矿床勘探类型
矿床勘探类型
矿床勘探类型Company number:【0089WT-8898YT-W8CCB-BUUT-202108】矿床勘探类型概念:根据矿床地质特点,尤其按矿体主要地质特征及其变化的复杂程度对勘探工作难易程度的影响,将相似特点的矿床加以归并而划分的类型,称为矿床勘探类型。
矿床勘探类型是在大量探采资料对比基础上,对已勘探矿床勘探经验的总结。
意义:矿床勘探类型的划分为勘探人员提供了类比、借鉴、参考应用类似矿床勘探经验的基础和可能,是为了正确选择勘探方法和手段,合理确定工程间距,对矿体进行有效控制的重要步骤。
注意:灵活运用和借鉴同类型矿床勘探的经验,切忌生搬硬套。
在新矿床勘探初期可运用类比推理的方法,按其所归属的勘探类型,初步确定应采用的勘探方法,随着勘探工作的深入开展和新的资料信息的不断积累,重新深化认识和修正其原来所属勘探类型,避免因原来类比推断的不正确而造成勘探不足(原勘探类别过低时)或勘探过头(原勘探类型过高时)的错误,给勘探工作带来不应有的损失。
(一)矿床勘探类型划分的依据原则:在划分勘探类型和确定工程间距时,遵循以最少的投入获得最大效益,从实际出发,突出重点抓主要矛盾,以主矿体为主的原则。
五大依据:依据矿体规模、主要矿体形态及内部结构、矿床构造影响程度、主矿体厚度稳定程度和有用组分分布均匀程度等五个主要地质因素来确定。
确定方法:为了量化这些因素的影响大小,提出了类型系数的概念。
即对每个因素都赋予一定的值,用每个矿床相对应的五个地质因素类型系数之和就可以确定是何种勘探类型。
在影响勘探类型的五个因素中,主矿体的规模大小比较重要,所赋予的类型系数要大些,约占30%;构造对矿体形状有影响,与矿体规模间有联系,所赋予的值要小些,约占10%;其他三个因素各占20%。
矿床勘探类型的划分一般依据以下5个方面的地质因素:1 矿体规模矿体规模分为大、中、小三类,其具体划分如表4-3-1所列:表4-3-1 矿体规模注:小型矿体长度<150m赋值01,150~200m赋值02,>200m赋值03;中型矿体30 0~500m赋值03~04,500~700m赋值05,>700m赋值06。
萤石资源的地质勘查
立志当早,存高远萤石资源的地质勘查(一)勘探类型及网度在矿点检查的基础上,根据已掌握的矿体空间延展规律、矿体形态复杂程度、矿体稳定程度及矿石有用组分分布特点等,确定萤石矿床的勘探类型。
划分萤石矿床勘探类型的依据:(1)矿体规模大型矿体:长度一般800m,延深300~500m。
中型矿体:长度300~800m,延深100~400m。
小型矿体:长度小于300m,延深10~300m。
(2)矿体形态复杂程度较简单:连续单脉状矿体、层状、似层状矿体。
较复杂:间断单脉状矿体、复脉状矿体、有分支的鞍状矿体。
复杂:复脉状矿体、串珠状矿体、透镜状、囊状矿体和受岩溶破坏的矿体。
(3)矿体稳定程度稳定:工业矿体在较长距离内连续,厚度膨缩变化有规律,并在可采厚度以上波动。
厚度变化系数小于50%。
较稳定:工业矿体在较长距离内基本连续,局部出现狭缩段或无矿段。
厚度变化系数50%~80%。
不稳定:矿体厚度变化急剧,可采段和非可采段交替出现。
厚度变化系数大于80%。
(4)矿石有用组分分布均匀程度均匀:矿物成分简单。
氟化钙品位变化系数小于30%。
较均匀:矿物成分复杂。
氟化钙品位变化系数30%~60%。
矿体中有夹石。
不均匀:矿物成分复杂,有害成分含量较高。
氟化钙品位变化系数大于60%。
矿体中夹石较多。
根据以上这些影响勘探难易的地质因素,将我国萤石矿床勘探类型划分如下:第Ⅰ勘探类型。
矿体规模大、形态简单、厚度稳定、品位均匀、无构造影响的层状矿体,现尚无实例。
第Ⅱ勘探类型。
矿体规模中到大型。
矿体形态属于比较简单的连续或微间断单脉状矿体,比较规则复脉状矿体。
厚度稳定或较稳定,品位均匀或较均匀。
无构造破坏或影响不大。
如浙江杨家、后树、湖南衡南、河南陈楼等萤石矿床。
第Ⅲ勘探类型。
矿体规模中到大型。
矿体形态较复杂,如复脉状矿体、透镜状矿。
第十讲勘探、勘探类型及勘探程度
第十讲第二节勘探阶段与勘探周期 (1)一、勘探阶段 (1)(一)矿产勘查阶段划分 (1)(二)勘探阶段 (3)二、勘探周期 (4)1 概念:矿床勘探周期是指完成一个矿床的阶段勘探任务所经历的时间。
(4)2 影响国内勘探周期和造成周期过长的原因: (4)第三节矿体变异与勘探类型 (6)一、矿体地质及其变异性研究 (6)(一)矿体地质 (6)(二)矿体变异性 (6)3 矿产的共生性 (9)二、矿床勘探类型 (10)(一)矿床勘探类型划分的依据 (10)(二)勘探类型划分 (13)第四节勘探精度与勘探程度 (15)一、勘探精度 (16)(一)基本概念 (16)(二)影响勘探精度的因素 (16)(三)勘探误差的分类 (17)(四)勘探精度的研究方法 (19)二、勘探程度 (20)(一)概述 (20)(二)合理勘探程度的确定 (21)第二节勘探阶段与勘探周期一、勘探阶段(一)矿产勘查阶段划分我国的矿产勘查阶段划分与前苏联的相近,并有过几次变改。
随着改革开放形势发展和社会主义市场经济体制的建立,1995年以来,我国加紧研究制定既符合我国国情和新的矿业形势需要,又便于与国际接轨的新的储量/资源分类标准和相当的矿产勘查阶段划分的新规范。
根据我国最新颁布的“固体矿产地质勘查规范总则(2002)”我国的矿产勘查工作分为预查、普查、详查及勘探4个阶段。
矿产勘查阶段划分及各阶段目的注:各阶段目的任务不同,但其间并无截然的界限,它们是循序渐进的关系。
矿产勘查各阶段工作程度及工作要求表矿产地质勘查工作的阶段性——矿床勘查阶段的划分方案对照表(二)勘探阶段概念:一个矿床,从发现并经详查确定其具有工业价值开始,一直到其被开采完毕止,都需要逐步进行不同详细程度的勘探研究工作。
将这种不同程度的勘探与研究工作划分为阶段,即简称为勘探阶段。
划分:矿床勘探实际上应进一步划分为:1.为建矿可行性研究和矿山基建设计提供资料依据,或属矿山开发准备时期的矿床地质勘探阶段,2.直接为矿山建设与生产“保驾护航”而进行的矿床开发勘探阶段。
折腰山矿床勘探类型的分析与探讨
建 和生 产勘 探 工 作 。17 9 4年甘 冶 地 质 勘 探 公 司为
了进一 步查 明折腰 山矿 区深 部 的矿体位移 和联 接关
矿床 主要赋 存于 石英角斑 凝灰 岩 ( 中。矿 Mw ) 体 成群 出现 , 分布 在 东起 Ⅱ行 西 至 X Ⅲ行 , 110 长 0
‘
3 折腰 山矿床 地 质 勘探 工作 简 史
折腰 山矿床勘 探类型 是原地 质部 6 1队依 据前 4 苏联 乌拉 尔矿 区同类 矿 床采 用 类 比法 确 定 , 探类 勘 型为第 Ⅲ类 型 。主矿 体勘探 网度 为 10 I 0 n×( 0 10—
10 4 )m, 探线方 位 2 。O1” 勘 45 3。矿 区先后 进行 了大 规模 的初步勘 探 和详细勘 探工作 , 于 15 提交 并 96年 了《 质及储 量计算 总结 报告 》, 地 同期 一 号采 场 开始
关键词 : 勘探类型 ; 分析 与探讨 ; 折腰山矿 床
中 图分 类 号 :6 1 P 1 . 1 P 1 ;6 8 4 文 献标 识码 : A
An l ss a d Dic s i n o p o a i n t p f Zh y o h n De o i a y i n s u so n Ex l r to y e o e a s a p st
含铜 矿黄铁 矿常位 于 浸染 状 矿 体 中心 , 向外 依 次 为 浸染 矿 、 网脉状铜 矿 。矿 床 成 因属 海底 火 山喷 发沉 积后期 热液 迭加型 , 主体矿 体特征 见表 1 。
2 矿床 地 质 概 况
白银 矿 田位于 北祁 连加 里 东褶 皱 带 的东 段 , 构 造体 系属 于祁 吕贺 山字 型构 造 阿 宁盾 地 内 , 梁 山 宋 旋转 构造 中 。折 腰 山矿床位 于一短 轴背斜 的核 部 。 矿 区地层 属 中寒 武 统 。按 成 因分 为 两大 类 , 一 类为 火 山岩类 , 主要是 中酸性火 山喷发 碎屑岩 、 凝灰
萤石矿床成因类型及勘探类型
立志当早,存高远
萤石矿床成因类型及勘探类型
,生产萤石精矿粉的重要类型
武义杨家、衡南、红安、陈楼、高台等萤石矿
碳酸盐岩石中的充填交代型脉状、透镜状萤石矿床
产于碳酸盐岩层的断裂构造带中,形态复杂多样,常呈脉状、透镜状和囊状,甚至形成复杂的矿巢
矿石矿物组合较复杂,有萤石、方解石、重晶石、常组成石英-萤石型、重晶石-萤石型、方解石-重晶石-萤石型矿石,一般属难选矿石
部分矿石经手选能获得高品位块矿。
以中、小型为主,亦有大型
德安、老厂、二河水等萤石矿
碳酸盐岩中的沉积改造型层状、似层状萤石矿床
产于特定层位的碳酸盐岩层中,严格受层位或层间构造控制,呈层状、似层状或透镜体
矿石矿物组合简单,以萤石型、石英-萤石型矿石为主
是很有远景的矿床类型。
大型
苏莫查干敖包萤石矿
(二)伴生萤石矿床
是指萤石矿物以伴生组分产于铁、钨、锡、钼、铋等多金属及铅、锌等硫化物矿床中的伴生萤石矿床。
根据矿物组合特征,划分为下列三种类型:
1、铅锌硫化物伴生萤石矿床
这类矿床萤石与铅、锌矿伴生,三者经济价值接近。
如桃林铅锌矿伴生萤石矿床,CaF2 含量12~15%,储量规模达到中型,是我国目前回收利用程度。
地质勘探类型和探矿工程密度和地质报告简析分解
1.铁矿地质勘探类型和探矿工程密度在铁矿地质勘探中,按照经济的原则使用探矿工程控制矿体,首要的是确定探矿工程密度。
依据矿体分布范围、规模大小、形态变化、构造复杂程度和矿石质量变化情况等,也就是按照控制矿体难易程度,将铁矿床划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四种勘探类型,然后分别不同勘探类型采用不同的工程密度布置工程,以控制铁矿体的变化和圈定矿体。
在我国铁矿地质勘探工作中,常常采用经验法、类比法、勘探线剖面精度分析法、稀空法、探采资料对比法确定勘探类型及勘探工程网度。
近年来开始采用数理统计分析法来确定矿床的勘探网度,其中地质类比法是经常采用的方法。
我国已知铁矿中,第Ⅰ类型有受变质沉积成因的南芬铁矿、海相沉积成因的庞家堡铁矿;第Ⅱ类型有岩浆成因的攀枝花铁矿,水厂、梅山和大顶铁矿因形态简单、品位变化小,也属此类型;第Ⅲ类型有大冶铁山、金岭、西石门、姑山铁矿等,一般是接触交代型和陆相火山岩型铁矿床;第Ⅳ类型铁矿规模小,形态复杂,产状变化大,矿石质量和数量分布不稳定、不连续等。
2.铁矿地质勘探程度和深度铁矿勘探的深度要根据矿山建设和生产实际要求来确定。
根据我国当前开采技术条件,铁矿勘探深度一般为300~500m,垂深大于500m的矿体以稀疏钻孔控制其储量远景,为矿山总体规划提供资料。
铁矿勘探规范中所确定的深度,是按矿山开采下降速度每年10m深,服务年限30年计算的,因此从矿床露头起向下延深300m,即为矿床的勘探深度。
大型矿床勘探要分期、分阶段进行,防止过早勘探而造成浪费;矿床地质勘探应以探明矿山第一期设计规模所需要的各级储量为原则。
在铁矿地质勘探中,因要满足矿山设计对地质资料和矿产储量的需要,故对矿体不同部位应确定不同的勘探控制程度。
通常将铁矿储量划分为A、B、C、D 四个级别:A级储量供矿山编制采掘计划用,一般由矿山生产部门勘探;B级储量是地质勘探阶段取得的高级储量,分布于矿山建设的首采地段;C级储量是矿山设计的依据,其勘探工程密度较B级储量控制稀疏;D级储量是由稀疏探矿工程控制,只能作为矿山远景规划或进一步勘探的依据。
煤矿床及其他固体矿床勘查类型划分依据
煤矿床及其他固体矿床勘查类型划分依据
煤矿床及其他固体矿床勘查类型:
(1) 现测类:主要是针对探测覆盖范围内未知水平的构造探测、厚度测
量和微地层描述等。
(2) 产能测算类:主要是计算和比较煤矿中不同层位的储量大小,进而
来定位投产规模和煤种。
(3) 勘查开采类:主要涉及全探明、现状及未来各层位的煤矿地质概况、开采方式及可行性评价等。
(4) 安全生产类:其中要求必须对煤矿的地质概况进行系统的勘察,确
定煤层的分布范围、形态特征、厚度大小、煤质性质等因素,以确定
其可采性、安全性等。
(5) 勘探资料收集类:主要涉及历史水文地质资料的收集和整理、野外
地质调查和勘探活动、数据处理等活动,以及根据勘探成果制订出资
料收集范围、原始资料图斑等勘察要求。
(6) 造就仪器设备类:为煤矿勘探和开采提供准确可靠的资料,主要涉
及煤质的检测、硬度测定、安全性指标的确定等活动。
盐矿的矿床勘探类型与勘探工程间距(一)
立志当早,存高远盐矿的矿床勘探类型与勘探工程间距(一)为正确运用以往地质勘探经验,合理选择勘探方法和勘探工程间距,划分勘探类型。
1.现代湖盐矿床的勘探类型与勘探网度现代湖盐矿床,又称第四纪盐湖矿床,或简称为盐湖矿床。
该类矿床一般出露地表或埋藏较浅,既有固体矿床,又有液体(卤水)矿床,且往往固液相并存以至互相转化,相应的地质勘查工作的内容和手段,则是地质勘探和水文地质勘探有机地结合。
(1)盐湖固体矿床根据矿体的延展规模、矿体形态复杂程度、矿体厚度稳定程度、有用组分分布的均匀程度以及盐溶发育程度,我国石盐盐湖固体矿床划分为4 种勘探类型。
第Ⅰ类型:矿体延展规模大—特大型(矿体连续长度30~10 km 以上,矿体面积150~50 km2 以上);矿体呈层状,大透镜体状,形态简单,少数较简单;矿体厚度稳定(厚度变异系数<40%)—较稳定(厚度变异系数70%~40%);有用组分含量均匀(品位变异系数<20%);盐溶不发育(盐溶系数<5%)。
矿床规模多属大型。
代表性矿床如青海柯柯石盐矿床等。
第Ⅱ类型:矿体延展规模大—中型(矿体连续长度30~5 km,矿体面积10~150 km2);矿体形态较简单,一般呈似层状或透镜体状,略有分支复合;矿体厚度较稳定(厚度变异系数<40%)—较稳定(厚度变异系数70%~40%);有用组分含量均匀(品位变异系数<20%)—较均匀(品位变异系数50%~20%);盐溶中等发育(盐溶系数15%~5%)—发育(盐溶系数30%~15%)。
矿床规模多为大、中型。
代表性矿床如内蒙古吉兰泰石盐矿床。
第Ⅲ类型:矿体延展规模多属中、小型(矿体连续长度5~10 km,或<5 km,矿体面积50~10 km2 或更小);矿体呈薄层状、扁豆状、筒状、不规则状、形态较复杂;矿体厚度不稳定(厚度变异系数100%~70%);有用组分含量均匀—不均匀(品位变异系数50%~20%至80%~50%);盐溶发育—中等发育(盐溶系数30%~15%至15%~5%)。
大理石矿床成因类型及勘探类型
书山有路勤为径,学海无涯苦作舟
大理石矿床成因类型及勘探类型
一、大理石矿床成因类型
大理石矿床可分为沉积、变质及火成三种成因类型,详见表1。
表1 大理石矿床成因类型
类型
特征
产地及品种
1
2
3
沉积型
为达到大理石标准要求的石灰岩和白云岩。
具有一定层位,多数规模较稳定
北京获鹿的紫豆瓣(紫红色竹叶状石灰岩);北京昌平的金玉(黄色或浅绿色泥质条带石灰岩);北京房山的螺丝转(灰色白云岩);杭州的杭灰(灰色石灰岩)
变
质
型
区域变质
一般规模较大,层位稳定,是大理石矿床的最主要类型。
有时有火成岩接触变质作用的迭加,造成花纹及鱼泽变化较大
北京房山的汉白玉(乳白色白云质大理岩);掖县的雪花白(乳白色白云质。
地质学知识:金属矿床的成因与勘探技术
地质学知识:金属矿床的成因与勘探技术金属矿床是指存在着高含量、较稀有的金属元素的矿物质的地质体,是人类利用的重要矿产资源。
掌握金属矿床的成因及描述、勘探技术则为矿产资源开发提供了科学依据,下面来进行详细阐释。
一、金属矿床的成因金属矿床的形成与岩石圈的地壳作用密切相关。
根据金属矿床的成因可分为热液型、沉积型、岩浆型、变质型等。
(一)热液型:热液型金属矿床是在高温高压流体下形成的,也就是说是热液活动过程中的产物。
热液渗透到岩石中,带着高含量的金属矿物逐渐向上淀积,形成热液矿床。
(二)沉积型:沉积型金属矿床主要产于海洋沉积物和陆地沉积物的裂隙中,金属矿物由沉积物或种子聚集而成,而后再沉积成岩。
其中,原生沉积型矿床是指矿床的成因与当时的环境和气候有关。
(三)岩浆型:岩浆型金属矿床是由于物质交换、物质损失造成的矿物体的再分配的产物,如铜、镍、铈等金属矿物是在火山喷发的岩浆中,随着岩浆逐渐冷却浓缩而形成。
(四)变质型:变质型金属矿床存在于板块活动带、断裂带等地区,由于热量、压力等因素,矿物在地型作用下重新结晶、升华等,从而形成了变质矿床。
二、金属矿床的勘探技术为了对金属矿床进行勘探,需要掌握相应的技术,主要包括的方法有地球物理勘探、化学勘探、垂直勘探等方法。
(一)地球物理勘探:地球物理勘探是运用物理学理论进行地质矿产资源勘探的方法,其主要有磁法、电法、雷达法、重力法、声波勘探、地热勘探等。
磁法是利用地球磁场的变化,探测矿体中的磁性物质,通过检测地磁场的异常值来发现地磁异常带,再通过钻探,识别出矿体内的磁性矿物体。
电法是运用电磁波作用产生电场和磁场之间相互关联的原理来进行勘探。
雷达法是运用电磁波在地下传播的能量,来达到探测矿体的目的,如煤层、水层、油层等的检测。
重力法通过检测地球的重力场,来找到掩埋深度大的矿体。
声波勘探是利用波的运动,在岩石中传输声音及电信号,试图找到有价值矿体,如金、铜等。
地热勘探是通过测量地热梯度来寻找有热值金属矿床。
勘查类型的划分及工程间距
阐述煤、铁、铜、岩金矿床勘查的勘查类型的划分依据、划分的勘查类型及工程间距概念:按勘查的难易程度对矿床所划分的类型称为矿床的勘查类型。
一、矿床勘查类型1、确定勘查类型的主要地质依据。
依据矿体规模、矿体形态的复杂程度、构造复杂程度和矿石有用组分分布均匀程度,将勘查类型划分为三个类型。
其中第Ⅰ勘查类型为简单型,矿体规模为大型,矿体形态和构造变化均简单,矿石有用组分分布均匀。
第Ⅱ类勘查类型为中等型,矿体规模为中等,矿体形态和构造变化中等,矿石有用组分分布较均匀。
第Ⅲ类勘查类型为复杂型,矿体规模小型,矿体形态和构造变化复杂。
2、勘查类型的确定勘查类型的确定应遵循追求最佳效益的原则,从实际出发的原则,以主矿体为主的原则、类型三分允许过渡的原则和在实践中验证并及时修正的原则。
其中从实际出发的原则在勘查类型的确定中是至关重要的。
由于每个矿床地质变化特征往往不尽相同,甚至同一个矿床的不同矿体或区段,其变化程度亦各有区别。
大多数情况下,影响勘查类型确定的多种地质变量因素的变化并不一定向着同一方向发展,以至期间出现多种形式组合,因此勘探类型的确定一定要从实际出发,要以引起增大勘查难度最大的变量作为作为确定的主要依据。
二、勘查工程间距1、勘查工程间距的含义:勘查工程间距通常是指沿矿体走向和倾斜方向相邻工程截矿点之间的实际距离的乘积,也称勘探网度或工程密度。
勘探工程沿矿体走向的间距系指水平距,也即勘探线之间的距离;勘探工程沿矿体倾向的间距,一般是指工程穿过矿体底版的斜距或穿过矿体中心线的斜距。
当矿体为陡倾斜而用坑道勘探时,以相邻标高坑道的垂直距离与中段平面上穿脉间的距离乘积表示。
2、确定工程间距的基本原则(1)以勘查类型为基础,类型简单工程间距相对稀疏,类型复杂则工程间距相对密集。
(2)相邻勘查类型和控制程度之间的勘查工程间距原则上为整数级差关系。
(3)勘查工程间距可有一定变化范围,以适应同一勘查类型不同矿床或同一矿床不同矿体的实际变化差异。
硅灰石矿的地质勘查
书山有路勤为径,学海无涯苦作舟硅灰石矿的地质勘查全国矿产储量委员会《硅灰石矿地质勘探规范(试行)》将中国硅灰石矿床勘探类型分为4 类,划分硅灰石矿床勘探类型的地质因素等级见表1。
(1) 第一勘探类型矿体规模大,厚度稳定,形态简单,含矿系数变化稳定。
此类型矿床目前国内尚未发现。
(2) 第二勘探类型矿体规模较大,厚度较稳定,形态较简单,矿床构造简单,含矿系数变化较稳定。
属于此类型的有浙江省长兴县李家巷等矿床。
(3) 第三勘探类型矿体规模较大,厚度较不稳定,形态较复杂,含矿系数变化较不稳定,矿床构造较复杂。
属于此类型的有吉林省磐石市长崴子等矿床。
(4) 第四勘探类型矿体规模小,厚度不稳定,形态复杂,含矿系数变化不稳定,矿床构造复杂。
属于此类型的有吉林省梨树县大顶山、湖北省大冶市小箕铺、广西壮族自治区平乐县南源洞等矿床。
中国硅灰石矿勘查阶段分为普查、详查、勘探3 个阶段。
各阶段的工作要求分别按照中华人民共和国国家标准《固体矿产普查总则》(GB/T13687-92)、《固体矿产详查总则》(GB/T13688-92)、《固体矿产地质勘探规范总则》(GB/T13908-92)及全国矿产储量委员会1987 年颁发的《硅灰石矿地质勘探规范(试行)》执行。
对露采矿床,矿床勘探要控制矿体四周和露天采矿场底部的边界;对坑采矿床,要控制主矿体两端、上下盘边界和延深情况。
矿体规模巨大者可以分段分期勘探。
矿床勘探深度当前露采矿床一般为当地侵蚀基准面以下50m,坑采矿床一般不超过200~300m,勘探深度以下,可用稀疏工程控制其远景。
矿床勘探程度和各级储量比例主要根据矿床规模、矿床地质条件的复杂程度以及矿山设计规模和有关技术经济条件等因素综合考虑确定。
对供矿山建设设计勘探范围内的各级储量比例要求如下:对大、中型矿床,如地质条件简单,建设规模与。
矿床勘查类型的划分及工程间距
(二) 勘查类型的划分与确定
1 勘查类型的划分 依据矿体规模、矿体形态复杂程度、构造复杂程度和矿石有用组分分 布均匀程度,将勘查类型划分为三个类型。其中第Ⅰ 布均匀程度,将勘查类型划分为三个类型。其中第Ⅰ勘查类型为简单 型,矿体规模为大型,矿体形态和构造变化均简单,矿石有用组分分 布均匀。矿床实例:南芬铁矿(铁山、黄柏峪矿段)、庞家堡铁矿 (10—36线区段)和遵义锰矿(南翼矿体)等;第Ⅱ勘查类型为中等 10—36线区段)和遵义锰矿(南翼矿体)等;第Ⅱ 型,矿体规模中等,矿体形态和构造变化中等,矿石有用组分分布较 均匀。矿床实例:梅山铁矿、石碌铁矿、白云鄂博铁矿(主矿体、东 矿体)和龙头锰矿、斗南锰矿以及罗布莎铬矿(31号主矿体)等;第 矿体)和龙头锰矿、斗南锰矿以及罗布莎铬矿(31号主矿体)等;第 Ⅲ类勘查类型为复杂型,矿体规模小型,矿体形态和构造变化复杂, 矿石有用组分分布不均匀。矿床实例:大冶铁矿、凤凰山铁矿、大庙 铁矿、大粟子铁矿和八一锰矿、湘潭锰矿、瓦房子锰矿以及赫根山铬 矿、东巧铬矿、鲸鱼铬矿等。
2011年6月11日星期六 17
黄岗Ⅰ 黄岗Ⅰ矿区
生产探矿 生产探矿是矿山生产过程中所进行的探矿 工作,其目的是使矿山保有规定的三级矿 量,准确控制矿体边界及厚度的变化,进 一步控制矿石质量和储量,为保证矿山正 常持续生产和指导生产采准与回采切割工 程的设计、施工而提供可靠的地质资料。 生产探矿网度与基建探矿基本相同。生产 勘探网度可加密为30 m× 勘探网度可加密为30 m×30m
2011年6月11日星期六
8
(三) 铁矿勘查类型实例
2011年6月11日星期六
9
勘查(勘探) 勘查(勘探)工程间距
勘探工程间距的含义 勘探工程间距通常是指沿矿体走向和倾斜方向 相邻工程截矿点之间的实际距离乘积,也称" 相邻工程截矿点之间的实际距离乘积,也称"勘探 网度" 网度"或工程密度。 勘探工程沿矿体走向的间距系指水平距,也即 勘探线之间的距离;勘探工程沿矿体倾向的间距, 一般是指工程穿过矿体底板的斜距(薄矿体) 一般是指工程穿过矿体底板的斜距(薄矿体)或穿过 矿体中心线(厚矿体) 矿体中心线(厚矿体)的斜距。当矿体为陡倾斜而用 坑道勘探时,以相邻标高(不同水平) 坑道勘探时,以相邻标高(不同水平)坑道的垂直距 离(又称中段高度)与中段平面上穿脉间的距离乘积 又称中段高度) 表示。
蛭石勘查规范最新
蛭石勘查规范最新蛭石勘查规范最新标准如下:一、工业指标圈定矿体时的边界品位为50kg/m3,最低工业品位100kg/m3。
矿床可采厚度0.5m,夹石剔除厚度1m。
二、蛭石矿床勘探类型的划分根据矿床特征、规模大小、分布特点及成因上的关系,蛭石矿床可划分为三种勘探类型:1、风化壳式矿床和呈带状产出的大脉状矿床(脉体长200m以上、的勘探类型为Ⅰ。
2、脉状矿床(脉体小于200m、的勘探类型为Ⅱ)。
3、囊状、透镜状、窝子状、小脉体等矿床的勘探类型为Ⅲ。
对于第1、2两种类型,可采厚度为0.5m,夹石剔除厚度1m;对第3种类型,不论其厚度大小,只要经济上合理,均可开采。
三、不同勘探类型的工程间距蛭石矿体延深一般在20~30m,很少超过50m,所以工程间距不宜过大。
对于Ⅰ勘探类型的矿床,工程间距稍大,一般工程间距20~40m。
四、样品的采集及分析测试样品的采集蛭石的采样可采用全巷法、剥层法和大规格刻槽法,含矿率以xkg/m3计算。
对于第Ⅰ类型矿床,为减少大量矿样的采选工作,可用大规格的刻槽法采样。
XXX矿区进行了50cm×10cm×100cm,30cm×20cm×100cm和20cm×10cm×100cm大规格的刻槽试验。
试验证明,三种规格刻槽所取得含矿率的数字基本相同。
故最后采用20cm×10cm×100cm规格的刻槽,样重50kg左右。
此规格的刻槽与全巷法、剥层法对比,所取得含矿率数字很相近。
因此,对蛭石矿床用大规格的刻槽采样是可行的。
而对于第Ⅱ、Ⅲ类型的蛭石矿床,因矿脉较小,采样工作量不大,多采用全巷法或剥层法采样。
钻孔矿心等采集样品常用矿心二分劈开法取其一半作为样品,样品长度一般1~2m。
样品的采集应结合蛭石的质量进行。
野外鉴定蛭石质量的方法为:①蛭石质量的主要特征是:当加热时,体积能急剧膨胀。
要测定其膨胀大小,可用小刀劈取蛭石结晶体1块,约1~2cm厚的薄片,置于喷灯火焰或炉火上焙烧,若其厚度能膨胀到10倍以上,即证明此种蛭石的质量是较好的。
铁矿矿床勘查类型及合理勘查间距研究
地质勘探G eological prospecting铁矿矿床勘查类型及合理勘查间距研究周子辉摘要:现行的铁矿地质勘探技术规范中,没有定量地规定工程间距,而且所提出的勘查阶段沿走向的间距不合理,会影响到基坑开挖的范围,影响到资源储量估算的可靠性,从而造成了矿产勘查工作的质量隐患。
根据国内矿床的典型类型和实际勘查项目的工程间距,分析了找矿类型、找矿间距的合理性,从经济合理的角度,提出了铁矿床的勘查工程间距,并在以后的地质矿产勘查工作中进行验证。
关键词:勘查工程;铁矿矿床勘查;勘查间距勘探工程间距是指在矿产地质勘查中,最接近勘查项目所控制的矿体的实际间距,既要保证矿体的外部特性,又要尽量减少工程投资。
中国现有固体矿产勘查工作按照勘查程度分为三个阶段:普查、详查、勘探,每一阶段的地质勘查工作都有相应的规范和管理文件。
目前,国内外尚无数理统计等量化指标来确定地质矿产勘查项目的间隔;然而,利用现代采矿软件等对勘查项目进行定量分析和研究,使得勘查项目间距的统一化、科学化是目前国际上最大的趋势。
因此,应采用动态分维几何学、地质勘探与生产勘探的对比,并根据国内的典型矿床勘查类型及实际勘探项目的勘查工程间距进行统计分析,并从经济、合理的角度,提出了铁矿床的勘查工程间距。
1 铁矿矿床类型1.1 变质铁硅建造铁矿(1)矿体总体上是大的,贫乏的,富集的。
(2)矿体(层)反复出现的复式褶皱,使矿体的厚度增大;部分矿床由于受到晚期剥蚀、断裂等因素的作用,形成了一套单斜型或向斜型结构。
(3)矿床中的矿层多为一、二层,厚的可达二三百米。
矿体的长度从数百米到数千米不等,有的甚至达到了十多公里,延深可达到数百到上千米的深度。
(4)向斜控矿方式:①铁矿体在向斜型构造中呈多层状分布。
②在向斜(型)构造的两侧,矿体的层数较小、厚度较小、形状复杂。
③矿体向斜核部的层数增加、厚度增大、品位增加(某些区段可达富矿)呈平缓分布。
(5)磁性反常模式:①存在两个大体平行的磁异常区(因其各向异性,其磁场强度较低)。
矿床勘探方法
矿床勘探方法矿床勘探是指对地下矿产资源进行综合调查,以了解矿床的分布、规模、品位和储量等基本特征的科学技术活动。
它是寻找地下矿产资源的一种手段,为矿山设计、选矿、开采和矿产资源评价提供基础数据。
随着科技的发展,矿床勘探方法也得到了快速的发展和更新。
本文将介绍几种常见的矿床勘探方法。
1. 地质勘探地质勘探是矿床勘探的基础工作,目的是通过对矿床附近地质构造、岩性和地层等进行综合研究,找到潜在的矿化带和矿床。
地质勘探方法主要包括地质勘察、地质测量和地质钻探等。
地质勘察是通过地面调查、野外地质剖面和地质地球化学样品收集等手段,对地质构造进行初步了解。
地质测量利用地面测量仪器和设备,对地质面貌、地貌和地貌特征进行测量和记录。
地质钻探是通过钻探设备和钻探工具,对地下岩层进行取样和分析,以获取地下的地质信息。
2. 物探方法物探方法是利用地球物理场和地下介质的物理性质,通过测量和分析地球物理现象,推断地下矿床的形态、分布和性质等。
常用的物探方法有重力测量、磁力测量、电法测量、地震测量和放射性测量等。
重力测量是通过测量地球重力场的变化,推断矿床下方岩石的密度和矿床的分布。
磁力测量是通过测量地球磁场的变化,推断矿床下方岩石的磁性和矿床的分布。
电法测量是通过测量地下电阻率的变化,推断矿床下方岩石的电性和矿床的分布。
地震测量是通过测量地震波传播的速度和反射波的强度,推断矿床下方岩石的密度和矿床的形态。
放射性测量是通过测量地下放射性元素的含量和分布,推断矿床的类型和性质。
3. 测量方法测量方法是利用现代测绘技术和仪器设备,对地表和地下的地形、地貌和地质构造等进行测量和记录。
常用的测量方法有航空摄影测量和卫星遥感测量等。
航空摄影测量是通过航空摄影机以一定高度和速度,对地表地貌和地形进行连续摄影,再通过空中三角测量和平差计算,确定地面对象的位置和形态。
卫星遥感测量是利用卫星携带的多光谱遥感仪器,对地表地貌和地形进行连续探测和图像记录,再通过遥感图像解译,确定地面对象的位置和形态。
PGE矿床勘探新类型一兼论黑色岩系的综合利用
化 物 ( 硫 化 物 为 主 ) 多 的深 灰一 黑 色 的硅岩 、 铁 较 碳 酸 盐 岩 、 质 岩 ( 层 凝 灰 岩 ) 变 质 岩 的组 合 体 泥 含 及
系 。其 岩 石分 类 主要 有 3类 : 黑色 内质岩 、 硅质 和 碳
酸 盐 岩 、 者 的火 山一 沉 积 型 亚类 ( 凝 灰 岩 等 ) 二 层 及 其 变质 产物 。黑色 岩系 的化 学还 原性 质及 其 有机质 、
黑 色 岩 系 的 综 合 利 用 是 一 套 全 面 研 究 、 体 开 发 及 安 全 利 用 多 种技 术 组 合 的 产 业链 条 , 整 涉及 地 质 勘 探 、 冶 、 料 及 环 境 保 护 选 材 等 领 域 。 由 于 目前 黑 色岩 系 P E矿 床 无勘 探 规 范 , 且 其 矿 床 工 业 品 位 指 标 急 需 更 新 , G 并 因此 建 议 把 黑 色岩 系 的 P E矿 床 单 列 G 为一 种 新 的 矿 床 类 型 , 置 “ 生 铂 族 矿 床 ” 以推 动 黑 色岩 系相 关 矿 床 的勘 探 进 程 。 设 外 , 关 键 词 : 色岩 系 ;G 黑 P E矿 床 ; 合 利 用 ; 石 工业 指 标 ; 生铂 族 矿 床 综 矿 外 中 图分 类 号 :6 85 P 1. 3 文献标识码 : A 文 章 编 号 :0 5 2 1 (0 10 — 0 10 10 — 5 82 1 )4 0 3 - 5
l 黑 色 岩 系矿 床 简介
黑 色 岩 系是 含 有 机 碳 ( C有 机 含 量 ≥1 及 硫 %)
可 形成 大 型一 超 大型锰 、 及重 晶石 矿 床 , 岩期 形 磷 成
成 大 型一 超大 型金 、 、 锌 、 及 锡 的多 金属 矿 床 。 银 铅 锑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿床勘探类型
矿床勘探类型
概念:根据矿床地质特点,尤其按矿体主要地质特征及其变化的复杂程度对勘探工作难易程度的影响,将相似特点的矿床加以归并而划分的类型,称为矿床勘探类型。
矿床勘探类型是在大量探采资料对比基础上,对已勘探矿床勘探经验的总结。
意义:矿床勘探类型的划分为勘探人员提供了类比、借鉴、参考应用类似矿床勘探经验的基础和可能,是为了正确选择勘探方法和手段,合理确定工程间距,对矿体进行有效控制的重要步骤。
注意:灵活运用和借鉴同类型矿床勘探的经验,切忌生搬硬套。
在新矿床勘探初期可运用类比推理的方法,按其所归属的勘探类型,初步确定应采用的勘探方法,随着勘探工作的深入开展和新的资料信息的不断积累,重新深化认识和修正其原来所属勘探类型,避免因原来类比推断的不正确而造成勘探不足(原勘探类别过低时)或勘探过头(原勘探类型过高时)的错误,给勘探工作带来不应有的损失。
(一)矿床勘探类型划分的依据
原则:在划分勘探类型和确定工程间距时,遵循以最少的投入获得最大效益,从实际出发,突出重点抓主要矛盾,以主矿体为主的原则。
五大依据:依据矿体规模、主要矿体形态及内部结构、矿床构造影响程度、主矿体厚度稳定程度和有用组分分布均匀程度等五个主要地质因素来确定。
确定方法:为了量化这些因素的影响大小,提出了类型系数的概念。
即对每个因素都赋予一定的值,用每个矿床相对应的五个地质因素类型系数之和就可以确定是何种勘探类型。
在影响勘探类型的五个因素中,主矿体的规模大小比较重要,所赋予
的类型系数要大些,约占30%构造对矿体形状有影响,与矿体规模间有联系,所赋予的值要小些,约占10%其他三个因素各占20%
矿床勘探类型的划分一般依据以下5个方面的地质因素:
1矿体规模
矿体规模分为大、中、小三类,其具体划分如表4-3-1所列:
表4-3-1矿体规模
注:小型矿体长度v 150m赋值01, 150〜200m赋值02,>200m赋值03;中型矿体300〜500m赋值03〜04, 500〜700m赋值05,> 700m赋值06。
2主要矿体形态及内部结构
(1)简单矿体形态复杂程度分为三类类型系数0.6。
矿体形态为层状、似层状、大透镜状、大脉状、长柱状及筒状,内部无夹石或很少夹石,基本无分枝复合或分枝复合有规律。
2)较简单复杂程度为中等,类型系数0.4。
矿体形态为似层状、透镜体、脉状、柱状,内部有夹石,有分枝复合。
3)复杂类型系数0.2。
矿体形态主要为不规整的脉状、复脉状、小透镜状、扁豆状、豆荚状、囊状、鞍状、钩状、小圆柱状,内部夹石多,分枝复合多且无规律。
3矿床构造影响程度
(1)小构造影响程度分为三种类型系数0.3。
矿体基本无断层破坏或岩脉穿插,构造对矿体形状影响很小。
(2)中类型系数0.2。
有断层破坏或岩脉穿插,构造对矿体形状影响明显。
(3)大类型系数0.1。
有多条断层破坏或岩脉穿插,对矿体错动距离大,严重影响矿体形态。
4主矿体厚度稳定程度
矿体厚度稳定程度大致分为稳定、较稳定和不稳定三种。
其各矿种不同稳定程度的厚度变化系数及类型系数如表4-3-2所列。
表4-3-2矿体厚度稳定程度
5有用组分分布均匀程度
可根据主元素品位变化系数划分为均匀、较均匀、不均匀三种。
其各矿种有用组分均匀程度具体划分及相应的类型系数值如表4-3-3所列。
表4-3-3有用组分分布均匀程度
(二)勘探类型划分
1我国勘探类型划分的历史:
1.建国初期,主要是采用前苏联50年代对有关矿床的勘探分类。
2.1959年全国矿产储量委员会制定了铁、有色金属矿床、铝土矿等矿种的勘
探规范。
在规范中分别对有色金属、铝土矿、铁等矿床勘探类型作了划分,其中,将有色金属(铜、铅锌、钨、锡、钼)分为4类,铝土矿分为4
类,铁矿床分为5类等。
3.1962年全国矿产储量委员会又制定了我国铜及磷块岩矿床的勘探规范,相
应对其勘探类型作了明确规定。
4.1978年至今,在大量探采资料对比分析的基础上,相继着手对不少矿种
重新制定适合我国国情的新的勘探规范,如铁铜、硫铁矿、磷矿床...
等已先后予以公布试行。
5.自1999年12月1日起开始实施国家标准《固体矿产资源/储量分类》
(GB/T17766-1999),为配合新的分类标准,国家有关部门抓紧组织
对现行的45种有关固体矿产勘查的技术规范、规定进行全面修订。
2划分方法:
1.3个类型:简单(I类型)、中等(U类型)、复杂(川类型)。
2.由于地质因素的复杂性,允许有过渡类型存在。
3.原划分的4〜5类,出现工程间距严重交叉、类型重叠、难以区分。
如铜、铅、锌、银、镍、钼的矿床勘查类型划分主要根据上述五个地质因素及其类型系数来确定,具体划分为三种勘查类型(表4-3-4 )。
表4-3-4矿床勘查类型实例一览表
第川勘查类型吉林石人沟,北京东三岔
3具体划分依据
①第I勘查类型
该类型为简单型,五个地质因素类型系数之和为25〜30。
主矿体规模大一巨大,
形态简单一较简单,厚度稳定一较稳定,主要有用组分分布均匀一较均匀,构造对矿体影响小或明显。
②第U勘查类型
该类型为中等型,五个地质因素类型系数之和为17〜24。
主矿体规模中等一大,形态复杂一较复杂,厚度不稳定,主要有用组分分布较均匀一不均匀,构造对矿体形态有明显影响、小或无影响。
③第川勘查类型
该类型为复杂型,五个地质因素类型系数之和为10〜16。
主矿体规模小一中等,形态复杂,厚度不稳定,主要有用组分较均匀一不均匀,构造对矿体影响严重、明显或影响很小。
(三)对勘探类型划分的讨论
(1)抓住主要因素的原则。
在确定矿床勘探类型时,应在全面综合研究各种因素的基础上抓住主要因素。
对某一矿床来说,并不是所有因素在确定矿床勘探类型时都有同等作用,往往只是某一种或几种因素起主要作用。
但是,这只有在全面分析上述诸因素,才能加以判定。
一般来说,在确定矿床勘探类型中,高品位矿种如铁、铝土矿、磷块岩等,形态、规模比品位变化更重要;而低品位矿种如金、钨、锡等矿种往往品位变化更为重要。
(2)以占储量最多(70%的主矿体为准的原则。
勘探类型的划分一般是指矿床而言,而作为划分主要依据是主要矿体有关标志的变化程度。
我们知道一个矿床很少只有一个矿体,更常见的是一个矿床是由若干大小不等、变化各异的矿体所组成,而且可能是多种有用元素相伴产出。
这时,应以占储量最多(70% 的主矿体为准,以矿体中主要组分为准,次要矿体、次要组分可在勘探过程中
附带解决;在可以分段勘探的情况下,也可区别对待。
在勘查进程中,或随勘探程度和开采深度的改变,应对已确定的矿床勘查类型进行验证,应注意主次矿体与矿体标志的变异;当发现变化较大,有较大偏差时,应及时修正勘探类型。
也即某种程度上,应以动态的观点对待勘探类型的划分。
(3)“工业指标”对勘探类型的确定也有相当大的影响。
众所周知,“工业指标”是圈定矿体的依据,它的任何改变都将对矿体的规模、形状、有用组分分布的均匀程度和矿化连续性等产生影响,尤其是当矿体与围岩的界限不清时更是如此。
(4)探索划分的合理数值指标体系。
探索能够反映矿体标志综合特征的合理数值指标体系用于划分矿床勘探类型,是一个值得注意的动向。
在这方面,关于地质体数学特征概念的提出和论述,无疑是这种努力的一种尝试。
如上述勘探类型系数的
提出与应用,又是一种向定量化的进步。
但也不能生搬硬套,必须和地质观察研究相结合,否则容易得出错误的结论。
(5)综合考虑原则。
目前,矿床勘探类型具体的划分应以主矿体的自身特征为依据,但往往忽视了对矿床产出自身规律的研究和专家主观能动性的发挥,也往往忽视了矿床开拓、开采方法对矿床开采技术条件(包括水文地质、工程地质、环境地质)的基本特征和复杂程度亦应查明的要求。
若结合可能的采矿方式、方法,还考虑将矿床工业类型与勘探类型结合起来,加上应合理选择的快速而有定量效果的勘探方法和手段,以及适宜的工程间距等,综合考虑以上诸因素,并将大量类似矿床的勘探开采资料进行系统全面详细的对比、分析、归纳分类,这样划分的矿床综合勘探类型才能真正实现以最适宜的投入,获取最大经济效益的结果,也理应成为正确选择与确定矿床勘探方法的指南。