RAID阵列基础知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RAID阵列基础知识(一分钟读懂RAID)
RAID
1.1 RAID是由美国加州大学伯克利分校的D.A.Patterson教授在1988年提出的。RAID 是Redundent Array of Inexpensive Disks的缩写,直译为"廉价冗余磁盘阵列",也简称为"磁盘阵列"。后来RAID中的字母I被改作了Independent,RAID就成了"独立冗余磁盘阵列",但这只是名称的变化,实质性的内容并没有改变。可以把 RAID理解成一种使用磁盘驱动器的方法,它将一组磁盘驱动器用某种逻辑方式联系起来,作为逻辑上的一个磁盘驱动器来使用。一般情况下,组成的逻辑磁盘驱动器的容量要小于各个磁盘驱动器容量的总和。RAID的具体实现可以靠硬件也可以靠软件,Windows NT操作系统就提供软件RAID功能。RAID一般是在SCSI磁盘驱动器上实现的,因为IDE磁盘驱动器的性能发挥受限于IDE接口(IDE只能接两个磁盘驱动器,传输速率最高1.5MBps)。IDE通道最多只能接4个磁盘驱动器,在同一时刻只能有一个磁盘驱动器能够传输数据,而且IDE通道上一般还接有光驱,光驱引起的延迟会严重影响系统速度。SCSI适配器保证每个SCSI通道随时都是畅通的,在同一时刻每个SCSI磁盘驱动器都能自由地向主机传送数据,不会出现像IDE磁盘驱动器争用设备通道的现象。
1.2 RAID的优点
1.2.1 成本低,功耗小,传输速率高。在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个的磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。
1.2.2 可以提供容错功能。这是使用RAID的第二个原因,因为普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC (循环冗余校验) 码的话。RAID 和容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。
1.2.3 RAID的另一特征是具备数据校验(Parity)功能,校验可被描述为用于RAID级别2,3,4,5的额外的信息,当磁盘失效的情况发生时,校验功能结合完好磁盘中的数据,可以重建失效磁盘上的数据。对于RAID系统来说,在任何有害条件下绝对保持数据的完整性(Data Integrity)是最基本的要求。数据完整性指的是阵列面对磁盘失效时保持数据不丢失的能力,由于数据的破坏通常会带来灾难性的后果,所以选择RAID阵列的基础条件是它能提供什么级别的数据完整性。
1.2.4 RAID比起传统的大直径磁盘驱动器来,在同样的容量下,价格要低许多。
RAID的分级
级别解释
RAID 0级(Stripe) 无冗余无校验的磁盘

阵列 附:带区卷 有两块以上磁盘用相同容量组成。容量等于:单个磁盘容量x磁盘个数
数据同时分布在各个磁盘驱动器上,没有容错能力,读写速度在RAID中最快,但因为任何一个磁盘驱动器损坏都会使整个RAID系统失效,所以安全系数反倒比单个的磁盘驱动器还要低。一般用在对数据安全要求不高,但对速度要求很高的场合。
RAID 1级(Mirror) 镜象磁盘阵列
每一个磁盘驱动器都有一个镜像磁盘驱动器,镜像磁盘驱动器随时保持与原磁盘驱动器的内容一致。RAID1具有最高的安全性,但只有一半的磁盘空间被用来存储数据。主要用在对数据安全性要求很高,而且要求能够快速恢复被损坏的数据的场合。
RAID 1+0 如果同时对RAID 0中写往两个硬盘的数据再做两个镜像如何呢?这就是RAID 1+0的方案。RAID 1+0至少使用4个硬盘,这样,RAID 1+0在理论上同时保证了RAID 0的性能和RAID 1的安全性,代价是比RAID 0 或1再多一倍的硬盘数量。但应该注意,这仅仅是理论上的,因为实际中IDE RAID 这样的软件RAID系统会消耗CPU运算时间,RAID 1+0比起RAID 0或1来讲,同样多消耗一倍的CPU时间,所以性能最后不一定能提升到RAID 0那样的比例,甚至有可能总体性能不升反降。
RAID 2级 纠错海明码磁盘阵列
磁盘驱动器组中的第一个、第二个、第四个……第2n个磁盘驱动器是专门的校验盘,用于校验和纠错,例如七个磁盘驱动器的RAID 2,第一、二、四个磁盘驱动器是纠错盘,其余的用于存放数据。使用的磁盘驱动器越多,校验盘在其中占的百分比越少。RAID 2对大数据量的输入输出有很高的性能,但少量数据的输入输出时性能不好。RAID2很少实际使用。
RAID 3和 RAID 4 奇校验或偶校验的磁盘阵列
不论有多少数据盘,均使用一个校验盘,采用奇偶校验的方法检查错误。任何一个单独的磁盘驱动器损坏都可以恢复。RAID3和RAID4的数据读取速度很快,但写数据时要计算校验位的值以写入校验盘,速度有所下降。RAID3和RAID4的使用也不多。
RAID 5级 无独立校验盘的奇偶校验磁盘阵列
同样采用奇偶校验来检查错误,但没有独立的校验盘,校验信息分布在各个磁盘驱动器上。RAID5对大小数据量的读写都有很好的性能,被广泛地应用。
从RAID1到RAID5的几种方案中,不论何时有磁盘损坏,都可以随时拔出损坏的磁盘再插入好的磁盘(需要硬件上的热插拔支持),数据不会受损,失效盘的内容可以很快地重建,重建的工作也由RAID硬件或RAID软件来完成。但RAID0不提供错误校验功能,所以有人说它不能算作是RAID,其实这也是RAID0为什么被称为0级RAID的原因--0本身就代表"没有"。
1.3 RAID 的应用
当前的PC机,整个

系统的速度瓶颈主要是硬盘。虽然不断有Ultra DMA33、 DMA66、DMA100等快速的标准推出,但收效不大。在PC中,磁盘速度慢一些并不是太严重的事情。但在服务器中,这是不允许的,服务器必须能响应来自四面八方的服务请求,这些请求大多与磁盘上的数据有关,所以服务器的磁盘子系统必须要有很高的输入输出速率。为了数据的安全,还要有一定的容错功能。RAID 提供了这些功能,所以RAID被广泛地应用在服务器体系中。
1.4 RAID 提供的容错功能是自动实现的(由RAID硬件或是RAID软件来做)。
它对应用程序是透明的,即无需应用程序为容错做半点工作。要得到最高的安全性和最快的恢复速度,可以使用RAID1(镜像);要在容量、容错和性能上取折衷可以使用RAID 5。在大多数数据库服务器中,操作系统和数据库管理系统所在的磁盘驱动器是RAID 1,数据库的数据文件则是存放于RAID5的磁盘驱动器上。
1.5 有时我们看某些名牌服务器的配置单,发现其CPU并不是很快,内存也算不上是很大,显卡更不是最好,但价格绝对不菲。是不是服务器系统都是暴利产品呢?当然不是。服务器的配置与一般的家用PC的着重点不在一处。除去更高的稳定性外,冗余与容错是一大特点,如双电源、带电池备份的磁盘高速缓冲器、热插拔硬盘、热插拔PCI插槽等。
另一个特点就是巨大的磁盘吞吐量。这主要归功于RAID。举一个例子来说,一台使用了SCSI RAID的奔腾166与一台IDE硬盘的PIIICopermine 800都用做文件服务器,奔腾166会比PⅢ的事务处理能力高上几十倍甚至上百倍,因为PⅢ处理器的运算能力根本用不上,反倒是奔腾166的RAID起了作用。
1.6 RAID现在主要应用在服务器,但就像任何高端技术一样,RAID也在向PC机上转移。也许所有的 PC 机都用上了SCSI磁盘驱动器的RAID的那一天,才是PC机真正的"出头之日"。

相关文档
最新文档