搅拌站基础计算

搅拌站基础计算
搅拌站基础计算

目录

肇花三标东岸搅拌站基础设计及验算 .......................................... 错误!未定义书签。

1.筒仓基础设计及验算 ........................................................... 错误!未定义书签。

抗拔及承压工况计算 ...................................................... 错误!未定义书签。

钢管桩入土深度计算 ...................................................... 错误!未定义书签。

2.主机架基础设计及验算 ....................................................... 错误!未定义书签。

3.送料系统基础设计及验算 ................................................... 错误!未定义书签。

4.操作室基础设计及验算 ....................................................... 错误!未定义书签。

5.配料系统基础设计及验算 ................................................... 错误!未定义书签。

搅拌站基础设计及验算

**项目部拟采用HZS100和HZS75搅拌站各一台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。

搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,筒仓考虑风荷载并根据地质条件使用钢管桩增强抗拔。其他基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,地基承载力取90kPa。

1.筒仓基础设计及验算

根据肇花项目东岸搅拌站选址地质情况,筒仓基础拟采用钢管桩配上混凝土承台作为承载基础。

图筒仓基础结构

混凝土扩大基础拟采用□××的混凝土结构。钢管桩拟采用直径Ф630mm,壁厚为6mm。

将混凝土如图均分4份,根据北江特大桥勘探资料,表面土层为素填土,允许承载力为90kPa。

抗拔及承压工况计算

根据实际工作分析,抗拔最大工况为风荷载最大且筒仓空载:

如图所示,风荷载作用位置H=15m ,风级按12级风,风压p 取:

kN kPa F 21.54)]8.03(35.0123[3.1=+??+??=;

风荷载产生弯矩:m kN FH M ?=?==15.8131521.54;

另外,考虑m e 1.0=偏心,其中筒仓空载载荷载取kN g m k 200=,kN g m m 1400=,则:m kN kN m M ek ?=?=202001.0,m kN kN m M em ?=?=14014001.0

对钢管桩产生附加荷载F ?的计算:

0='++=∑M M

M M e

,Fd M ?=';

风向平行钢管所在正方形的边长和对角线时,力偶臂分别为:m d 95.11=和

m d 76.22=。

故,kN m

m

kN d M M d M F e 6.21395.1215.83322111=??=+='=

?; kN m

m kN d M M d M F e 9.30176.215.833222=?=+='=

?; 所以,钢管桩承载力:

每份混凝土质量:kN vg g m t 8.39105.075.175.16.2=????==ρ

kN g m R m 7.6919.3018.394max =++=

,kN g

m R k 1.2128.394

9.301min =--=(方向向上)。

图 筒仓风荷载

每份混凝土承压:kN A R h 6.2759075.175.1=??==σ

所以,钢管桩承压:kN R R R h y 55.4056.27515.681max =-=-=

钢管桩抗拔荷载不小于于,承压荷载不小于,故考虑入土深度按满足承压要求计算。

钢管桩入土深度计算

图 XX#地质图

根据地理位置,选择XX#墩位置作为地质参考。

表 XX#地层相关数据

根据《港口工程灌注桩设计与施工规程》(JTJ--2001),钢管桩的入土深度可按下下式计算:

()max /i fi R R P U L q q A γ=+∑

其中:max P ---单桩极限承载力(kN ); U ---钢管桩截面周长(m );

fi q ---第i 层土的极限侧摩阻力标准值(kPa );

i L ---钢管桩穿过第i 层土的确长度(m ); R q ---

单桩极限端阻力标准值(kPa );

A ---桩身截面面积(m 2);

R γ---单桩垂直承载力分项系数,一般取~。有试桩资料时取 ,无试桩资料时取。

其中,kPa q R 0=,端阻力不考虑计算。

由表计算根据kN R R 2.66965.155.405max =?=γ可知,钢管桩深度在第三层土层中,深度范围m L m 7.147.6<<。

由条件:

()max 2211max /)(63.0/R A q q L q L A q q L U P R R f f R R fi i =++=+=∑γπγ 22

2

max L Dq N R L f R +-=

πγ

m L 10]69.9[7.625

14.363.03

.5212.669==+??-=

钢管桩承台配筋设计与验算

图 筒仓基础结构受力图

如图所示,在筒仓满载且风荷载和偏向产生的弯矩方向垂直对角线时,承台弯矩最大。以钢管桩阵列的几何中心分析,风向和偏心方向沿1-4对角线方向。

由条件得:

kN g

m R m 1.489.3014

1=-=

kN g m R R m 35041400

432====

kN g

m R m 9.6519.3014

4=+=

可以看出,3-4方向和2-3方向弯矩最大,根据

54.09

.6513504342===R R R R ,m l l 95.14342==--推出集中荷载距离两支点的距离a 和b 分别为;m a 68.054.0195.154.0=+?=

,m b 27.154

.0195

.11=+?=

故,m kN b a R R ab b a abF M ?=+??=++=+=

72.44395

.1)

9.651350(27.168.0)(42(偏保守,混凝土自重不考虑)

设计保护层厚度为5cm ,采用二级钢筋Ф16mm 钢筋则:

扩大基础的砼强度为C25,砼的轴心抗压强度设计值2/9.11mm N R a =,砼的轴心抗拉强度设计值2/27.1mm N R t =。

主筋采用HRB335钢筋,2/300mm N R g =(普通钢筋的抗拉强度设计值)。 箍筋采用HRB335钢筋,2/300mm N R g =(普通钢筋的抗拉强度设计值)。

正截面强度设计

计算时b=,h= 1) 承台受力筋配筋

假设钢筋保护层为5cm ,则结构有效高度m 45.00.05-5.0h h 0==-=a 由 ??? ?

?

-=

≤2x h bx R M M 0c a

u j γ 得:)x 2

x

-m 45.0m 75.11.25N/m 109.1143.72kN 426(???=

?m 解得:0053.09.02=+-x x ,

m h m a ac b b x b 252.045.056.00633.02

053

.049.09.024022=?=<=?--=---=ξ

于是得:

20min 281.1145.075.1%15.094.43300

0633

.075.19.11cm A cm f bx f A sd cd s =??=>=??==

μ 以14Φ20@13布置,2s cm 99.43A =,配筋率为%559.045

.05.399

.43=?=μ。

全截面配筋布置。 抗剪强度设计

正截面抗剪:

砼提供抗剪KN 8.1149KN 75.3038A Q 1>==τ 满足抗剪要求! 斜截面抗剪: 箍筋配筋率:%214.015

1252.0096

2bS a n k k k k =??==

μ 箍筋和砼能承受的剪力为:

()

KN KN 8.114919.2485R R p 20349bh

.0Q gk k 0

2>=+=μ

满足斜截面抗剪要求!

2.主机架基础设计及验算

根据厂家图纸,主机架每支腿荷载120kN ,由于结构宽矮且重量相对较小,故不考虑风荷载和偏心的影响。

两种搅拌站扩大基础尺寸均为□1m ×1m ×,其中入土深度。 承载力1204.611.126190max <=?-?=-=mg A R σ,故不满足要求! 由条件:m hg R a a hg a R 4.11

.12690120

22=?-=-=

?=+ρσσρ,取尺寸为。

3.送料系统基础设计及验算

根据厂家图纸,送料系统每支腿荷载50kN ,由于结构宽矮且重量相对较小,故不考虑风荷载和偏心的影响。

两种搅拌站扩大基础尺寸均为□××,其中入土深度。

承载力5025.195.0265.09032max <=?-?=-=mg A R σ,故不满足要求! 由条件:m hg R a a hg a R 1]8.0[5

.0269050

22==?-=-=?=+ρσσρ,取尺寸为

1 m 。

4.操作室基础设计及验算

根据厂家图纸,操作室每支腿荷载10kN ,由于结构宽矮且重量相对较小,故不考虑风荷载和偏心的影响。

两种搅拌站扩大基础尺寸均设计为□××,其中入土深度。

承载力1025.195.0265.09032max >=?-?=-=mg A R σ,故满足要求!

5.配料系统基础设计及验算

根据厂家图纸,配料系统每支腿荷载分120kN (普通)和150kN (15方料斗),计

算取150kN 。由于结构宽矮且重量相对较小,故不考虑风荷载和偏心的影响。

两种搅拌站扩大基础尺寸均为□1m ×1m ×,其中入土深度。 承载力1204.611.126190max <=?-?=-=mg A R σ,故不满足要求! 由条件:m hg R a a hg a R 6.1]56.1[1

.12690150

22==?-=-=?=+ρσσρ,取尺寸

为。

混凝土搅拌站财务处理流程

商品混凝土公司(搅拌站)财务处理流程 商品混凝土公司,也称为混凝土搅拌站行业,拌站总体来说属于产品生产。 有关成本核算的会计科目主要有: 1、生产成本; 2、原材料; 3、固定资产折旧; 4、应付职工薪酬等。 会计核算基本过程: 1、购入水泥、沙子、石子、矿粉、粉煤灰、外加剂(防冻剂、防水剂、缩水剂等) 借:原材料—水泥、沙子、石子、矿粉、粉煤灰、外加剂(防冻剂、防水剂、缩水剂等)(税务处理省略) 贷:银行存款、应付账款 2、生产领用原材料 借:生产成本—基本生产成本-材料费 贷:原材料 3、生产工人工资 借:生产成本—基本生产成本-人工费 贷:应付职工薪酬 4、生产设备折旧

借:生产成本—基本生产成本-机械费 贷:累计折旧 5、化验室费用 借:生产成本—辅助生产成本-间接费 贷:制造费用 6、生产使用的电力、柴油等 借:生产成本—辅助生产成本-间接费 贷:制造费用 7、销售商品砼 借:应收账款、银行存款 贷:主营业务收入(税务处理省略) 借:主营业务成本 贷:生产成本(因商品砼直接运输给客户,不用再有入库的核算) 8、企业如有砼运输(包括垂直运输)可将运输费用加在生产成本中。

经营混泥土搅拌站在纳税上属于缴纳什么税种?帐务该怎样处理?(以下内容仅供参考:经营混泥土搅拌站属于什么税种?) 一、涉及的税种:增值税(或营业税)、城建税、教育费附加、印花税、个人所得税、房产税、土地使用税、所得税等。(注:如果你单位经营范围属于生产、加工、销售混泥土,征收“增值税”) 二、账务处理 1、生产混泥土的账务处理 (1)购进材料时 借:原材料 应交税金--增值税(进项税额) 贷:银行存款等 (2)生产混泥土发生的材料费、人工费等 借:生产成本 贷:原材料、应付工资等 (3)生产完工时 借:产成品 贷:生产成本 (4)销售混泥土时

10万吨沥青混凝土搅拌站建设项目建议书

皋兰县九合镇沥青加工厂建设项目 项 目 建 议 书 甘肃恒源交通设施有限公司 二〇一二年三月

目录 第一章项目基本概况 (3) 1.1项目名称及承办单位 (3) 1.2项目建设地点 (3) 1.3项目建设规模及建设年限 (3) 1.4项目投资概算 (3) 1.5项目经济效益 (3) 第二章项目建设背景 (4) 2.1项目的提出 (4) 2.2项目建设的必要性 (5) 2.3项目建设的可行 (5) 第三章市场预测 (6) 3.1产品市场供应现状 (6) 3.2产品市场需求预测 (6) 3.3产品目标的确定 (6) 第四章项目建设条件 (7) 4.1交通运输条件 (7) 4.2选址与环保关系 (7) 4.3主要原材料的供应 (7) 4.4水电供应条件 (7) 4.5用地条件 (7) 第五章技术方案、设备方案和工程方案 (8) 5.1技术方案 (8) 5.2设备方案 (9) 5.3工程方案 (11) 第六章环境影响评价 (13) 6.1场址环境条件 (13) 6.2项目建设和生产对环境影响 (13) 6.3环境保护措施方案 (14)

6.4环境影响评价 (15) 第七章组织机构和人力资源配置 (16) 7.1项目法人组建方案 (16) 7.2管理机构组建方案和体系图 (16) 7.3人力资源配置 (16) 第八章项目实施进度 (17) 8.1实施进度要求和注意问题 (17) 8.2工程建设进度 (17) 第九章劳动安全 (18) 9.1劳动安全及灾害防护措施 (18) 9.2劳动安全卫生管理机构 (19) 第十章投资估算及资金筹措 (20) 10.1建设投资估算 (20) 10.2流动资金估算 (20) 10.3总投资及资金筹措 (20) 第十一章经济效益和社会效益分析 (21) 11.1经济效益分析 (21) 11.2社会效益分析 (23) 第十二章结论 (24)

柱下钢筋混凝土独立基础的设计

柱网布置图(水平间距4500,竖向8000,3000,8000) 设计主要内容——确定基础埋置深度;确定地基承载力特征值;确定基础底面尺 寸;确定基础的高度;基础底板配筋计算;绘制施工图(平面布置图、详图) 1、设计资料 (1)地质资料 该地区地势平坦,无相邻建筑物,经地质勘察:持力层为粘性土,土的天然 重度为18kN/m 3,地基承载力特征值ak f =230kN/m 2 ,地下水位在-7.5m 处,无侵 蚀性。 (2)、荷载资料 柱截面尺寸为350mm ×500mm ,在基础顶面处的相应于荷载效应标准组合,由上部结构传来轴心荷载为N=680kN ,弯矩值为M=80kN ·m ,水平荷载为10kN 。(3)、材料选用

混凝土:采用C20(可以调整) 钢筋:采用HPB235(可以调整) 2、计算书要求 计算书包括封面(见统一格式)、正文,要求书写工整、数字准确、图文并茂。 3、制图要求: 完成2张图:1张基础平面布置图,1张详图(包括基础平面图和剖面图)。建议图纸采用A3幅面,手工或CAD 绘制均可,表达要清楚,施工图(图纸折叠成A4大小)要求所有图线、图例尺寸和标注方法均应符合新的制图标准,图纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。 三.课程设计报告内容 1)确定基础埋置深 根据GB50007-2002规定,初步将该独立基础设计成阶梯形,取基础埋置深度d=1.5m ,室内外高差300mm 。基础高度为h =650mm ,基础分二级,从下至上分350mm,250mm 两个台阶;h 0=610mm (40mm 厚的垫层),h 1=350,h 01=310mm ;a 1=1200mm ,b 1=800mm 。 2)确定地基承载力特征值a f 查表得b η=0; d η=1.0所以: a f =ak f + b ηγ(b-3)+d ηγm (d -0.5) =230+0+1.0×18×1.0kN ∕m 2=248 kN ∕m 2 3)确定基础底面面积 计算基础和回填土重G k 时的基础埋深d = 2 1 ?(1.5+1.3)m=1.35m A 0= d f F G a k γ-=35 .120248680 ?-m 2=3.08 m 2 由于偏心不大,基础底面面积按20%增大,即: A=1.2 A 0=1.2?3.08 m 2=3.69 m 2 初步选择基础底面面积A=l b =2.4?1.6=3.84 m 2,且b=1.6m ﹤3m 不需要再对f a

搅拌站基础计算书

拌合站基础计算书 第2混凝土拌合站,配备HZS120拌和机两套,每套搅拌楼设有6个储料罐,单个罐在装满材料时均按照150吨计算。对应新建线路里程桩号DK224+700。经过现场开挖检查,在地表往下0.5~3米均为粉质砂土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.55 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6v2 W —风荷载强度Pa,W=V2/1600 v—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑

根据厂家提供的拌和站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为7.75m圆的1/4的范围,宽6.25m,基础浇注厚度为0.6m。基底处理方式为:压路机碾压两遍,填筑30cm山皮石并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为1.5米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=1500KN,水泥罐整体基础受力面积为78m2,基础浇注C25混凝土,自重P’=1170KN,承载力计算示意见下图: P=9000KN 0.6m 基础 6.25m 粉质砂土

年产40万方混凝土搅拌站项目实施建议书

第一章项目基本概况 1.1项目名称及承办单位 1.1.1项目名称:年产40万方混凝土搅拌站项目 1.1.2项目承办单位:XX市XX建材1.2项目建设地点 1.2项目建设地点 XX区XX镇XX村界牌 1.3项目建设容及建设年限 1.3.1项目建设容:在XX区XX镇XX村界牌计划征地20亩,建设年产40万方混凝土生产线,生产实验室、办公楼等。 1.3.2项目建设年限:自2011年11月至2012年7月,建设期限为9个月。 1.4项目投资概算 项目总投资3300万元。其中:土建工程费用805万元,设备费用1788.5万元;其它费用389万元;流动资金317.5万元。 1.5经济效益 项目建成后,年销售收入12440万元;税后年利润748.37万元(正常年份)。有较好的经济效益。项目建设资金来源:项目总资金3300万元全部由企业自筹解决。 第二章项目建设背景 2.1 项目的提出 近十余年来,我国公路建设迅速发展,到2008年底,全国等级公路里程253.54万公里,比上年末增加25.25万公里,各等级公路里程分别为:高速公路5.39万公里,一级公路5.01万公里,二级公路27.64万公里,三级公路36.39万公里,四级公路179.10万公里,分别比2007年末增加0.86万公里、0.48万公里、1.37万公里、0.92万公里、21.62万公里和减少12.58万公里。沥青混凝土公路占75%以上。

随着我国交通事业建设的发展,混凝土路面由于具有表面平整、行车舒适、耐磨、环保降噪、施工周期短、养护维修简便、可回收再生等特点,越来越多地应用到高等级公路建设中。目前大部分道路建设都采用混凝土路面,对混凝土的需求量也越来越大。 城市道路建设规模与档次的提升,而现有供应商提供的混凝土搅拌站的操作工艺和设备效率较低、污染严重已成为混凝土道路工程建设的“瓶颈”,对建设大型环保型混凝土搅拌站已经开始形成现实的需求。 同时随着对高性能的混凝土进行研发,对混凝土的环保回收技术也日臻完善,水泥混凝土道路建设在我国公路建设中已成为主流。 2.2项目建设的必要性 XX市的商业混凝土用量由上个世纪九十年代最初每年2-3万方发展到现在的最近每年50万方左右,其数量上、质量上有了很大的发展、提高,未来几年,随着省承接产业转移示区的加速建设、XX、宁国及周边县市的大开发大建设,特别是合福高速XX段的建设,就为建设一流混凝土道路提供了条件,这种来自市场的需求为本项目的实施提供了有利的客观条件。 目前宁国市有3家小型混凝土搅拌站,周边的地区也无大型混凝土搅拌站,由于对混凝土生产加工过程中对设备选择、加工工艺、环保及安全管理方面相对较高,小型搅拌站无法达到这些要求,同时上述因素客观上对搅拌站与施工现场的距离提出了较高的要求,从供应布局上来看,XX市现有的搅拌站也无法满足市场的需要。 2.3项目建设可行性 项目承办单位朱希兵私营企业是一家具有多年水泥混凝土生产经验的企业,根据标准化要求组织生产,并加强检查监督,产品得到市场广泛认可和好评,积累了丰富的市场资源。公司将在今后的创业中推行标准化生产,按照国家标准,在生产和运输等方面都将制定一

搅拌站基础计算

搅拌站基础计算

目录 肇花三标东岸搅拌站基础设计及验算 (2) 1.筒仓基础设计及验算 (2) 1.1抗拔及承压工况计算 (3) 1.2钢管桩入土深度计算 (4) 2.主机架基础设计及验算 (8) 3.送料系统基础设计及验算 (8) 4.操作室基础设计及验算 (9) 5.配料系统基础设计及验算 (9)

搅拌站基础设计及验算 **项目部拟采用HZS100和HZS75搅拌站各一台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。 搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,筒仓考虑风荷载并根据地质条件使用钢管桩增强抗拔。其他基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,地基承载力取90kPa。 1.筒仓基础设计及验算 根据肇花项目东岸搅拌站选址地质情况,筒仓基础拟采用钢管桩配上混凝土承台作为承载基础。 图1.1 筒仓基础结构 混凝土扩大基础拟采用□3.5m×3.5m×0.5m的混凝土结构。钢管桩拟采用直径Ф630mm,壁厚为6mm。 将混凝土如图均分4份,根据北江特大桥勘探资料,表面土层为素填土,允许承载力为90kPa。

1.1抗拔及承压工况计算 根据实际工作分析,抗拔最大工况为风荷载最大且筒仓空载: 如图所示,风荷载作用位置H=15m ,风级按12级风,风压p 取1.3kPa : kN kPa F 21.54)]8.03(35.0123[3.1=+??+??=; 风荷载产生弯矩:m kN FH M ?=?==15.8131521.54; 另外,考虑m e 1.0=偏心,其中筒仓空载载荷载取kN g m k 200=,kN g m m 1400=,则:m kN kN m M ek ?=?=202001.0,m kN kN m M em ?=?=14014001.0 对钢管桩产生附加荷载F ?的计算: 0='++=∑M M M M e ,Fd M ?='; 风向平行钢管所在正方形的边长和对角线时,力偶臂分别为:m d 95.11=和 m d 76.22=。 故,kN m m kN d M M d M F e 6.21395.1215.83322111=??=+='= ?; kN m m kN d M M d M F e 9.30176.215.833222=?=+='= ?; 所以,钢管桩承载力: 每份混凝土质量:kN vg g m t 8.39105.075.175.16.2=????==ρ kN g m R m 7.6919.3018.394max =++= ,kN g m R k 1.2128.394 9.301min =--=(方向向上)。

年产40万吨沥青搅拌站项目建议书

关于建设年产40万吨沥青搅拌站 项 目 建 议 书 安徽广恒新型建材有限公司 二〇一三年六月

目录 第一章项目基本概况 (3) 1.1项目名称及承办单位 (3) 1.2项目建设地点 (3) 1.3项目建设规模及建设年限 (3) 1.4项目投资概算 (3) 1.5项目经济效益 (3) 第二章项目建设背景 (4) 2.1项目的提出 (4) 2.2项目建设的必要性 (5) 2.3项目建设的可行 (5) 第三章市场预测 (6) 3.1产品市场供应现状 (6) 3.2产品市场需求预测 (6) 3.3产品目标的确定 (6) 第四章项目建设条件 (7) 4.1交通运输条件 (7) 4.2选址与环保关系 (7) 4.3主要原材料的供应 (7) 4.4水电供应条件 (7) 4.5用地条件 (7) 第五章技术方案、设备方案和工程方案 (8) 5.1技术方案 (8) 5.2设备方案 (9) 5.3工程方案 (11) 第六章环境影响评价 (13) 6.1场址环境条件 (13) 6.2项目建设和生产对环境影响 (13) 6.3环境保护措施方案 (14)

6.4环境影响评价 (15) 第七章组织机构和人力资源配置 (16) 7.1项目法人组建方案 (16) 7.2管理机构组建方案和体系图 (16) 7.3人力资源配置 (16) 第八章项目实施进度 (17) 8.1实施进度要求和注意问题 (17) 8.2工程建设进度 (17) 第九章劳动安全 (18) 9.1劳动安全及灾害防护措施 (18) 9.2劳动安全卫生管理机构 (19) 第十章投资估算及资金筹措 (20) 10.1建设投资估算 (20) 10.2流动资金估算 (20) 10.3总投资及资金筹措 (20) 第十一章经济效益和社会效益分析 (21) 11.1经济效益分析 (21) 11.2社会效益分析 (23) 第十二章结论 (24)

搅拌站基础计算(1)

搅拌站基础设计及验算 汕湛高速揭博项目T13标项目拟采用HZS150搅拌站两台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。 搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,扩大基础设置在全风化粉砂岩上,地基承载力为250kPa。 1.筒仓基础设计及验算 根据搅拌站选址地质情况,水泥罐基础拟采用扩大基础作为承载基础,基础底采用片石砼换填处理,换填高度约2.5m。 图1.1 筒仓基础结构

混凝土扩大基础拟采用3.75m ×5.89m ×1.8m 的混凝土结构,开挖深度为4.5m 。根据搅拌站勘探资料,表面土层为素填土,混凝土基础置于全风化粉砂岩上,允许承载力为250kPa ,水泥罐满载为100吨,空罐为10吨,两个水泥罐安放在同一个基础上。 1、竖向荷载计算(外力) 作用在基础顶面的荷载有竖向力、水平剪力、弯矩,统一按照中心受压基础检算。 荷载计算:KN 2640t 264)10001(2.12G ==+?=+=X G F k 水泥罐 粉罐压力:KPa 5.11989 .575.32640S F P =?== 最大应力=混凝土基础压力+换填片石砼压力+粉罐压力 KPa 8.2288.1265.2255.119P =?++=X

混凝土搅拌站项目建议书两篇

混凝土搅拌站项目建议书两篇 篇一:建设年产100万立方米混凝土搅拌站可行性报告 建设单位: 申报日期:

关于建立混凝土搅拌站项目的可行性报告 一、总论 随着改革开放的深化,城市建设规模不断扩大,混凝土用量不断增加,质量要求越来越高,现场分散搅拌混凝土的小生产方式已不能满足城市大规模建设的需要,因此,大力推广和运用予拌混凝土(又称商品混凝土)已成历史的必然。混凝土予拌化是工业发达国家共同的成功经验,代表了混凝土生产的最新最先进水平,具有旺盛的生命力,也是我国混凝土业今后的发展方向。 1、预拌商品混凝土是工程建设发展的高级阶段,它是社会进步、文明施工的体现。混凝土的研制、生产、使用经历了170年的发展历史,予拌混凝土采用集中搅拌,是混凝土生产由粗放型生产向集约化大生产的转变。它体现了混凝土生产的专业化、商品化和社会化。是建筑业依靠技术进步,改造小生产方式,实现建筑工业化的一项重要改革。 2、它是建设工程质量的要求。在施工现场搅拌混凝土,水泥、骨料、水等无法称量,只能依靠操作人员的经验施工,容易出现质量事故。而予拌混凝土生产是由专业技术人员在独立的试验室严格按照配合比,采用微机控制方式,通过电子计量,准确地生产出符合建筑设计要求的各种强度等级的混凝土。尤其是使用了外加剂和

活性掺和料生产的高强度混凝土,不但大大加快了施工进度,而且从根本上解决了现场搅拌混凝土容易形成的质量隐患。 3、它是城市文明建设的标志。广泛使用予拌混凝土,能大大减少噪音、粉尘、道路污染问题,解决了施工扰民和施工现场脏、乱、差等问题,也减轻了城市道路的交通压力。 4、它是社会效益和经济效益的追求。预拌混凝土全部使用散装水泥,年产100万m3的混凝土约用水泥30万吨,按照国家散装水泥办公室测算,每使用一万吨散装水泥,可节约包装费100万元,节电22万度,减少水泥损失1500吨,带来综合经济效益120多万元,仅此一项,本项目每年就可创造1200万元的社会经济效益。 二、生产规模和产品方案 1。生产规模 投资2台3方机,预计每台每小时生产混凝土100m3左右,年生产能力100~150万m3。 在总体规划时,考虑到投资资金问题,也可先建一条3方机生产线,年生产能力50~80万m3;预留扩建一条生产线的位置,以适应将来生产发展的需要。 2。产品方案

圆形基础钢筋计算间距和根数

9-3 钢筋配料与代换 9-3-1 钢筋配料 钢筋配料是根据构件配筋图,先绘出各种形状和规格的单根钢筋简图并加以编号,然后分别计算钢筋下料长度和根数,填写配料单,申请加工。 9-3-1-1 钢筋下料长度计算 钢筋因弯曲或弯钩会使其长度变化,在配料中不能直接根据图纸中尺寸下料;必须了解对混凝土保护层、钢筋弯曲、弯钩等规定,再根据图中尺寸计算其下料长度。各种钢筋下料长度计算如下: 直钢筋下料长度=构件长度-保护层厚度+弯钩增加长度 弯起钢筋下料长度=直段长度+斜段长度-弯曲调整值+弯钩增加长度 箍筋下料长度=箍筋周长+箍筋调整值 上述钢筋需要搭接的话,还应增加钢筋搭接长度。 1.弯曲调整值 钢筋弯曲后的特点:一是在弯曲处内皮收缩、外皮延伸、轴线长度不变;二是在弯曲处形成圆弧。钢筋的量度方法是沿直线量外包尺寸(图9-46);因此,弯起钢筋的量度尺寸大于下料尺寸,两者之间的差值称为弯曲调整值。弯曲调整值,根据理论推算并结合实践经验,列于表9-23。 图9-46 钢筋弯曲时的量度方法 钢筋弯曲调整值表9-23 注:d为钢筋直径。

2.弯钩增加长度 钢筋的弯钩形式有三种:半圆弯钩、直弯钩及斜弯钩(图9-47)。半圆弯钩是最常用的一种弯钩。直弯钩只用在柱钢筋的下部、箍筋和附加钢筋中。斜弯钩只用在直径较小的钢筋中。 图9-47 钢筋弯钩计算简图 (a)半圆弯钩;(b)直弯钩;(c)斜弯钩 光圆钢筋的弯钩增加长度,按图9-47所示的简图(弯心直径为2.5d、平直部分为3d)计算:对半圆弯钩为6.25d,对直弯钩为3.5d,对斜弯钩为4.9d。 在生产实践中,由于实际弯心直径与理论弯心直径有时不一致,钢筋粗细和机具条件不同等而影响平直部分的长短(手工弯钩时平直部分可适当加长,机械弯钩时可适当缩短),因此在实际配料计算时,对弯钩增加长度常根据具体条件,采用经验数据,见表9-24。 半圆弯钩增加长度参考表(用机械弯)表9-24 3.弯起钢筋斜长 弯起钢筋斜长计算简图,见图9-48。弯起钢筋斜长系数见表9-25。 图9-48 弯起钢筋斜长计算简图 (a)弯起角度30°;(b)弯起角度45°;(c)弯起角度60° 弯起钢筋斜长系数表9-25

(新)搅拌站基础承载力验算书

拌合站基础计算书 梁场混凝土拌合站,配备HZS120拌合机两套,每套搅拌楼设有5个储料罐,单个罐在装满材料时均按照200吨计算。经过现场开挖检查,在地表往下0.5~3米均为粉质黏土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.18 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度Pa,W=V2/1600 V—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据厂家提供的拌合站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为8.19m圆的1/4的范围,宽4.42m,基础浇注厚度为

2m。基底处理方式为:压路机碾压两遍,填筑30cm建筑砖碴、混凝土块并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为2米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=2000KN,水泥罐整体基础受力面积为95.48m2,基础浇注C25混凝土,自重P’=4774KN,承载力计算示意见下图: 粉质黏土 根据历年气象资料,考虑最大风力为28.4m/s(10级风),风的动压力P2=V2/1600=504.1N/m,储蓄罐顶至地表面距离为20米,罐身长17m,5个罐基本并排竖立,受风面积306m2,在最不利风力下计算基础的抗倾覆性。计算示意图如下 P2 罐与基础自重P1+P’ 3.储料罐基础验算过程 3.1 地基承载力 根据上面公式,已知P+P’=14774KN,计算面积A=95.48×106mm2, P/A= 14774KN/95.48×106mm2=0.15MPa ≤σ0=0.55 MPa 地基承载力满足承载要求。

HZS120Q搅拌站基础承载力计算

2xHZS120Q搅拌站承载力计算, 以下计算只考虑垂直静载荷,单台站参数如下:1、骨料配料机(4x20m3)每支腿的承载力: 20m3砂石料重约:G=32t 取安全系数为1.5 单支腿的垂直静载荷:N=GX4X1.5X10/10 =192KN 取200KN 2、150t水泥仓支腿承载力: 仓体自重约G3=10t 水泥重G4=150t 水泥仓共有4条支腿 取安全系数为1.5 每支腿的垂直静载荷:N2=(G3+G4)X1.5X10/4 =(10+150)X1.5X10/4 =600KN 取600KN 3、搅拌站主楼支腿承载力: 站主体自重G5=25t 搅拌混凝土重约G6=10t 主机震动载荷G7=5t 搅拌站共有4条支腿 取安全系数为2

每支腿的垂直静载荷:N3=(G5+G6+G7)X2X10/4 =200KN 取200KN 4、斜皮带机承载力: 斜皮带机自重约G8=20t 震动载荷G9=5t 斜皮带机主要受力共有7条支腿 取安全系数为5 每支腿的垂直静载荷:N3=(G8+G9)X5X10/7 ≈179KN 取200KN 5、单机水泥仓地基承载力验算 θ=60° L=3.14×2×20×60/360=20.9m A=20.9×6=125.4m2 单机配置3个150t水泥仓,2个100t掺合料仓,仓自重10t,地基承载力120kPa。 150×3+100×2+50=700t 基础混凝土自重: (0.6×6+1×5)20.9×2.3+0.6×0.7×0.7×20×2.3=426.9t 总重:700+426.9=1126.9t 11269/125.4=89.8kPa 符合要求。

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

PKPM设计基础时的参数分析和最小配筋率使用注意 独立基础的最小配筋率问题比较复杂,有以下资料供参考: 1.当独立基础底板厚度有规定:挑出长度与高度比值小于 2.5。因此不能当做一般的卧于地基上的板来看待2.满足1的要求是基础底面反力可以看作是线性的。也就是说不考虑基础底板的弯曲或剪切变形。 3.基础底版有最小配筋要求即10@200,这比原来的8@200已经提高。 4.基础底版是非等厚度板,计算配筋率只能按全面积计算,不能按单位长度计算。 本人认为独立基础底板配筋不用按最小配筋率控制。

JCCAD程序中作了选项,如果输入最小配筋率则会按全截面演算最小配筋率。当进行等强代换后程序还会重新演算最小配筋率。 我院总工要求结构设计人员的一些注意事项 6、对小塔楼的界定应慎重,当塔楼高度对房屋结构适宜高度有影响时,小塔楼应报院结构专业委员会确定 7、施工图涉及到钢网架、电梯及其它设备予留的孔洞、机坑、基础、予埋件等一定要写明:“有关尺寸在浇筑混凝土之前必须得到设备厂家签字认可方可施工。” 8、砌体结构不允许设转角飘窗。 9、钢结构工程设计必须注明:焊缝质量等级,耐火等级,除锈等级,及涂装要求。 10、砌体工程设计必须注明设计采用的施工质量控

制等级。(一般采用B级)。 11、砌体结构不宜设置少量的钢筋混凝土墙。 12、砌体结构楼面有高差时,其高差不应超过一个梁高(一般不超过500mm)。超过时,应将错层当两个楼层计入总楼层中。 二.结构计算 13、结构整体计算总体信息的取值: (1)混凝土容重(KN/m3)取26~27,全剪结构取27,若取25,对于剪力墙需输入双面粉层荷载。(2)地下室层数,取实际地下室层数,当含有地下室计算时,不指定地下室层数是不对的,请审核人把关 (3)计算振型数,取3的倍数,高层建筑应至少取9个,考虑扭转耦联计算时,振型应不少于15个,对多塔结构不应少于塔数×9。计算时要检查Cmass-x及

独立基础设计计算过程

柱下独立基础设计 1.1 设计资料 1.1.1 本工程地质条件: 第一层土:城市杂填土 厚0-0.5m 第二层土:红粘土 厚3-4.0m ,垂直水平分布较均匀,可塑状态,中等压缩性,地基承载力特征值fak=200Kpa 第三层土:强风化灰岩0-0.5m ,fak=1200 Kpa 第四层土:中风化灰岩 fak=3000 Kpa 由于结构有两层地下室,地下室层高4.5m ,采用柱下独立基础,故选中风化灰岩作为持力层。对于中风化岩石,不需要要对其进行宽度和深度修正,故a f =ak f =3000 Kpa 。 1.1.2 材料信息: 本柱下独立基础采用C 40混凝土,HRB400级钢筋。差混凝土规范知: C45混凝土:t f =1.80N/mm 2 , c f =21.1 N/mm 2 HRB400级钢筋:y f =360 N/mm 2 1.2 计算简图 独立基础计算简图如下:

1.3 基础埋深的确定 基础埋深:d=1.5m 1.4 基顶荷载的确定 由盈建科输出信息得到柱的内力设计值: M=97.68KN ?m N=15896.7 KN V=55.48KN 对应的弯矩、轴力、剪力标准值: M k =M/1.35=97.68/1.35=72.36KN ?m N k =N/1.35=15896.7/1.35=11775.33 KN V k =V/1.35=55.48/1.35=41.10 KN 1.5 初步估算基底面积 A 05 .120300011775.33?-=?-≥d r f F G a k =3.96m 2 0061.033 .1177536.72===k k N M e m=6.1 mm 比较小 由于偏心不大,基底底面积按20%增大,即: A=1.2A 0=1.2x3.96=4.752m 2 初步选择基础底面积为:A=lxb=2.2x2.2=4.84 m 2> 4.752 m 2 且b=2.5m<3.0m ,故不再需要对a f 进行修正 1.6 验算持力层地基承载力 基础和回填土重为: G k =A d r G ??=20x1.5x4.84=145.2KN 偏心距为:

搅拌站粉罐基础设计

目录 1、工程概况 (1) 2、编制依据 (1) 3、设计说明 (1) 3.1、地质条件 (1) 3.2、结构形式 (2) 3.3、设计荷载 (2) 3.4、材料性能指标 (2) 4、地基承载力验算 (2) 4.1、基础尺寸选择 (2) 4.2、地基承载力验算 (3) 5、筏板基础在集中荷载下的冲切计算 (6) 6、筏板基础在集中荷载下的局部承压计算 (6) 7、风荷载影响 (6) 7.1、抗倾覆验算 (6) 7.2、抗拔计算 (8) 8、筏式基础受力分析 (10)

搅拌站粉罐基础设计 1、工程概况 京津城际轨道交通线是环渤海京津冀地区城际轨道交通网的重要组成部分,也是沟通北京、天津两大直辖市的便捷通道,本线由北京南站东端引出,沿京津塘高速公路通道至杨村,后沿京山线至天津站,全长115.4km。本标段包含跨北京环线特大桥和凉水河特大桥两座特大桥的预制梁工程,设置三个简支箱梁预制场,分别为跨北京环线特大桥制梁场(1号梁场)、凉水河特大桥1#制梁场(2号梁场)、凉水河特大桥2#制梁场(3号梁场)。 本标段由中铁大桥局股份有限公司、中铁四局集团有限公司、中铁六局集团有限公司组成的联合体中标。我公司承担的是凉水河特大桥1#制梁场的制梁任务(2#梁场),起讫里程为DK21+457至DK32+665,共340孔双线箱梁。梁场位于张家湾镇高营村,中心里程在线路DK27+697处。预制场设置五个区:生活办公区、混凝土拌和区、箱梁生产区、横移存梁区、箱梁提升区,生产区布置布置32m箱梁制梁台座8个,32m兼24m制梁台座3个,梁场可存32m箱梁64孔,32m兼24m箱梁24孔。2、编制依据 (1)、《建筑地基基础设计规范》(GB50007-2002); (2)、《建筑桩基设计规范》(JGJ94-94); (3)、《混凝土结构设计规范》(GB50010-2002); (4)、福建南方路面机械公司提供的HZS120搅拌站图纸 (5)、《建筑结构荷载规范》GB50009-2001 (6)、浙江有色建设工程有限公司提供的《岩土工程勘察报告》 中华人民共和国、铁道部、地方政府及有关部门颁发的相关现行法规、规范、标准及办法。 3、设计说明 3.1、地质条件 勘探资料显示:场地基本平整,为河陆相沉积地貌;土质结构为粉质粘土与粉

30万吨水稳料搅拌站项目建议书2017

年产30万吨水稳料搅拌站项目项目建议书 ************ 二〇一七年六月六日

目录 第一章项目基本情况 (5) 1.1 项目名称 (5) 1.2 项目性质 (5) 1.3 建设单位 (5) 1.4 项目建设地点 (5) 1.5 项目建设规模 (5) 1.6 项目建设内容 (5) 1.7 总投资估算与资金筹措 (5) 1.8 进度安排 (6) 1.9 经济效益 (6) 1.10 结论与建议 (6) 第二章项目建设背景与必要性 (7) 2.1 项目建设背景 (7) 2.2 项目建设的必要性 (8) 2.3 项目建设的可行性 (9) 第三章市场需求预测 (11) 3.1 市场供应现状 (11) 3.2 市场需求预测 (11) 3.3市场目标的确定 (12) 第四章建设地址与建设条件 (13) 4.1 建设地址 (13) 4.2 建设条件 (15) 第五章工艺技术方案 (17) 5.1 工艺方案 (17) 5.2 设备方案 (18) 5.3 产品品种 (19) 第六章主要建设内容 (20) 6.1 土建工程 (20)

第七章环境保护 (21) 7.1 设计依据 (21) 7.2 可能存在环境影响因子 (21) 7.3 环境保护措施 (22) 第八章节能措施 (25) 8.1 设计依据 (25) 8.2 能源消耗种类 (26) 8.3 能源消耗情况 (26) 8.4 节能措施 (27) 第九章劳动安全及工业卫生 (29) 9.1 概况 (29) 9.2 主要危害概述 (29) 9.3 设计依据 (29) 9.4 主要防护措施 (29) 9.5 劳动安全卫生机构 (31) 第十章组织机构与劳动定员 (32) 10.1 组织机构 (32) 10.2 劳动定员 (32) 10.3 人员培训 (32) 10.4 技术培训 (33) 第十一章投资估算与资金筹措 (34) 11.1 投资估算 (34) 11.2 资金筹措 (36) 第十二章经济效益分析 (37) 12.1 生产规模及产品方案 (37) 12.2 销售收入及增值税估算 (37) 12.3 利润估算 (37) 12.4 财务评价指标分析 (38)

独立基础底板配筋构造及计算方法

本文分为两个部分,一个是独立基础底板配筋构造,一个是独立基础底板配筋计算。让我们通过实际例子,明确图中的平法标注、钢筋和基本信息,学会钢筋长度和根数的计算。 ▍图1 独立基础底部配筋 首先看集中标注和原位标注。 集中标注的内容有什么呢? 包括:编号、截面竖向尺寸、高度、X和Y方向的底部钢筋等。 原位标注的内容有什么呢? 包括:底部的平面尺寸等。 通过原位标注和集中标注的信息,我们知道图1所示独立基础底部配筋的基本情况。 需要知道的是,钢筋的重量=长度*理论重量。 而理论重量可以通过钢筋的直径确定。我们要做的就是根据平法图集的构造规定,确定每根钢筋的直径、长度、根数,从而进行钢筋的计算。 通过原位标注和集中标注的信息,我们可以知道了钢筋的直径、每一个方向的间距,那么如何确定每根钢筋的长度,如何根据间距确定根数呢?

▍图2 某独立基础施工图 我们知道,16G图集分为两部分:第一部分是制图规则,第二部分是构造详图(包括一般构造和各个构件的标准构件详图)。 一般构造的内容是在使用构造详图时,为我们提供基础性的数据,这里暂且不谈。 那么,对于每一个构件的标准构件详图,就是用来确定不同的钢筋之间,它的长度、间距、如何排布等问题,通过查阅每一个构件的标准构造详图,结合它的制图规则来整个确定钢筋的布置和构成。 我们要做的就是通过制图规则和构造详图,将平面的标注的图纸,还原成立体的构件。也就是我们图集的使用方法。

▍图3 图集16G101-3第67页 图3所示是两种独立基础的底板配筋构造(一个是阶形,一个是坡形)。我们看这个图的时候,觉得钢筋一个疏一个密,有的人可能会问,那是不是阶形的钢筋布置就密一些,坡形的 就疏一些呢? 不是的。图3所示只是一个例子,具体的钢筋布置的疏密是由设计人员决定的,不是预算人 员决定的。我们学习这张图,就是为了学会钢筋的排布规则,用以确定钢筋计算的信息而已。如图3所示,独立基础底部的X和Y方向都是受力钢筋。那双向受力钢筋的长度如何确定?我们可以依据保护层的定义进行确定:用构件的外截面尺寸,减去两个保护层的厚度,就得 到了受力钢筋的长度。X方向和Y方向均是这样。

独立基础钢筋计算

第一章钢筋计算原理和 框架实例手工答案 第一节独立基础钢筋计算 一、独立基础钢筋的标注 现阶段独"甚础钢筋杯注存住两种方式;传统标注方式和Y法杯注方式.F 面分别讲解。 (-)传统标注方式 独立基础钢筋传统标注方式.般要画出独立基础的平血图和剖面图.如图】?】?1所示。 JC-I 1-1 图1.1.1独立基础(J(1)钢筋传统标注方式 (二)平法标注方式 独立基础的平法标注方式. 般只需圖出平曲图.在f ifii图中克接标出剖面 的侑息.如图1.1.2所示. DJpOl表示编号为01的坡形独立基础(若是台阶形独立呈础.用DJj表示人3( >0/20()独“展础底泾台阶命反为3()0.斜坡高度为200. “衣示底泾钢筋. X&、创2@ 150衣示,\和Y方向钢筋均为仕衿为12的螺纹钢筋.钢筋间距为150mm* 注意*传统标注方式?基础名字可以由设计人员随意起■ P法杯注甲名字是

固定的.如l)jj表示台阶形普通独立堆础?l).lp表示坡形菁通独立基础. BJ J表示阶形杯门独J堆础?& 示坡形杯口独立堪础。 关]独、7雄础的#法标注.行较多内容.这甲只讲1号办公楼涉及到的内容.其他内容请参石图集06G10】6。 二、独立鉱础要计算哪些钢筋 的甚础嗖什算的钢筋?仆底部钢筋■頂部制筋以及基础梁的钢筋. 如图 1.1.3所示. 图1.L3独立基 础要计算的钢筋敢杯口 綸形单杯门 图1.1.2 I)J P O1¥法杯注方式普通做立就題 阶形M刚筋 形 长麼 》方向 m e屁笳严回 就杯叩m杯门丫方向底棉制筋- --------- )方向 頂筒歆筋边 角筋 収杯n副单杯门 同议柱e独立垦咄

混凝土搅拌站项目可行性分析报告

临泉县XX有限公司混凝土搅拌站项目建议书 一、项目概况 1、项目名称:混凝土搅拌站 2、建设性质:新建 3、项目业主:临泉县XX有限公司 4、建设地址:临泉县工业园区 5、建设内容:建设年加工商品混凝土10m3的搅拌站一座。 6、投资估算:总投资2480万元,其中固定资产投资2180万元,流动资金300万元。 7、经济效益:年实现销售收入3000万元,税金75万元,利润300万元,投资回收期7.26年。 二、项目背景 混凝土是建筑的主要材料,混凝土搅拌站是建筑行业向深层次发展的需求,可根据市场需要生产各种强度混凝土,由专用运输车送到工地进行浇筑。该项目避免了工地现场搅拌强度不稳定、搅拌不均匀、保养不规范以及现场脏、乱、差等缺点,是国家鼓励的投资项目。随着人们生活水平的提高,城市居民对生活环境的要求越来越高,建筑工地的混凝土搅拌以及运输水泥、石料、沙子产生的噪音、粉尘污染给人们的正常生活带来严重的影响,决定了集中供应商品混凝土在目前城市建设过程中无可替代的位置,与传统的现场搅拌混凝土相比较,商品混凝土具有节约原材料、质量稳定可靠、提高水泥散装率、

提高工作效率、减轻劳动强度、减少环境污染等特点。目前,国内大中型城市已明令禁止现场搅拌混凝土,商品混凝土在城市建设中应用越来越广泛。 三、建设条件 随着县域经济的发展和招商引资规模的不断壮大,加之北区、莲池开发等一批新上工程的建设和老城改造等市政\商用和房地产建设规模将有大幅度提高,混凝土的需求量越来越大,商品混凝土具有广阔的市场发展空间,预计年混凝土用量达13万m3。我县及周边具有较丰富的砂石资源,生产原料、水电供应方便充足。此项目一旦建立,县上将严格控制工地现场搅拌,推广使用成品混凝土。项目拟建地址远离居民生活区,以减少噪音污染,对当地生态环境没有不良影响。目前我县及周边没有成品混凝土搅拌站。 四、投资估算 项目总投资2480万元。其中征用土地20亩,100万元;土建投资200万元,建成生产车间、仓库、办公及其它铺助设施800m2 ;设备投资1750万元,购置混凝土生产线2条及运输车5辆;水、电等配套约需130万元;铺底流动资金及其它费用300万元。 五、预计经济效益 项目建成投产后,年加工商品混凝土10万m3,按C30强度混凝土单价300元计,销售收入3000万元,年实现税金75万元,利润300万元。投资回收期:固定投资2180 /300=7.26年,投资回报率:(300/2180)×100%=17%。

配筋的计算方法

配筋的计算原理 柱 基础层:筏板基础〈=2000mm时,基础插筋长度=基础层层高-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接长度LLE(如焊接时,搭接长度为0) 筏板基础〉2000mm时,基础插筋长度=基础层层高/2-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 地下室:柱纵筋长度=地下室层高-本层净高HN/3+首层楼层净高HN/3+与首层纵筋搭接LLE (如焊接时,搭接长度为0) 首层:柱纵筋长度=首层层高-首层净高HN/3+max(二层净高HN/6,500,柱截面边长尺寸(圆柱直径))+与二层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 中间层:柱纵筋长度=二层层高-max(二层层高HN/6,500,柱截面尺寸(圆柱直径))+max (三层层高HN/6,500,柱截面尺寸(圆柱直径))+与三层搭接LLE(如焊接时,搭接长度为0) 顶层: 角柱:外侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5LAE 内侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+LAE 其中锚固长度取值: 当柱纵筋伸入梁内的直径长〈LAE时,则使用弯锚,柱纵筋伸至柱顶后弯折12d,锚固长度=梁高-保护层+12d;当柱纵筋伸入梁内的直径长〉=LAE时,则使用直锚:柱纵筋伸至柱顶后截断,锚固长度=梁高-保护层, 当框架柱为矩形截面时,外侧钢筋根数为:3根角筋,b边钢筋总数的1/2,h边总数的1/2。内侧钢筋根数为:1根角筋,b边钢筋总数的1/2,h边总数的1/2。 边柱:外侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5LAE 内侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+LAE 当框架柱为矩形截面时,外侧钢筋根数为:2根角筋,b边一侧钢筋总数 内侧钢筋根数为:2根角筋,b边一侧钢筋总数,h边两侧钢筋总数。 中柱:纵筋长度=顶层层高-max(本层楼层净高Hn/6,500,柱截面长边尺寸(圆柱直径))-梁高+锚固 其中锚固长度取值: 当柱纵筋伸入梁内的直径长〈LAE时,则使用弯锚,柱纵筋伸至柱顶后弯折12d,锚固长度=梁高-保护层+12d;当柱纵筋伸入梁内的直径长〉=LAE时,则使用直锚:柱纵筋伸至柱顶后截断,锚固长度=梁高-保护层, 梁 梁的平面表示方法: 集中标注- 1、梁编号

相关文档
最新文档