其应用培优辅导一、点击一:勾股定理勾股定理:.则 c2=, a2=, b 2 =.勾股数:____、____、____、____、____、____、特殊勾股数:连续的勾股数只有 3 ,4,5 连续的偶数勾股数只有 6, 8, 10 勾股定理的逆定理:.点击二:学会用拼图法验证勾股定理如,利用四个如图 1 所示的直角三角形,拼出如图 2 所示的三个图形并证明.b ca(图 1)图 3图 2证明图 2或3.点击三:在数轴上表示无理数例在数轴上作出表示10 的点.点击四:直角三角形边与面积的关系及应用例已知一直角三角形的斜边长是2,周长是2+ 6,求这个三角形的面积.点击五:勾股定理的应用(1)已知直角三角形的两条边,求第三边;(2)已知直角三角形的一边,求另两条边的关系;(3)用于推导线段平方关系的问题等.二、【精典题型】考点一、已知两边求第三边1.在直角三角形中, 若两直角边的长分别为6,8,则斜边长为__________ ,斜边的高为__________.2.已知直角三角形的两边长为3、2,则另一条边长是________________ .3.已知,如图在ABC中, AB=BC=CA=2cm, AD是边 BC上的高.则① AD的长 _____;②Δ ABC的面积 _________.考点二、利用列方程求线段的长如图,某学校( A 点)与公路(直线L)的距离为300 米,又与公路车站( D 点)的距离为500 米,现要在公路上建一个小商店( C 点),使之与该校A 及车站 D 的距离相等,求商店与车站之间的距离.考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13( 3)8、15、17(4)4、 5、 6,其中能够成直角三角形的有_________________.2.若三角形的三边是 a2+b2,2ab,a 2-b 2(a>b>0), 则这个三角形是 _________________. 3、如图,在我国沿海有一艘不明国际的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距 13 海里的 A、B 两个基地前去拦截,六分钟后同时到达 C 地将其拦截。
数学数学勾股定理的专项培优练习题(及答案
一、选择题1.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .32C .4D .232.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形3.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A .2,24a aB .23,4a aC .233,a a D .233,4a a 4.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( )A .37B .13C .37或者13D .37或者1375.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1696.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2()a b + 的值为( ).A .49B .25C .13D .1 7.下列各组线段能构成直角三角形的一组是( ) A .30,40,60B .7,12,13C .6,8,10D .3,4,6 8.下列四组线段中,可以构成直角三角形的是( ) A .123B .2、3、4C .1、2、3D .4、5、69.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .21510.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )A .3尺B .4.2尺C .5尺D .4尺二、填空题11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.12.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.13.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =3四边形的面积是______.14.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)15.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为_______________.16.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________17.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为_________________.18.四边形ABCD中AB=8,BC=6,∠B=90°,AD=CD=52ABCD的面积是_______.19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为1S,2S,3S,若12315S S S++=,则2S的值是__________.20.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =,点P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处. (1)求BF 的长; (2)求CE 的长.23.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 25.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.26.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________; (2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P是直线AC上的一点,且13CP AC=,连接PE,直接写出PE的长.27.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+;勾为5时,股112(251)2=-,弦113(251)2=+;请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24=弦25=(2)如果勾用n(3n≥,且n为奇数)表示时,请用含有n的式子表示股和弦,则股= ,弦= . (解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.30.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】设OA =a ,OB =b ,OC =c ,OD =d ,根据勾股定理求出a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,即可证得a 2+d 2=18,由此得到答案. 【详解】设OA =a ,OB =b ,OC =c ,OD =d ,由勾股定理得,a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25, 则a 2+b 2+c 2+b 2+c 2+d 2=50, ∴a 2+d 2+2(b 2+c 2)=50, ∴a 2+d 2=50﹣16×2=18,∴AD == 故选:B . 【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.2.B解析:B 【解析】 【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状. 【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64, ∵,c=8, ∴2c =64, ∴22a b +=2c ,∴该三角形是直角三角形, 故选:B. 【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.3.C解析:C 【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D . ∵△ABC 为等边三角形, ∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()22AD AB BD a a a =-=-=∴边长为a 的等边三角形的面积为12×a ×32a =34a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.4.C解析:C 【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论. 【详解】当如图1所示时,AB=2,BC=3,∴AC=2223=13+; 当如图2所示时,AB=1,BC=6,∴221+6=37 故选C .【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.5.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=, 四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.故选:A .【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.6.A解析:A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a 2+b 2=25,四个三角形的面积=4×12ab=25-1=24, ∴2ab=24,联立解得:(a+b )2=25+24=49.故选A. 7.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.8.A解析:A【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A 、12+)2=2∴以1,故本选项正确;B 、22+32≠42 ∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误; C 、12+22≠32 ∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;D 、 42+52≠62 ∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;故选A..【点睛】本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.9.C解析:C【分析】设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244ABx y 【详解】解:设EC=x ,DC=y ,∠ACB=90°,∵D 、E 分别是BC 、AC 的中点,∴AC=2EC=2x ,BC=2DC=2y ,∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,∴2255164965x y ,即2213x y +=,在直角△ABC 中,2244413213ABx y .故选:C .【点睛】 本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE 和直角△ADC 求得22x y +的值是解题的关键.10.B解析:B【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10)x -尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,根据勾股定理得:2224(10)x x +=-.解得: 4.2x =,∴折断处离地面的高度为4.2尺,故选:B .【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.二、填空题11.8【解析】如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于的最小值 作交于,则为所求; 设,,由,,h+5=8,即BM+MN 的最小值是8.点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M 点与N 点的位置是解题的关键.12.32 2n 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=2,求出△ABC 的面积是4;求出113ABB BCB S S ==B 1B 2=4,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2=4,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3=8,B 3B 4,B 4B 5,…,B n ﹣1B n故答案为:32,2n . 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.13.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ∆中求出2CE CD ==12DE ==,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,AE ∴=.在Rt DEC ∆中,30E ∠=︒,CD =2CE CD ∴==12DE ∴=,∴142ABE S ∆=⨯⨯= 1122CDE S ∆=⨯=CDE ABE ABDC S S S ∆∆∴=-=四边形.故答案为:【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.14.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),22+=29(尺).2021答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.15.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222-=-=,CD AC AD13125∵∠D=90°,AB=15,AD=12,∴2222=-=-,15129BD AB AD∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,13125CD AC AD∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,BD AB AD15129∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.16.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB ,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x ,DE=x 即x=2 x=即CD=故答案为:【点睛】 本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE 和直角△CDE ,是解题的关键.17.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.18.49【解析】连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC 22AB BC +10. 在△ADC 中,∵AD =CD =52AD 2+CD 2=(522+(522=100.∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形ABCD =S △ABC +S △ACD =12AB •BC +12AD •DC =12×8×6+12×525224+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.20.23或2或4【分析】根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.【详解】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC 是等边三角形, ∴23CP BC ==;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB , ∵23BC = ∴222213,(23)(3)32AB BC AC BC AB ===-=-=, 在Rt △APB 中,根据勾股定理222AP AB BP +=,即222()AC PC AB PC -+=,即222(3)3)PC PC -+=,解得2PC =,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°, ∴12BP PC = 在Rt △BCP 中,根据勾股定理222BP BC PC +=, 即2221()(23)2PC PC +=,解得PC=4(已舍去负值).综上所述,CP 的长为232或4. 故答案为:32或4.【点睛】本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键. 三、解答题21.(1)BE =1;(2)见解析;(3)(23y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM 3BM ,进而可得BE +CF 3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD 为矩形,∴∠B=90°,且AD=BC=10,又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10,又∵AB=8,在Rt △ABF 中,由勾股定理得:2222BF=AF -AB =10-8=6,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt△CEF中,由勾股定理得:222CF+CE=EF,∴2224+x=(8-x),解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.23.(1)见解析;(2)CD=2AD+BD,理由见解析;(3)CD=3AD+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH2AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD+BD,故答案为:CD+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.24.(1)AE=BD且AE⊥BD;(2)6;(3)PQ为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE⊥BD;(2)∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD , ∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.25.(15132)见解析;(3)23【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.【详解】解:(1)当MN 最长时,225MN AM -,当BN 最长时,2213AM MN +(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,在△ADC 和△BNC 中,AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△BNC (SAS ),∴CD=CN ,∠ACD=∠BCN ,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN ,在△MDC 和△MNC 中,CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MDC ≌△MNC (SAS ),在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN ,∴BN=22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形; (3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上,则23=3333PQ CQ CP =-=, ∴22233PE PQ EQ =+; ②若点P 在线段AC 的延长线上,则253=3333 PQ CQ CP=++=,∴22221 =PE PQ EQ=+;综上,PE的长为23或221.【点睛】本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF的长,二是对点P的位置要分情况进行讨论.27.(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.【解析】【分析】(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE =AF,即可得出结论;(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF =60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF 内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x =3﹣即可.【详解】(1)解:△AEF是等边三角形,理由如下:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=AD,∠B=∠D,∵∠ABC=60°,∴∠BAD=120°,△ABC是等边三角形,∴AC=AB,∵点E是线段CB的中点,∴AE⊥BC,∴∠BAE=30°,∵∠EAF=60°,∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,在△BAE和△DAF中,,∴△BAE≌△DAF(ASA),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;故答案为:等边三角形;(2)证明:连接AC,如图2所示:同(1)得:△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∵∠EAF=60°,∴∠BAE=∠CAF,∵∠BCD=∠BAD=120°,∴∠ACF=60°=∠B,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF;(3)解:同(1)得:△ABC和△ACD是等边三角形,∴AB=AC,∠BAC=∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ABC=60°,∴∠ABE=120°=∠ACF,∵∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF,AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,∴∠AEB=45°,∴∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:则GE =GF ,∠FGH =30°,∴FG =2FH ,GH =FH , ∵∠FCH =∠ACF ﹣∠ACB =60°, ∴∠CFH =30°,∴CF =2CH ,FH =CH , 设CH =x ,则BE =CF =2x ,FH =x ,GE =GF =2FH =2x ,GH =FH =3x , ∵BC =AB =4,∴CE =BC +BE =4+2x ,∴EH =4+x =2x +3x , 解得:x =﹣1, ∴FH =x =3﹣,即点F 到BC 的距离为3﹣.【点睛】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.28.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; 故答案为:1(491)2-;1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; 故答案为:21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;故答案为:m 2-1,m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35;故答案为:10、26;12、35.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.29.(1),CM ME CM EM =⊥;(2)见解析;(3)CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩。
八年级下勾股定理培优试题集锦(含解析)
初二数学勾股定理提高练习与常考难题和培优题压轴题二.填空题(共5小题)11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,着名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA ⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112= + ;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的着作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠A OB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A. B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析二.填空题(共5小题)11.(2016春?高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春?嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春?武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春?黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋?永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC =1,S△DAC=1而S四边形ABCD =S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春?邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春?平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋?新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春?阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,则有BP+BQ=×24=12,设时间为t,列方程得:2t+(8﹣1×t)=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两部分.(10分)【点评】本题重点考查了利用勾股定理解决问题的能力,综合性较强.20.(2014秋?江阴市期中)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为: 3.5 .(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为 3 .(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是110 m2.【分析】(1)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,计算即可得解;(2)根据网格结构和勾股定理作出△DEF,再利用△DEF所在的矩形的面积减去四周三个小直角三角形的面积,计算即可得解;(3)利用同角的余角相等求出∠BAG=∠AEP,然后利用“角角边”证明△ABG和△EAP全等,同理可证△ACG和△FAQ全等,根据全等三角形对应边相等可得EP=AG=FQ;(4)过R作RH⊥PQ于H,设PH=h,在Rt△PRH和Rt△RQH中,利用勾股定理列式表示出PQ,然后解无理方程求出h,从而求出△PQR的面积,再根据六边形被分成的四个三角形的面积相等,总面积等于各部分的面积之和列式计算即可得解.【解答】解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠BAG=∠AEP,在△ABG和△EAP中,,∴△ABG≌△EAP(AAS),同理可证,△ACG≌△FAQ,∴EP=AG=FQ;(4)如图4,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=6,=6﹣,两边平方得,25﹣h2=36﹣12+13﹣h2,整理得,=2,两边平方得,13﹣h2=4,解得h=3,=×6×3=9,∴S△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.【点评】本题考查了勾股定理,构图法求三角形的面积,全等三角形的判定与性质,读懂题目信息,理解构图法的操作方法是解题的关键.21.(2016春?周口期中)(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上 3.5 .思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.【分析】(1)根据矩形的面积公式和三角形的面积公式计算即可;(2)根据勾股定理在网格中画出相应的△ABC,根据矩形的面积公式和三角形的面积公式求出它的面积;(3)根据勾股定理在网格中画出相应的△ABC,根据矩形的面积公式和三角形的面积公式求出它的面积.【解答】解:(1)△ABC的面积=2×4﹣×1×2﹣×1×4﹣×1×3=3.5,故答案为:3.5;(2)如图2,△ABC的面积=3a×4a﹣×3a×2a﹣×a×4a﹣×2a×2a=5a2;(3)如图3,△ABC的面积=4m×4n﹣×m×4n﹣×3m×n﹣×4m×3n=6.5mn.【点评】本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.22.(2015春?罗田县期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答.【解答】解:如图,由题意知AB=3,CD=14﹣1=13,BD=24.过A作AE⊥CD于E.则CE=13﹣3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.23.(2014春?镇原县校级期中)(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).【分析】这三道题主要在勾股定理的基础上结合具体图形的面积公式,运用等式的性质即可得到相同的结论.【解答】解:探究1:由等边三角形的性质知:S′=a2,S″=b2,S=c2,则S′+S″=(a2+b2),因为a2+b2=c2,所以S′+S″=S.探究2:由等腰直角三角形的性质知:S′=a2,S″=b2,S=c2.则S′+S″=(a2+b2),因为a2+b2=c2,所以S′+S″=S.探究3:由圆的面积计算公式知:S′=πa2,S″=πb2,S=πc2.则S′+S″=π(a2+b2),因为a2+b2=c2,所以S′+S″=S.【点评】熟悉各种图形的面积公式,结合勾股定理,运用等式的性质进行变形.24.(2014春?三水区校级期中)如图,在平面坐标系中,点A、点B分别在x 轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.【分析】(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,F为垂足,有CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,列出关于x的方程,求得x=,再在Rt△CEF中,根据勾股定理求得CF=,然后由三角形的面积公式即可求解.【解答】(1)证明:过C点、D点向x轴、y轴作垂线,垂足分别为M、N.∵C(a,b),D(b,﹣a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠COM+∠MOD=90°,∵OC=OD=,∴△COD是等腰直角三角形,∴∠ODC=45°;(2)解:连接DA.在△OCB与△ODA中,,∴△OCB≌△ODA(SAS),∴AD=CB=1,∠OCB=∠ODA.∵OC=OD=2,∴CD=.∵AD2+CD2=1+8=9,AC2=9,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)解:作CF⊥OA,F为垂足,由勾股定理得CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,可得52﹣x2=72﹣(3+x)2,解得x=.在Rt△CEF中,得CF==,∴OF=CF=,∴△OCA的面积===.【点评】本题考查了全等三角形、等腰直角三角形的判定与性质,勾股定理及其逆定理,三角形的面积,有一定难度.准确作出辅助线是解题的关键.25.(2015春?定州市期中)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?【分析】根据题意画出图形,利用勾股定理建立方程,求出x的值即可.【解答】解:画图解决,通过建模把距离转化为线段的长度.由题意得:AB=20,DC=30,BC=50,设EC为x肘尺,BE为(50﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+(50﹣x)2,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50﹣x)2+202,x=20,答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺另解:设:这条鱼出现的地方离比较高的棕榈树的树根肘尺,则这条鱼出现的地方离比较低的棕榈树的树根(50﹣x)肘尺.得方程:x2+302=(50﹣x)2+202可解的:x=20;答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.【点评】本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的。
勾股定理培优训练
勾股定理培优训练一.选择题(共19小题)1.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=3,BC=4,则CD的长为()(1题)(3题)A.2.4B.2.5C.4.8D.52.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.C.5或D.以上都不对3.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以AC 为直角边的直角三角形,则CD的长为()A.,2或3B.3或C.2或D.2或34.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a2﹣b2=c2;②a2:b2:c2=1:3:2;③∠A:∠B:∠C=3:4:5;④∠A=2∠B=2∠C.能判断△ABC是直角三角形的有()A.1个B.2个C.3个D.4个5.已知△ABC三边分别为a、b、c,根据下列条件能判断△ABC为直角三角形的有()①∠A=∠B+∠C;②∠A:∠B:∠C=3:4:5;③a:b:c=3:4:5;④a=n2﹣1,b=2n,c=n2+1.A.1个B.2个C.3个D.4个6.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()(6题)(7题)A.90°B.60°C.45°D.30°7.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.75°8.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+S2+S3+S4的值是()A.3.65B.2.42C.2.44D.2.659.如果一个直角三角形的两条直角边分别为n2﹣1,2n(n>1),那么它的斜边长是()A.2n B.n+1C.n2﹣1D.n2+110.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列示意图中正确的是()A.B.C.D.11.如图,在赵爽弦图中,已知直角三角形的短直角边长为a,长直角边长为b,大正方形的面积为20,小正方形的面积为4,则ab的值是()(11题)(14题)(15题)A.10B.9C.8D.712.下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,613.满足下列条件时,△ABC不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A=20°,∠B=70°C.AB:BC:CA=3:4:5D.14.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,分别以四边形的四条边为边向外作四个正方形,面积依次为S1,S2,S3,S4,下列结论正确的是()A.S3+S4=4(S1+S2)B.S4﹣S1=S3﹣S2C.S1+S4=S2+S3D.S4﹣3S1=S3﹣3S216.如图,小明和小华同时从P处分别向北偏东60°和南偏东30°方向出发,他们的速度分别是3m/s和4m/s,则10s后他们之间的距离为()(16)(17)(18)(19)A.30m B.40m C.50m D.60m17.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=6,BC=3时,则阴影部分的面积为()A.B.C.9πD.918.毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A,B,C,D的边长分别是2,3,1,2,则正方形G的边长是()A.8B.C.D.519.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB =3,AD=4,则ED的长为()A.B.3C.1D.二.填空题(共11小题)20.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要米.(20)(21)21.如图,△ABC中,∠ACB=90°,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC最小值是.22.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在直线BC上找一点P,使得△ABP为以AB为腰的等腰三角形,则PC=.(22)(23)(24)23.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.24.如图,∠B=90°,AB=4cm,BC=3cm,CD=12cm,AD=13cm,则图中此图形的面积是cm2.25.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.(25)(26)(27)26.如图,是一个三级台阶,它的每一级的长、宽,高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是.27.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+2S2+2S3+S4=.28.如图,在梯形ABCD中,AB∥CD,∠ADC+∠BCD=90°,分别以DA、AB、BC为边向梯形外作正方形,其面积分别是S1、S2、S3,且S2=S1+S3,则线段DC与AB存在的等量关系是.(28)(29)29.如图所示的正方形图案是用4个全等的直角三角形拼成的.已知正方形ABCD的面积为25,正方形EFGH的面积为1,若用x、y分别表示直角三角形的两直角边(x>y),下列三个结论:①x2+y2=25;②x﹣y=1;③xy =12;④x+y=40.其中正确的是(填序号).30.如图,正方形网格中,每一小格的边长为2.P、A、B均为格点.(1)AP=;(2)点B到直线AP的距离是;(3)∠APB=;(4)S△APB =.三.解答题(共30小题)31.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.32.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c﹣a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.33.一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.(1)如果梯子的顶端下滑1m,那么梯子的底端也将下滑1m吗?说明你的方法;(2)如果梯子的顶端下滑2m呢?说说你的理由.34.如图所示,在平静的湖面上,有一支红莲,高出水面1m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求水深是多少?35.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,作DE⊥AC于点E.(1)若AD=CD,求∠C的度数.(2)若AB=6,BC=8.①求AE的长度;②求△ACD的面积.36.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.37.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=5千米,BD=15千米,且CD=15千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万.(1)请你在河流CD上设计选择水厂的位置M,使铺设水管的费用最节省(作图).(2)请你求出铺设水管的长及总费用是多少?38.一架梯子AB长25m,如图斜靠在一面墙上,梯子底端B离墙7m.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底端在水平方向也滑动了4m吗?如果不是,梯子的底端在水平方向上滑动了多长的距离呢?39.如图,△ABC中,CE、CF分别是∠ACB及外角∠ACD的平分线,且CE交AB于点E,EF交AC于点M,已知EF∥BC.(1)求证:M为EF中点;(2)若EM=3,求CE²+CF²的值.40.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点.求CD 的长.41.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以PQ为腰的等腰三角形?42.若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.(1)a2+b2+c2+200=12a+16b+20c(2)a3﹣a2b+ab2﹣ac2+bc2﹣b3=0.43.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式当a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6、8、9时,△ABC三角形:当△ABC三边长分别为6、8、11时,△ABC三角形.(2)小明同学根据上述探究.猜想:“当a2+b2>c2时.△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=7、b=24时,最长边c在什么范围内取值时,△ABC是锐角三角形、钝角三角形?44.已知△ABC的三边长分别为a、b、c,且a、b、c满足a2+b+|﹣2|=10a+2﹣24,是判断△ABC的形状.45.在△ABC中,AB=15,AC=13,AD是BC上的高,AD=12,求△ABC的周长和面积.46.如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.47.有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是多少?(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?解:由题意,得AC=cm,AD=cm,所以DB=cm,在Rt△ADB中,由勾股定理,得AB=(cm).48.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是多少?49.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC.(1)求证:OD=OE.(2)若AB=3,BC=4,求AD的长.50.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC 的周长.51.如图,△ABC中,AB=10,BC=9,AC=17,求△ABC的面积.52.如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B ﹣C﹣A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在AB的垂直平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP是以AC为腰的等腰三角形(直接写出结果)?53.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.勾股定理内容为:如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(1)如图2、3、4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;(2)如图5所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.54.如图,在△ABC中,CD⊥AB于点D,BC=15,CD=12,AD=16.(1)求BD的长;(2)求△ABC的面积;(3)判断△ABC的形状.55.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB =10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A 站多少km处?56.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BC=4,BD=2.5.(1)则点D到直线AB的距离为.(2)求线段AC的长.57.(1)如图,作直角边为1的等腰Rt△OA1A2,则其面积S1=;以OA2为一条直角边,1为另一条直角边作Rt △OA2A3,则其面积S2=;以OA2为一条直角边,1为另一条直角边作Rt△OA3A4,则其面积S3=,……则S4=;(2)请用含有n(n是正整数)的等式表示S n,并求+++...+的值.58.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥AB时,点D与点A重合,求证:DE2=AD2+BE2;(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2;(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.59.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B =90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?60.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为2cm/秒,设点P运动的时间为t秒.(1)当△PBC是以BC为斜边的直角三角形时,求t的值;(2)当△PBC为等腰三角形时,求t的值.。
勾股定理培优题
勾股定理一、知识要点1、勾股定理勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史,蕴含着丰富的文化价值,勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理” .勾股定理反映了直角三角形(三边分别为a 、b 、c ,其中c 为斜边)的三边关系,即a 2+b 2=c 2,它的变形式为c 2-a 2=b 2或c 2-b 2=a 2.勾股定理是平面几何中最重要的几何定理之一,在几何图形的计算和论证方面,有着重要的应用,它沟通了形与数,将几何论证转化为代数计算,是一种重要的数学方法. 2、勾股定理的逆定理如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,则这个三角形是以c 为斜边的直角三角形.勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这种方法与前面学过的一些判定方法不同,它是通过代数运算“算”出来的,实际上利用计算证明几何问题在几何里也是很重要的,这是里体现了数学中的重要思想——数形结合思想,突破了利用角与角之间的转化计算直角的方法,建立了通过求边与边的关系来判断直角的新方法,它将数形之间的联系体现得淋漓尽致.因此也有人称勾股定理的逆定理为“数形结合的第一定理”.二、基本知识过关测试1.如果直角三角形的两边为3,4,则第三边a 的值是 .2.如图,图形A 是以直角三角形直角边a 为直径的半圆,阴影S A = .3.如图,有一个圆柱的高等于12cm ,底面半径3cm ,一只蚂蚁要从下底面上B 点处爬至上底与B 点相对的A 点处,所需爬行的最短路程是 .4.如图.在 △ABC 中,CD ⊥AB 于D ,AB =5,CD=BCD =30° ,则AC = . 5.的线段.6.在下列各组数中 ①5,12,13 ;②7,24,25;③32,42,52;④3a ,4a ,5a ;⑤a 2+1,a 2-1,2a (a >1);⑥m 2-n 2,2mn ,m 2+n 2(m >n >0)可作直角三角形三边长的有 组.7.如图,四边形ABCD 中,AB =1,BC =2,CD =2,AD =3,AB ⊥BC ,则四边形ABCD 的面积是 .第2题图 第3题图 第4题图 第7题图8.如图,在正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC =14BC ,试判断△ AEF 的形状.三、综合.提高.创新BADCBADCBAFE DCB A【例1】(1)在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图),折痕DE 的长是多少?(2)如图,在矩形ABCD 中,AB =8,AD =10,按如图所示折叠,使点D 落在BC 上的点E 处,求折痕AF 的长.(3)如图,正三角形ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA +PM 的最大值和最小值分别记作S 和T ,求S 2-T 2的值.【练】如图,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD ′,AD ′与BC 交于E ,若AD =4,DC =3,求BE .【例2】(1)如图,△ABC 中,∠C =60°,AB =70,AC =30,求BC 的长.EDC BAFEDCBAPMCAD 'EDCB A(2)如图,在四边形ABCD 中,AB =2,CD =1,∠A =60°, ∠B =∠D =90°,求四边形ABCD 的面积.【练】如图,△ABC 中,A =150°,AB =2,BCAC 的长.【例3】(1)如图,△ABC 中,AB =AC =20,BC =32,D 为BC 上一点,AD ⊥AB ,求CD .(2)如图,在Rt △ABC 中,∠C =90°,D 、E 分别是BC 、AC 中点,AD =5,BE=,求AB .【例4】如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB =c ,CD =h ,求证:CBADCBACBADCBAEDC BA(1)222111a b h +=; (2)a +b <c +h ;(3)以a +b ,h 和c +h 为边的三角形是直角三角形.【例5】(1)如图,ABCD 为矩形,P 为矩形ABCD 所在平面上一点,求证:PA 2-PB 2=PD 2 -PC 2.(2)锐角△ABC 中,AD ⊥BC 于D ,若∠B =2∠C ,求证:AC 2=AB 2+AB ·BC .变式:如图,AM 是△ABC 的BC 边上的中线,求证:AB 2+AC 2=2(AM 2+BM 2).(3)如图,△ABC 中,AB =AC ,P 为线段BC 上一动点,试猜想AB 2,AP 2, PB ,PC 有何关系,并加以证明.D CBAPDCB ADCBAM BA变式:若点P 在BC 的延长线上,如图,(3)中结论是否仍然成立?并证明.(4)在等腰Rt △ABC 的斜边AB 所在的直线上取点P 并设s =AP 2+BP 2,试探求P 点位置变化时,s 与2CP 2的大小关系,并证明.变式:若点P 在BA 的延长线上,如图中,(4)中结论是否仍然成立?并证明.【例6】(1)如图,△ABC 中,D 为BC 边上的中点,以D 为顶点作∠EDF =90°,DE 、DF 分别交AB 、AC 于E 、F ,且BE 2+FC 2=EF 2,求证:∠BAC =90°.P CB APC APCBACBAFED(2)在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,若∠EAF=45°,试推断BE,CF,EF之间的关系,并证明.AB C变式一:将(2)中△AEF旋转至如图所示,上述结论是否仍然成立?试证明.AE变式二:如图,△AEF中∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,求S△AEF.AG【例7】(1)在△ABC中,∠ACB=90°,AC=BC,P为△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.(2)如图,在四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =CD ,求证BD 2=AB 2+BC 2.【例8】在等腰△ABC 中,AB =AC ,边AB 绕点A 逆时针旋转角度m ,得到线段AD . (1)如图1,若∠BAC =30°,30°<m <80°,连接BD ,请用含m 的式子表示∠DBC ;(2)如图2,若∠BAC =90°,0°<m <360°,射线AD 与直线BC 相交于点E ,是否存在旋转角度m,使AEBE若存在,求出所有符合条件的m 的值;若不存在,请说明理由.【例9】(1)已知点P 在一、三象限的角平分线上,且点P 到点A (3,6)的距离为PA =15,求点P 的坐标;PCBADCBADCB AE DCBA(2)已知直角坐标平面内的△ABC三个顶点的坐标分别为A(-1,4),B(-4,-2),C(2,-2),试判断△ABC的形状;(3的最小值;(4)已知a>0,b>0.自我归纳:四、课后练习1.如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?2.在△ABC 中,A =30°,B =45°,BC =10cm ,求AB ,AC 及△ABC 的面积.3.(1)如图,把长方形沿ABCD 对角线折叠,重合部分为△EBD . 1)求证和:△EBD 为等腰三角形; 2)若AB =2,BC =8,求AE .(2)如图,折叠长方形ABCD 的一边AD ,使点D 落在BC 边上,已知AB =8cm ,CE =4cm ,求AD .4.如图,△ABC 是等腰三角形,∠BAC =90°,AB =AC ,D .E .是BC 上的两点,且∠DAE =45°,若BD =6,EC =8,求DE 的长.MDB A北C 'EDCB AFED CBA5.如图,在等腰三角形中,AB=AC,D是斜边BC的中点,E、F分别为AB,AC边上的点,且DE⊥DF. (1)求证:BE2+CF2=EF2;(2)若BE=12,CF=5,试求△DEF的面积.6.如图,等腰Rt△ABC中,∠A=90°,P为△ABC内一点,PA=1,PB=3,PC,求∠CPA.7.(1)如图1,已知点P是矩形ABCD内一点,求证:PA2+PC2=PB2+PD2. (2)①如果点P移动到矩形的一边或顶点时,如图2,(1)中结论仍成立;C BAEDFC BAEPCB AAB CDP②如果点P移动到矩形ABCD的外部时,如图3,(1)中结论仍成立.请在以上两个结论中任选一个并给出证明.归纳结论:8.如图,△ABC中,AD是BC边的中点,AE是BC边上的高,求证:AB2-AC2=2BC·DE.9.10.试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是否为直角三角形?11.已知a,b,x,y.PDCBAPDCBAED C BA12.如图,Rt△ABC的两直角边AB=4,AC=3,△ABC内有一点P,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,且AB PF+AC PE +BCPD=12,求PD、PE、PF的长.PFED CBA欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
中考数学数学勾股定理的专项培优练习题(及解析
一、选择题1.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c三个正方形的面积之和为()A.11 B.15 C.10 D.222.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(3﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.3小时B.23小时C.223小时D.232小时3.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A.0B.1C3D24.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.25394+B.25392+C.18253+D.253182+5.如图,已知AB是⊙O的弦,AC是⊙O的直径,D为⊙O上一点,过D作⊙O的切线交BA 的延长线于P,且DP⊥BP于P.若PD+PA=6,AB=6,则⊙O的直径AC的长为()A.5B.8C.10D.126.已知,等边三角形ΔABC中,边长为2,则面积为()A.1 B.2 C.2D.37.以下列各组数为边长,不能构成直角三角形的是( )A.3,4,5 B.1,1,2C.8,12,13 D.2、3、58.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.9.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC 是直角三角形B.如果∠A:∠B:∠C=1:2:3,那么△ABC 是直角三角形C.如果 a2:b2:c2=9:16:25,那么△ABC 是直角三角形D.如果 a2=b2﹣c2,那么△ABC 是直角三角形且∠A=90°10.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为()A .3.5B .23C .13D .362二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.13.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.14.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.15.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.16.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.17.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.18.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.19.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.20.如图,在等腰△ABC中,AB=AC,底边BC上的高AD=6cm,腰AC上的高BE=4m,则△ABC的面积为_____cm2.三、解答题21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.22.如图,在矩形ABCD中,AB=8,BC=10,E为CD边上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.(1)求BF的长;(2)求CE的长.23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,24.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.26.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.27.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.30.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a 的面积等于1号的面积加上2号的面积,b 的面积等于2号的面积加上3号的面积,c 的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.【详解】利用勾股定理可得:12a S S S =+ ,23b S S S =+,34c S S S =+∴122334a b c S S S S S S S S S ++=+++++74415=++=故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.2.C解析:C【解析】【分析】过点C 作CD 垂直AB 延长线于D ,根据题意得∠CDB=45°,∠CAD=30°,设BD=x 则CD=BD=x ,x ,由∠CAD=30°可知tan∠CAD=CD AD =3= ,解方程求出BD 的长,从而可知BC 的长,进而求出救援艇到达C 处所用的时间即可.【详解】如图:过点C 作CD 垂直AB 延长线于D ,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x ,救援艇到达C 处所用的时间为t ,∵tan∠CAD=3CD AD =,AD=AB+BD ,=x=20(海里),(海里),∴t=20230=223(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键. 3.D解析:D【分析】先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离.【详解】根据题意可知黑甲壳虫爬行一圈的路线是AA1→A1D1→D1C1→C1C→CB→BA,回到起点.乙甲壳虫爬行一圈的路线是AB→BB1→B1C1→C1D1→D1A1→A1A.因此可以判断两个甲壳虫爬行一圈都是6条棱,因为2017÷6=336…1,所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A1,B.2,故选D.【点睛】此题考查了立体图形的有关知识.注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键.4.A解析:A【解析】分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.详解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,PF=32AP=332.∴在直角△ABF中,AB2=BF2+AF2=(4+332)2+(32)2=25+123.则△ABC的面积是34•AB2=34•(25+12)=9+253.故选A.点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.5.C解析:C【解析】分析:通过切线的性质表示出EC的长度,用相似三角形的性质表示出OE的长度,由已知条件表示出OC的长度即可通过勾股定理求出结果.详解:如图:连接BC,并连接OD交BC于点E:∵DP⊥BP,AC为直径;∴∠DPB=∠PBC=90°.∴PD ∥BC,且PD 为⊙O 的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB 为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6.∴PD=BE=EC.∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x..在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2.所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理. 6.D解析:D【解析】根据题意可画图为:过点A 作AD ⊥BC ,垂足为D ,∵∠B=60°,∴∠BAD=30°,∵AB=2,∴3,∴S △ABC =12BC·AD=1233 故选D. 7.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.2)2+32=52,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.B解析:B【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.9.D解析:D【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】选项A中如果∠A﹣∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC 是直角三角形,选项正确;选项B中如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC 是直角三角形,选项正确;选项C中如果 a2:b2:c2=9:16:25,满足a2+b2=c2,那么△ABC 是直角三角形,选项正确;选项D中如果 a2=b2﹣c2,那么△ABC 是直角三角形且∠B=90°,选项错误;故选D.【点睛】考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.10.B解析:B【分析】如图,作CD⊥AB于点D,由题意可得△ABC是等边三角形,从而可得BD、OD的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=, ∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,13AF ==,6.52AF AE == 故答案为:6.5.12 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=ABC 113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B2B3=38,B3B4=3,B4B5=3,…,B n﹣1B n=3.故答案为:3,3.【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.13.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴222213125CD AC AD=-=-=,∵∠D=90°,AB=15,AD=12,∴222215129BD AB AD=-=-=,∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴222213125CD AC AD-=-=,∵∠ADB=90°,AB=15,AD=12,∴222215129BD AB AD=-=-,∴BC=BD-CD=9+5=14,∴△ABC 的周长=14+15+13=42;综上,△ABC 的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.14.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质. 15.41【解析】作AD′⊥AD ,AD′=AD ,连接CD′,DD ′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得CD′=22DC DD +',∴BD=CD′=41,即BD 2=41.故答案是:41.16.5【解析】试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF ,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.17.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.18.2-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22- 故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.1922+【分析】 依次求出在Rt △OAB 中,OA 1=22;在Rt △OA 1B 1中,OA 2=22OA 1=(22)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】 ∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1OA ,在22Rt OA B ∆中OA 2=2OA 1=(2)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6的周长是=8+2×(2)6=8+2×18=28+.故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.20.【分析】 根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4, ∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)见解析;(2)见解析;(3)【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23, ∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-=,∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒,∴12BE BD ==3DE ===,∴S △BDC =132⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=12S △ADB =122⨯=,∴S 四边形ABCD =S △BDC +S △ADB =;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.22.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】 解:(1)∵四边形ABCD 为矩形,∴∠B=90°,且AD=BC=10,又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10, 又∵AB=8,在Rt △ABF 中,由勾股定理得:,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,∴2224+x =(8-x),解得:x=3,故CE 的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.23.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.24.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.25.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤<当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =2222,3AB BD x AD AB BD x ∴===-=22222(3)(4)224AC AD CD x x x x =+=++=++11432322ABC S BC AD x x ∆=⋅=⨯⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即222444x x x +++=,解得103x =则1020323233ABC S x ∆==⨯= 当2AC AB BC +=时,即222428x x x +++=,解得65x =则612323235ABC S x ∆==⨯= 当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为203或123.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.26.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =,∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°, ∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.27.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用28.(1),CM ME CM EM =⊥;(2)见解析;(3)CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,。
完整版)勾股定理培优专项练习
完整版)勾股定理培优专项练习勾股定理练(根据对称求最小值)基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。
1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。
解:由于AE=1,所以DE=√3.连接BE,设∠EBN=x,则∠EBD=∠ABE-x=60°-x。
由正弦定理得:EN/ sinx = BN/sin(60°-x)。
=。
EN/BN = sinx/sin(60°-x)由于sinx/sin(60°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。
又由于XXX,所以问题转化为:在直线AD上找一点N,使得MN+EB最小。
连接AC,设交点为F,则∠ABF=∠FBD=30°,BF=AB/2=2.由于AF=AD-DF=√3-DF,所以MN+EB=BF+MN+EF=BF+FN。
由于FN=AF-AN=AF-AE=√3-1,所以MN+EB=2+MN+√3-1=MN+3+√3.因此,EN+BN的最小值为3+√3,此时x=30°。
2、已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。
解:连接BE,设∠EBN=x,则∠EBD=∠ABE-x=45°-x。
由正弦定理得:EN/sinx = BN/sin(45°-x)。
=。
EN/BN = sinx/sin(45°-x)由于sinx/sin(45°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。
又由于XXX,所以问题转化为:在对角线AC上找一点N,使得MN+EB最小。
连接BD,设交点为F,则∠ABF=∠FBD=45°,BF=AB/√2=2√2.由于AF=AD-DF=4-DF,所以MN+EB=BF+MN+EF=BF+FN。
第三章 勾股定理培优专题 折叠问题中的勾股定理应用(含解析)
第三章勾股定理培优专题折叠问题中的勾股定理应用(含解析)中小学教育资源及组卷应用平台第三章勾股定理培优专题折叠问题中的勾股定理应用类型1 勾股定理在三角形折叠中的应用1.如图,Rt△ABC 中,AB=9,BC=6,△B=90°,将△ABC折叠,使点A 与BC的中点D重合,折痕为MN,则线段BN 的长为( )C.4D.5第1题图第2题图2.如图,三角形纸片ABC中,△BAC=90°,AB=2,AC=3.沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C 与点D重合,若折痕与AC 的交点为E,则AE 的长是( )3.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE.(1)如果AC=6 cm,AB=10 cm,可求得△ACD的周长为___________cm;(2)如果△CAD:△BAD=1:4,可求得△B 的度数为_____________;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,AB=15 cm,请求出CD的长.类型2 勾股定理在四边形折叠中的应用4.如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F 处,则CE 的长为_____________.第4题图第5题图5.如图,有一张长方形纸片ABCD,AB=8cm,BC=10 cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边. 恰好经过点D,则线段DE的长为_____________cm.6.如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,BE与CD 相交于点F,则AP 的长为____________.7.如图,将长方形纸片ABCD折叠,使点B与点D重合,点A 落在点P处,折痕为EF.(1)试说明:△PDE△△CDF;(2)若CD=4 cm,EF=5cm ,求BC 的长.参考答案1. C 【解析】由折叠知DN=AN=9-BN.因为点D为BC的中点,所以因为△B=90°,所以NB +DB =DN ,即BN +3 =(9-BN) ,解得BN=4.故选C.2. A 【解析】因为沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处,所以AD=AB=2,△B=△ADB.因为折叠纸片,使点C与点D重合,所以CE=DE,△C=△CDE.因为△BAC=90°,所以△B+△C=90°.所以△ADB+△CDE=90°.所以△ADE=90°.所以AD +DE =AE .设AE=x,则CE=DE=3-x.所以2 +(3-x) =x ,解得所以故选A.3.解:操作一:(1)14【解析】在Rt△ABC 中,AC=6 cm,AB=10 cm,根据勾股定理,得BC=8cm .由折叠知AD=BD.所以△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC=6+8=14(cm).(2)40°.操作二:在Rt△ABC中,AC=9 cm,AB=15 cm,根据勾股定理,得BC =AB -AC =15 -9 =144.所以BC=12 cm.由折叠知AE=AC=9 cm.因为AB=15 cm,所以BE=AB-AE=6cm.设CD=x cm,则BD=(12-x) cm,DE=CD=x cm.在Rt△BDE中,根据勾股定理,得DE +BE =BD ,即x +6 =(12-x) .解得x=4.5.所以CD=4.5cm .【解析】设CE=x,则BE=6-x.由折叠性质,知EF=CE=x,DF=CD=AB=10.在Rt△DAF中,AD=6,DF=10,所以AF=8.所以BF=AB-AF=10-8=2.在Rt△BEF中,BE +BF =EF ,即((6-x) +2 =x .解得5.5 【解析】因为将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,所以C'E,所所以所以因为,即DE =4 +(8-DE) ,所以DE=5cm .6. 【解析】因为OD=OE,△D=△E=90°,△DOP=△EOF,所以△DPO△△EFO(ASA).所以PO=FO,EF=DP.所以PE=DF.设AP的长为x,则PE=DF=x,DP=EF=6-x,所以BF=BE-EF=8-(6-x)=2+x,CF=DC-DF=8-x.在Rt△BCF中,.BF =BC +CF ,即(2+x) =6 +(8-x) .所以7.解:(1)因为四边形ABCD是长方形,所以△A=△ADC=△B=△C=90°,AB=CD.由折叠得AB=PD,△A=△P=90°,△B=△PDF=90°,所以PD=CD.因为△PDF=△ADC=90°,所以△PDE=△CDF.在△PDE和△CDF中,所以△PDE△△CDF(ASA).(2)如图,过点E作EG△BC于点G,所以△EGF=90°,EG=CD=4 cm.在Rt△EGF中,由勾股定理,得FG =EF -EG =5 -4 =9,所以FG=3cm.设CF=x cm,则PE=AE=BG=x cm.因为△PDE△△CDF,所以DF=DE=CG=(x+3) cm.在Rt△CDF中,由勾股定理,得DF =CD +CF ,即x +4 =(x+3) ,所以所以所以BC的长为21世纪教育网 精品试卷·第2 页(共2 页)21世纪教育网()。
勾股定理的培优专题
勾股定理培优专题一、本节基础知识1、勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.2、命题与原命题:勾股定理的逆定理的题设和结论恰好与勾股定理的题设和结论相反,我们把像这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
3、逆定理:一般地,如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。
4、勾股数:3、4、5这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。
巩固练习:1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是_________三角形,我们把这个定理叫做勾股定理的_________.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做_________如果把其中一个命题叫做原命题,那么另一个命题叫做它的_________.3.分别以下列四组数为一个三角形的边长:(1)6、8,10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有_________.(填序号)4.若△ABC中,(b-a)(b+a)=c2,则∠B=_________;5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是________三角形.6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为________.7.写出下列命题的逆命题,并判断逆命题的真假.(1)两直线平行,同位角相等.(2)若a>b,则a2>b.二、经典例题、针对训练、延伸训练考点一证明三角形是直角三角形例1、已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.针对训练:1、已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.2(如图) 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC ,求证:∠EFA=90︒.3、如图,已知:在ΔABC 中,∠C=90︒,M 是BC 的中点,MD ⊥AB 于D ,求证:AD 2=AC 2+BD 2.考点二 运用勾股定理的逆定理进行计算 例、如图,等腰△ABC 中,底边BC =20,D 为AB 上一点,CD =16,BD =12,求△ABC 的周长。
2020中考数学 勾股定理培优练习(包含答案)
2020中考数学 勾股定理培优练习(含答案)例1 勾股定理计算(1)在Rt ABC △中,=90C ∠︒,a b c 、、分别代表A B C ∠∠∠、、的对边,则下列式子,不正确的是( ) A .222a b c +=B .222c a b -=C.a =D .222a b c -=【答案】D(2)已知(220x y -+=,如果以x ,y 的长为直角边作一个直角三角形,那么这个直角三角形的斜边长为( )AB .5CD【答案】C(3)已知直角三角形的两直角边长分别为3、4,则第三边长为______________. 【答案】5.(4)已知直角三角形的三边长为6、8、x ,则以x 为边的正方形的面积为______. 【答案】28或100(5)在ABC △中,15AB =,13AC =,高12AD =,则三角形的周长是______. 【答案】32或42例2 知三边长求面积已知钝角三角形的三边为2、3、4,求该三角形的面积.【答案】过点A 作AD BC ⊥于D ,设CD x =,利用勾股定理()22222234AD x x =-=--,解得118x =,AD ==.例3 勾股弦图(1)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示),如果大正方形的面积是49,小正方形的面432ACB积为4,直角三角形的两直角边长分别为a ,b ,那么下列结论:①2249a b +=;②2b a -=;③452ab =;④a b +=中,正确的有 .(填序号)(2)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )A .3B .154 C .5 D .152(3)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是 .【答案】(1)①②③④;(2)C ;(3)76. 例4 勾股定理的逆定理(1)下列各组数中,以它们为边长的线段不能构成直角三角形的是( )A .12B .1,2C .5,12,13D .1(222(13)10250y z z +-+-+=,以x 、y 、z 为三边长的三角形是( ).A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形(3)下面几组数:①7,8,9;②12,9,15;③22211m m -+,,(1m >且是正整数);④2a ,21a +,22a +.其中能组成直角三角形的三边长的是 .【答案】(1)D ;(2)B ;(3)②. 例5 勾股数(1)下列几组数中,为勾股数的是( )A .2453 ,4 ,5 B .3 , 4 ,6 C .5 , 12 , 13 D .0.9 , 1.2 , 1.5【答案】C(2)已知22x m n =-,2y mn =,22z m n =+,请证明x y z 、、是一组勾股数. 【答案】由已知条件可得:222244222x m n m n m n =-=+-(),2224y m n =,222244222z m n m n m n =+=++(),所以2244222244222242x y m n m n m n m n m n z +=+-+=++=(), 即证x y z 、、是一组勾股数.例6(1)如图所示,四边形ABCD 中,AB=20,BC=15,CD=7,DA=24且∠B=90°, 求四边形ABCD 的面积.【答案】连接AC ,勾股定理算出AC=25,面积是234.(2)如图所示的一块四边形土地ADCB ,已知12AD m =,9CD m =,39AB m =,36BC m =,90ADC ∠=︒, 求这块地的面积.【答案】连接AC ,面积是216.例7 勾股树(1)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A B C D ,,,的面积之和为_______cm 2.【答案】49(2)如图,分别以直角三角形ABC三边为直径向外作三个正三角形,其面积分别用1S、2S、3S表示,那么1S、2S、3S之间的数量关系是:.【答案】231S S S+=(3)如图,已知在Rt ABC△中,90ACB∠=︒,10AB=,分别以AC BC、为直经作半圆,面积分别记为12S S、,则12S S+的值等于()A.8πB.16πC.25πD.12.5π【答案】D(4)如图,在平面上依次摆放着七个正方形,已知斜放置的三个正方形的面积从左到右依次是a,b,c,则正放置的四个正方形的面积之和为________(可用a,b,c表示).【答案】a c+例8如图所示的螺旋图形由一系列直角三角形组成,其中ABCD7cm0011223341OA A A A A A A A A ======L ,n S 表示第n 个三角形的面积.(1)请用含有n 的代数式表示n S : ;(2)若一个三角形的面积是 (3)求22222123410S S S S S +++++L 的值.【答案】(1;(2)20;(3)554 .练1 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,,,点都在矩形的边上,则矩形的面积为( )A .B .C .D .【答案】如图,延长交于点,延长交于点, 所以,四边形是正方形,边长,所以,,矩形的面积为.练2 (1)若直角三角形的两边长分别为6cm 和8cm ,则第三边长为____________.【答案】10或(2)如果直角三角形的三边长为10、6、x ,则最短边上的高为____________. 【答案】810或(3)把直角三角形的两直角边同时扩大到原来5倍,则其斜边扩大到原来的_______倍,所得的三角形是_________三角形. 【答案】5,直角. 练3 (1)在下列以线段的长为三边的三角形中,不能构成直角三角形的是( )A .B .C .D .【答案】D(2)已知以a 、b 、c 为三边的三角形是直角三角形,即222a b c +=,0k >,求证:以ka 、kb 、kc 为三边的三角形也是直角三角形.【答案】求证222a b c +=即可.练4 已知,如图,四边形中,,,,,且,求四边形的面积.【答案】连接BD ,勾股定理算出BD=5cm ,△BCD 是直角三角形,所以四边形面积是36.练5 (1)如图,三个正方形围成一个直角三角形,81、225分别为所在正方形的面积,则图中字母所代表的正方形的边长是______.(2)如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为________.(3)如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是________.【答案】(1)12;(2)7;(3)123S S S +=.。
勾股定理专题训练(培优篇)
专题:勾股定理专题分类训练【知识要点】:1.勾股定理:2.勾股定理逆定理:3.勾股数的推算公式① 罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
② 如果k 是大于1的奇数,那么k, 212-k ,212+k 是一组勾股数。
③ 如果k 是大于2的偶数,那么k, 122-⎪⎭⎫ ⎝⎛K ,122+⎪⎭⎫⎝⎛K 是一组勾股数。
④ 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
4.熟悉勾股数可提高计算速度,顺利地判定直角三角形。
简单的勾股数有:3,4, _____; 5,12, _____; 7,_____,25; 8,_____,17; 9,_____,41。
【证明篇】(证法)1以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.(1876年美国总统Garfield 证明)(证法2)(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21.把这四个直角三角形拼成如图所示形状.(证法3)(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L .【应用篇】应用一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________.2.已知直角三角形的两边长为3、2,则另一条边长是________________. 3.在数轴上作出表示17的点.4.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长;②ΔABC 的面积.5(2012,黔东南州,6)如图1,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A 、(2,0)B 、(51,0-)C 、(101,0-)D 、(5,0)c bacb a ABCD EFGHMLK应用二、利用列方程求线段的长1.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?2.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.3(2012山东省荷泽市,16(2),6)(2)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D 、E 两点的坐标.应用三、判别一个三角形是否是直角三角形1、分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)2、15、17(4)4、5、6,其中能够成直角三角形的有ADEBC3、若三角形的三别是a 2+b 2,2ab,a 2-b 2(a>b>0),则这个三角形是 .应用四、立体图形中的最短路径1、小明家住在18层的高楼,一天,他与妈妈去买竹竿。
数学数学勾股定理的专项培优练习题(及答案
一、选择题1.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个2.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )A .2B .2C .3D .43.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =53,CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )A .5B .53C 53D 53 4.在ΔABC 中,211a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案5.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1526.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2) 7.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .48 8.下列命题中,是假命题的是( )A .在△ABC 中,若∠A:∠B:∠C=1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠B=∠C=∠A,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形9.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )A .3尺B .4.2尺C .5尺D .4尺10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )A 33B .4cmC .2cmD .6cm二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________13.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.14.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.15.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.16.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.17.如图,Rt△ABC 中,∠BCA =90°,AB 5AC =2,D 为斜边AB 上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____.18.如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.19.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.20.四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=7EF,则正方形ABCD的面积为_______.三、解答题21.(1)计算:1312248233⎛÷⎝(2)已知a、b、c满足2|2332(30)0a b c-+-=.判断以a、b、c为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.23.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE 的长.24.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.25.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.26.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;,求线段AB (3)过点C作CF⊥DE交AB于点F,若BD:AF=1:22,CD=36的长.27.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形.(2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性质,可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,FD⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可证:△CFD≌△BFE.结论②正确,理由如下:∵△AFD≌△CFE,∴S△AFD=S△CFE,∴S四边形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=12S△ABC,即△ABC的面积等于四边形CDFE的面积的2倍.结论③错误,理由如下:∵△AFD≌△CFE,∴CE=AD ,∴FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.2.B解析:B【分析】过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,由角平分线的性质得到OD=OE=OF ,根据勾股定理求出BC 的长,易得四边形ADFO 为正方形,根据线段间的转化即可得出结果.【详解】解:过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,∵BO,CO 分别为∠ABC ,∠ACB 的平分线,所以OD=OE=OF ,又BO=BO,∴△BDO ≌△BEO,∴BE=BD.同理可得,CE=CF.又四边形ADOE 为矩形,∴四边形ADOE 为正方形.∴AD=AF.∵在Rt △ABC 中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故选:B.【点睛】此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.3.C解析:C【分析】在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,易证△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此点E的轨迹是一条直线,过点C作CH⊥BE,则点H即为使得BE最小时的E点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.【详解】解:在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,∵∠ACB=90°,∠ABC=60°,∴△AB’B是等边三角形,∴∠B’=∠B’AB=60°,AB’=AB,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴点E在直线BE上运动,过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=12BC=52,∴CH22BC BH53.即BE 53.故选C.【点睛】本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB构造成等边三角形,通过全等证出∠ABC 是定值,即点E的运动轨迹是直线是解决此题的关键.4.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc>a 2,再根据(b-c)2≥0,可推导得出b 2 +c 2>a 2,据此进行判断即可得.【详解】∵211a b c =+,∴2b ca bc+ =,∴2bc=a(b+c),∵a、b、c是三角形的三条边,∴b+c>a,∴2bc>a·a,即2bc>a 2,∵(b-c)2≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2≥2bc,∴b 2 +c 2>a 2,∴一定为锐角,故选A.【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.5.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.7.A解析:A【解析】已知△ABC的三边分别为6,10,8,由62+82=102,即可判定△ABC是直角三角形,两直角边是6,8,所以△ABC的面积为12×6×8=24,故选A.8.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC中,若∠B=∠C-∠A,则∠C =∠A+∠B,则△ABC是直角三角形,本选项正确;B. △ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2= a2+c2,则△ABC是直角三角形,本选项正确;C. △ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D. △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.9.B【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10)x -尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,根据勾股定理得:2224(10)x x +=-.解得: 4.2x =,∴折断处离地面的高度为4.2尺,故选:B .【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.10.A解析:A【分析】先根据角平分线的性质可证CD=DE ,从而根据“HL”证明Rt △ACD ≌Rt △AED ,由DE 为AB 中线且DE ⊥AB ,可求AD=BD=3cm ,然后在Rt △BDE 中,根据直角三角形的性质即可求出BE 的长.【详解】∵AD 平分∠BAC 且∠C=90°,DE ⊥AB ,∴CD=DE ,由AD =AD ,所以,Rt △ACD ≌Rt △AED ,所以,AC=AE.∵E 为AB 中点,∴AC=AE=12AB , 所以,∠B=30° .∵DE 为AB 中线且DE ⊥AB ,∴AD=BD=3cm ,∴DE=12BD=32,∴= 故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题二、填空题11.210或213或32 【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即45AE =,145DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即55BE =,55DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 12.1010【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,∴10 ;综上可知,这个等腰三角形的底的长度为1010.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键. 13.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 14.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.15.258 【分析】 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴AC=2222AB +BC =3+4=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA ,∴AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258. 【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△C B A′,∴CE=BC=10,在RT △CB A′中,22BC BA -'22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E为AD延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o ∴∠A"BC=∠DCE,在△A"BC与△DCE中,"={""A CDE CD A BA BC DCE ∠∠=∠=∠∴△A"BC≌△DCE,DE= A"C,在RT△ A"BC中,22"BC BA-22106-∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.1725【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA=90°,DE⊥AC,DF⊥BC,证得四边形CEDF是矩形,连接CD,则CD=EF,当CD⊥AB时,CD最短,即25.25点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.18.5【解析】试题分析:作点B关于AC的对称点F,构建直角三角形,根据最短路径可知:此时PB+PE 的值最小,接下来要求出这个最小值,即求EF的长即可,因此要先求AF的长,证明△ADF≌△CDB,可以解决这个问题,从而得出EF=5,则PB+PE的最小值为5.解:如图,过B作BD⊥AC,垂足为D,并截取DF=BD,连接EF交AC于P,连接PB、AF,则此时PB+PE的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF 22AF AE +2243+,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.19.17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,所以有22217(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM EF ,2,,a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)423;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)⎛÷ ⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.22.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD 5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD =AE ,∠DAE =90°,∴∠D =∠AED =45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.23.(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD 为矩形,∴∠B=90°,且AD=BC=10, 又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10,又∵AB=8,在Rt △ABF 中,由勾股定理得:,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,∴2224+x =(8-x),解得:x=3,故CE 的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.24.(1)2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用. 25.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.26.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.27.(1)见解析;(2)26;(3)33a +3 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出3,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,CM∴∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,EN∵BN=a∴=AD∴+ 【点睛】 本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.28.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; 故答案为:1(491)2-;1(491)2+;(2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; 故答案为:21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;故答案为:m 2-1,m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35;故答案为:10、26;12、35.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.29.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】【分析】(1)如图1中,连接BE .利用全等三角形的性质证明EB=ED ,再利用等角对等边证明EB=EF 即可解决问题.(2)猜想:GF=AG+CF .如图2中,将△CDF 绕点D 旋转90°,得△ADH ,证明△GDH ≌△GDF (SAS )即可解决问题.(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,利用勾股定理构建方程求出x 即可. ②设正方形边长为x ,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE .∵四边形ABCD 是正方形,∴CD=CB ,∠ECD=∠ECB=45°,∵EC=EC ,∴△ECB ≌△ECD (SAS ),∴EB=ED ,∠EBC=∠EDC ,∵∠DEF=∠DCF=90°,。
勾股定理培优班习题
勾股定理培优班习题题型一:利用勾股定理解决实际问题训练1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?训练2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?题型二、与勾股定理有关的图形问题训练3.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____.题型三、关于翻折问题训练4、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.GB训练5、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.若AB=4,BC=6,求△FAC 的周长和面积.题型四、关于最短性问题训练6、如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿张白纸动手操作,你一定会发现其中的奥妙)题型五、关于勾股定理判定三角形形状训练11、已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。
训练12:已知△ABC 的三边a 、b 、c ,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形?你能说明理由吗?题型六、关于旋转中的勾股定理的运用:训练13、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。
勾股定理经典培优题及答案
勾股定理经典培优题类型之一勾股定理的验证1.小明利用如图17-X -1①所示的图形(三个正方形和一个直角三角形)验证勾股定理验证勾股定理,,他的方法如下:过点D 作直线FG ∥AC ,过点E 作直线GH ∥BC ,直线FG 与直线GH 交于点G ,与直线BC 交于点F ,直线GH 与直线AC 交于点H ,如图②所示.请你回答:(1)△ABC 与△BDF ,△DEG ,△EAH 有什么关系?为什么?(2)用含a ,b 的代数式表示正方形CFGH 的面积;(3)你能否根据图形面积之间的关系找到a ,b ,c 之间的数量关系?(4)你能得到什么结论?图17-X -1 2.勾股定理神秘而美妙勾股定理神秘而美妙,,它的证法多样它的证法多样,,其巧妙各有不同其巧妙各有不同,,其中的“面积法”给了小明灵感其中的“面积法”给了小明灵感,,他惊喜地发现他惊喜地发现,,当四个全等的直角三角形如图17-X -2摆放时摆放时,,可以用“面积法”来证明a 2+b 2=c 2.(请你写出证明过程) 图17-X -2 类型之二勾股定理及其应用3.等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为() A .7 B .6 C .5 D .4 4.我国汉代数学家赵爽为了证明勾股定理我国汉代数学家赵爽为了证明勾股定理,,创制了一幅“弦图”创制了一幅“弦图”,,后人称其为“赵爽弦图”.如图17-X -3是由弦图变化得到的是由弦图变化得到的,,它由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1,S 2,S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3=________. 图17-X -3 图17-X -4 5.图17-X -4①是我国古代著名的“赵爽弦图”的示意图①是我国古代著名的“赵爽弦图”的示意图,,它是由四个全等的直角三角形围成的.若AC =12,BC =10,将四个直角三角形中边长为12的直角边分别向外延长一倍的直角边分别向外延长一倍,,得到图②所示的数学“风车”得到图②所示的数学“风车”,,则这个数学“风车”的外围周长是________.6.知识回顾:在学习《二次根式》时知识回顾:在学习《二次根式》时,,我们知道:2+3≠5; 在学习《勾股定理》时在学习《勾股定理》时,,由于2,3,5满足(2)2+(3)2=(5)2,因此以2,3,5为三边长能构成直角三角形.三角形.探索思考:请通过构造图形来说明:a +b ≠a +b (a >0,b >0).(画出图形并进行解释) 7.在△ABC 中,AB =15,AC =20,D 是直线BC 上的一个动点上的一个动点,,连接AD ,如果线段AD 的长度最短是12,请你求△ABC 的面积.的面积.类型之三 勾股定理的逆定理及其应用8.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长分别以每组数据中的三个数为三角形的三边长,,能构成直角三角形的有( ) A .②B .①②.①②C .①③.①③D .②③.②③ 9.如果△ABC 的三边长分别是m 2-1,m 2+1,2m (m >1),那么下列说法中正确的是( ) A .△ABC 是直角三角形是直角三角形,,且斜边长为m 2+1 B .△ABC 是直角三角形是直角三角形,,且斜边长为2m C .△ABC 是直角三角形是直角三角形,,且斜边长为m 2-1 D .△ABC 不是直角三角形不是直角三角形10.若△ABC 的三边长a ,b ,c 满足关系式(a +2b -60)2+|b -18|+c -30=0,则△ABC 是________三角形.类型之四 勾股定理及其逆定理的综合应用图17-X -5 11.如图17-X -5,E 是正方形ABCD 内的一点内的一点,,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =________°. 12.如图17-X -6,在4×3的正方形网格中有从点A 出发的四条线段AB ,AC ,AD ,AE ,它们的另一个端点B ,C ,D ,E 均在格点上(正方形网格的交点).(1)若每个正方形的边长都是1,分别求出AB ,AC ,AD ,AE 的长度(结果可以保留根号);(2)在AB ,AC ,AD ,AE 四条线段中四条线段中,,是否存在三条线段是否存在三条线段,,它们能构成直角三角形?如果存在它们能构成直角三角形?如果存在,,请指出是哪三条线段条线段,,并说明理由.并说明理由.图17-X -6 类型之五 勾股定理在实际生活中的应用图17-X -7 13.如图17-X -7是矗立在高速公路旁水平地面上的交通警示牌是矗立在高速公路旁水平地面上的交通警示牌,,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为________米(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).14.如图17-X -8,A ,B 两地之间有一座山两地之间有一座山,,汽车原来从A 地到B 地需经过C 地沿折线ACB 行驶行驶,,现开通隧道后隧道后,,汽车直接沿直线AB 行驶.已知AC =10千米千米,,∠A =30°,∠B =45°则隧道开通后则隧道开通后,,汽车从A 地到B 地比原来少走多少千米?(结果保留根号) 图17-X -8 。
(版)初中数学培优教材勾股定理专题(附答案全面、)
初中数学勾股定理培优教材初中数学勾股定理培优教材一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解〔1〕直角三角形的两条直角边长分别为a,b,斜边长c,那么以下关于a,b,c的关系不成立的是〔〕A、c2-a2=b2B、c2-b2=a2C、a2-c2=b2D、a2+b2=c22〕在直角三角形中,∠A=90°,那么以下各式中不成立的是〔〕A、BC2-AB2=AC2B、BC2-AC2=AB2C、AB2+AC2=BC2D、AC2+BC2=AB22、应用勾股定理求边长〔3〕在直角三角形ABC中,AB=10cm,BC=8cm,求AC的长.4〕在直角△中,假设两直角边长为a、b,且满足,那么该直角三角形的斜边长为.3、利用勾股定理求面积5〕以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。
〔6〕如图〔1〕,图中的数字代表正方形的面积,那么正方形A的面积为。
〔7〕如图〔2〕,三角形中未知边x与y的长度分别是x=,y=。
8〕在Rt△ABC中,∠C=90°,假设AC=6,BC=8,那么AB的长为〔〕A、6B、8C、10D、12〔9〕在直线l上依次摆放着七个正方形〔如图4所示〕。
斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,那么S1S2S3S4=_____________。
【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。
〔等积法〕拼图法推导一般步骤:拼出图形---找出图形面积的表达式---恒等变形—推出勾股定理。
10〕用四个相同的直角三角形〔直角边为a、b,斜边为c〕按图拼法。
问题:你能用两种方法表示下图的面积吗?比照两种不同的表示方法,你发现了什么?11〕用两个完全相同的直角三角形〔直角边为a、b,斜边为c〕按以下图拼法,论证勾股定理:a2b2c23、运用勾股定理进行计算〔重难点〕12〕如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高?初中数学勾股定理培优教材〔13〕两棵之间的距离为 8m ,两棵树的高度分别为 8m 、 【培优突破】 2m ,一只小鸟从一棵树的树顶飞到另一棵树的树顶, 这1、折叠问题只小鸟至少要飞多少米?〔1〕如图是一张直角三角形的纸片, 两直角边AC=6cm 、 BC=8cm ,现将△ABC 折叠,使点 B 与点A 重合,折痕为 DE ,那么BE 的长为〔〕A 、4cmB 、5cmC 、6cmD 、10cm〔2〕如图,折叠长方形的一边 AD ,使点D 落在BC 边【根底检测】 上的点F 处, AB=8cm ,BC=10cm ,求线段 EC 的值1、在Rt △ABC 中,∠C =90°,假设AB =13,BC =5,那么AC 的长为〔 〕2、Rt △ABC 中,∠C =90°,假设ab 14cm ,c10cm ,那么Rt △ABC 的面积为〔〕A.24cm2B.36cm 2C. 48cm2D.60cm23、假设△ABC 中,∠C=90°,〔1 〕假设a=5,b=12,那么c=; 〔2 〕假设a=6,c=10,那么b=;〔3 〕假设a ∶b=3∶4,c=10,那么a=,b= 。
八年级初二数学 数学勾股定理的专项培优练习题(含答案
八年级初二数学 数学勾股定理的专项培优练习题(含答案一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 2.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( )A .3B .6C .10D .9 3.如图,在Rt ABC ∆中,90, 5 ,3ACB AB cm AC cm ︒∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当∆ABP 为等腰三角形时,t 的值不可能为( )A .5B .8C .254D .2584.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形5.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .46.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539+B .2539+C .18253+D .25318+ 7.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .88.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )A .6B .2C .8D .109.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .143D .14210.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .3二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.13.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___14.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.15.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.16.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°17.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.18.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.19.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE 的长.22.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.23.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)28.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 6m -n ﹣12)2=0.(1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.C解析:C【分析】做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】过点F 做FH AD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,∴ED=BE ,CF=C F ',3BC CD '==∵ED=BE ,DE=AD-AE=9-AE∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE∴()22293AE AE -=+∴AE=4∴DE=5∴9C F BC BF BF '=-=-∴Rt BC F ',3BC '=,9C F BF '=-∴()22293BF BF -+=∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 3.C解析:C【分析】根据ABP △为等腰三角形,分三种情况进行讨论,分别求出BP 的长度,从而求出t 值即可.【详解】在Rt ABC 中,222225316BC AB AC =-=-=,4BC cm ∴=,①如图,当AB BP =时, 5 ,5BP cm t ==;②如图,当AB AP =时,∵AC BP ⊥,∴28 BP BC cm ==,8t =;③如图,当BP AP =时,设AP BP xcm ==,则4,3( )CP x cm AC cm =-=,∵在Rt ACP 中,222AP AC CP =+,∴()22234x x =+-, 解得:258x =, ∴258t =, 综上所述,当ABP △为等腰三角形时,5t =或8t =或258t =. 故选:C .【点睛】本题考查了勾股定理,等腰三角形的性质,注意分类讨论.4.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.5.B解析:B【分析】过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt △ADE 中,22112+=∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE ,又∵AB=AC,∴△BAE ≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴在Rt △BED 中,()22223211BE DE +=+=故选B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.6.A解析:A【解析】分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.详解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,PF=3AP=332.∴在直角△ABF中,AB2=BF2+AF2=(4+332)2+(32)2=25+123.则△ABC的面积是3•AB2=3•(25+12)253故选A.点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.7.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A的面积等于100-64=36;故选:B.【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.8.A解析:A【分析】设CF=x,则AC=x+2,再由已知条件得到AB=6,BC=6+x,再由AB2+AC2=BC2得到62+(x+2)2=(x+4)2,解方程即可.【详解】设CF=x,则AC=x+2,∵正方形ADOF的边长是2,BD=4,△BDO≌△BEO,△CEO≌△CFO,∴BD=BE,CF=CE,AD=AF=2,∴AB=6,BC=6+x,∵∠A=90°,∴AB2+AC2=BC2,∴62+(x+2)2=(x+4)2,解得:x=6,即CF=6,故选:A.【点睛】考查正方形的性质、勾股定理,解题关键是设CF=x,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.9.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴EF=22+=.1414142故选D.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.10.B解析:B【分析】根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴BC=2286+=10,根据翻折的性质可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.设CD=x,则A′D=8-x,根据勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案为:B.【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.二、填空题11.5【详解】解:如图,延长AE交BC于点F,∵点E是CD的中点,∴DE=CE,,∵AB⊥BC,AB⊥AD,∴AD∥BC,∴∠ADE=∠BCE且DE=CE,∠AED=∠CEF,∴△AED≌△FEC(ASA),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,13AF ==,6.52AF AE == 故答案为:6.5.12.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.13.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P =4.B=S Q =9,C=S K ,根据勾股定理,可得A+B=C ,∴C=13.若A=S P =4.C=S Q =9,B=S K ,根据勾股定理,可得A+B=C ,∴B=9-4=5.∴S K 为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.14.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.15.【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y =;当x=9时,x 、y =;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.16.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.17.78. 【解析】∵∠C =90°,AB =5,BC =4,∴AC .∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78.18.9或9【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= , DH EH ∴=,333AD AH DH =-=, 45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒, 230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= .又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键. 19.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.20.【分析】 根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4, ∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt△ABF中,可由勾股定理求出BF的长;(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在Rt△CEF中,可由勾股定理求出CE的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵AFE是由ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在Rt△ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x ,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,CF+CE=EF,在Rt△CEF中,由勾股定理得:222∴2224+x=(8-x),解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.22.(12)见解析;(3)2【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A作AD⊥AB,且AD=BN.只要证明△ADC≌△BNC,推出CD=CN,∠ACD=∠BCN,再证明△MDC≌△MNC,可得MD=MN,由此即可解决问题;(3)过点B作BP⊥AB,使得BP=AM=1,根据题意可得△CPB≌△CMA,△CMN≌△CPN,利用全等性质推出∠BNP=30°,从而得到NB和NP的长,即得BM.【详解】解:(1)当MN最长时,,当BN最长时,(2)证明:如图,过点A作AD⊥AB,且AD=BN,在△ADC和△BNC中,AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△BNC (SAS ),∴CD=CN ,∠ACD=∠BCN ,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN ,在△MDC 和△MNC 中,CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MDC ≌△MNC (SAS ),∴MD=MN在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN ,∴BN=22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,综上,∠A=45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC<90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.24.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC 绕点C 逆时针旋转60°,得到△CBF ,过点F 作FG ⊥AB ,交AB 的延长线于点G ,连接EF ,∴∠CBE=∠CAD ,∠BCF=∠ACD , BF=AD∵AC=BC ,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF ,FG=3BF ∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF ,CE=CE∴△ECF ≌△ECD∴EF=ED在Rt △EFG 中,EF 2=FG 2+EG 2又∵EG=EB+BG∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(3BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆;④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯112223 22=⨯⨯+⨯⨯13=+,故②正确;③在Rt AHB中,由①知:6EH HB==,∴62AH AE EH=+=+,2222225662322AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)∠CBD=20°;(2)AD=164;(3) △BCD 的周长为m+2 【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x2+62=(8-x)2,解得:x= 74,AD=8-74=164;(3)∵△ABC 的面积为m+1,∴12AC•BC=m+1,∴AC•BC=2m+2,∵在Rt△CAB中,CA2+CB2=BA2,∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB,∴CD+DB+BC=m+2.即△BCD的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.28.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵6m-+(n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F (-2,8),作直线EF 交直线AB 于P ,图2∵直线EC 解析式为y =32x -2,直线CF 解析式为y =-23x +203, ∵32×(-23)=-1, ∴直线CE ⊥CF ,∵EC =13CF =13∴EC =CF ,∴△FCE 是等腰直角三角形,∴∠FEC =45°,∵直线FE 解析式为y =-5x -2,由21252y x y x =-+⎧⎨=--⎩解得143643x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为(1464,33-). 【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.29.(1),CM ME CM EM =⊥;(2)见解析;(3)25CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),∴HM =EM ,EF =BH ,∵CD =BC ,∴CE =CH ,∵∠HCE =90°,HM =EM ,∴CM =ME ,CM ⊥EM .(2)如图2,连接BD ,∵四边形ABCD 和四边形EDGF 是正方形,∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点, ∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒,∴CM ME ⊥.(3)如图3中,连接EC ,EM .由(1)(2)可知,△CME是等腰直角三角形,∵22=+=EC26210∴CM=EM=25【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)AB=45;(2)见解析;(3)CD+CF的最小值为47.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE=2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =43,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【详解】(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,在Rt△ABO中,AB=2245+=AO BO(2)如图,过点D作DF⊥AO,∵DE=DO,DF⊥AO,∴EF=FO,∵m=4,∴AO=BO=4,∴∠ABO=∠OAB=45°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》培优专题训练(3)
1.几何模型:条件:如下左图,A 、B 是直线l 同旁的两个定点.
问题:在直线l 上确定一点P ,使PA +PB 的值最小.
方法:作点A 关于直线l 的对称点A ',连接A 'B 交l 于点P ,则PA +PB =A 'B 的值最小(不必证明).
模型应用:⑴如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连接BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连接ED 交AC 于P ,则PB +PE 的最小值是__________;
(2)如图2,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值.
2.[问题背景]如图1所示,在△ABC 中,AB =BC ,∠ABC =90°,点D 为直线BC 上的一个动点(不与B 、C 重合),连结AD ,将线段AD 绕点D 按顺时针方向旋转90°,使点A 旋转到点E ,连结EC .
[问题初探]如果点D 在线段BC 上运动,通过观察、交流,小明形成了以下的解题思路:过点E 作EF ⊥BC 交直线
BC 于F ,如图2所示,通过证明△DEF ≌△ ,可推证△CEF 是 三角形,从而求得∠DCE = °.
[继续探究]如果点D 在线段CB 的延长线上运动,如图3所示,求出∠DCE 的度数. [拓展延伸]连接BE ,当点D 在直线BC 上运动时,若AB =,请直接写出BE 的最小值.
A ’ A P B
l
B
D C
A
P
E 图1
O
A
Q P
B R
图2
O
A
Q
P
B R
P 1 P
A
B
C
D
E
F
C
3.一道结论性探索题的类比延伸:通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。
下面是一个案例,请补充完整。
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,45
EAF
∠=︒,连接EF,
则EF BE DF
=+,试说明理由。
(1)思路梳理
∵AB CD
=,
∴把ABE
∆绕点A逆时针旋转90︒至ADG
∆,可使AB与AD重合。
∵90
ADC B
∠=∠=︒;∴180
FDG
∠=︒,点F、D、G共线。
根据,易证AFG
∆≌AFE
∆,得EF BE DF
=+。
(2)类比引申
如图2,四边形ABCD中,AB AD
=,90
BAD
∠=︒,点E、F分别在边BC、CD上,
45
EAF
∠=︒。
若B
∠、D
∠都不是直角,则当B
∠与D
∠满足关系时,
仍有EF BE DF
=+。
(3)联想拓展
如图3,在ABC
∆中,90
BAC
∠=︒,AB AC
=,点D、E均在边BC上,且45
DAE
∠=︒。
猜想BD、DE、EC应满足的等量关系,并写出推理过程。
4.如图,P是等边三角形ABC内的一点,连结PA PB PC
,,,以BP为边作
60
PBQ
∠=,且BQ BP
=,连结CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.
(2)若::3:4:5
PA PB PC=,连结PQ,试判断PQC
△的形状,并说明理由.
5.如图,▵ABC中,∠ACB=90∘,AB=10cm,BC=6cm,若点P从点A出发,以每秒4 cm的速度沿折线A−C−B−A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
(2)若点P恰好在∠BAC的角平分线上,求t的值;
(3)在运动过程中,当▵BCP为等腰三角形时,请直接写出t的值.
6.在△ABC中,AB=12,AC=BC=10,将△ABC绕点A按顺时针方向旋转60°,得到△ADE,点B的对应点为点D,点C 的对应点为点E,连接BD、BE,延长BE交AD于点F.
(1)求证:△ABD是等边三角形;(2)求证:BF⊥AD,AF=DF;(3)求线段BE的长.
Q
C
P
A
B
7.如图,在△ABC 中,已知∠ABC =45°,过点C 作CD ⊥AB 于点D ,过点B 作BM ⊥AC 于点M ,CD 与BM 相交于点E ,且点E 是CD 的中点,连接MD ,过点D 作DN ⊥MD ,交BM 于点N . (1)求证:△DBN ≌△DCM ;
(2)请探究线段NE 、ME 、CM 之间的数量关系,并证明你的结论.
8、阅读下面材料,并解决问题:
(1)如图(1),等边△ABC 内有一点P 若点P 到顶点A ,B ,C 的距离分别为3,4,5则∠APB =__________,由于PA ,
PB 不在一个三角形中,为了解决本题我们可以将△ABP 绕顶点A 旋转到△ACP ′处,此时△ACP ′≌__________
这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB 的度数.
图(1)
(2) 请你利用第(1)题的解答思想方法,解答下面问题:已知如图(11),△ABC 中,∠CAB =90°,AB =AC ,E 、F 为BC 上的点且∠EAF =45°,求证:EF 2=BE 2+FC 2 .
C
A
P
P '
F C
B
A
E N
M
B
C
D
E
A
9.恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷和世界级自然保护区星斗山位于笔直的沪渝高速公路同侧,、到直线的距离分别为和,要在沪渝高速公路旁修建一服务区,向、两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(与直线垂直,垂足为),到、的距离之和,图(2)是方案二的示意图(点关于直线的对称点是,连接交直线于点),到、的距离之和. (1)求、,并比较它们的大小; (2)请你说明的值为最小;
(3)拟建的恩施到张家界高速公路与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,到直线的距离为,请你在旁和旁各修建一服务区、,使、、、组成的四边形的周长最小.并求出这个最小值.
10.在平面直角坐标系中,点A 的坐标为(﹣6,6),以A 为顶点的∠BAC 的两边始终与x 轴交于B 、C 两点(B 在C 左面),且∠BAC =45°.
(1)如图1,连接OA ,当AB =AC 时,试说明:OA =OB .
(2)过点A 作AD ⊥x 轴,垂足为D ,当DC =2时,将∠BAC 沿AC 所在直线翻折,翻折后边AB 交y 轴于点M ,求点M 的坐标.
()A ()B X 50km AB A =,B X 10km 40km P A B AP X P P A B 1S PA PB =+A X A 'BA 'X P P A B 2S PA PB =+1S 2S 2S PA PB =+Y B Y 30km X Y P Q P A B Q
B
A P
X
图(1)
Y
X
B
A Q
P O
图(3)
B
A P X
图(2)
11.长方形ABCD 中,6AB =,8AD =,点E 为边AD 上一点,将ABE △沿BE 折叠后得到BEF △. (1)如图1,若点E 为AD 的中点,延长BF 交边CD 于点G . ①求证: DG FG =. ②求FG 的长度.
(2)如图2,若点E 为边AD 的一动点,连接FD ,DEF △能否为直角三角形?若能,求出AE 的值,若不能,请说明理由.
图2
A B
D
C E
F 备用图
C
D
B
A 图1
G E F D A B
C
备用图
C
D
B
A。