雷达信号频率的测量概述

合集下载

雷达信号频率实时精确测量电路的设计与实现

雷达信号频率实时精确测量电路的设计与实现
问 。D P作 为 协 处 理 器 对 信 号 进 行 计 算 分 析 , 成 频 S 完
领域 。从接收 信号 中提取 精确 的到达 频率 信息 可 以实 现 目标定 位 , 其测 量精 度 至少要 达到赫 兹量级 , 度要 精 求相 当高 , 用传 统 的谱 估计 方 法 存 在 许多 困难 。为 采 此, 本文对 频率 精测算 法进 行更 深入 的研究 , 在满 足低

为 工作 时钟 能 够实 现实 时 样点 处理 。从 算 法所 需 的计
算 量 的 角 度 来 考 虑 , 芯 片 具 有 6 0个 DS —l e 也 该 4 P sc , i
是 可 以直 接满 足设 计需 要 的 。

.+1 * 1∑ m -
( 1 )
对 Y 取 模后 , 确 定 的 门 限作 比较 , 有效 地 检 与 可
列 浮 点 型 DS 芯 片 ADS P P~TS 0 S为 核 心 , 计 的 一 种 符 合 CPC 21 设 I规 范 的 标 准 6 u信 号 处 理
硬 件 电路 平 台 。 在 这 一 硬 件 电路 平 台上 , 现 了 雷 达 信 号 中频 频 率 的 实 时 精 确 测 量 。 通 过 脉 实 冲 积 累 , 用 脉 冲 之 间 的 相 参 性 , 达 信 号 中频 频 率 测 量 精 度 可 以优 于 1 。 利 雷 Hz 关 键 词 : 硬 件 电路 ; 达 信 号 ; 率 测 量 雷 频
决 定 了 相 关 点 数 m , 通 过 比 较 和 Y 一 可 以 得 到 : 而 。
女 =Y 一 + ( + 一 1 1 z ~
1 硬 件 电路 平 台 原理 组 成 框 图
一 ) 1/
() 2

雷达原理及测试方法

雷达原理及测试方法

雷达原理及测试方案1雷达组成和测量原理雷达(Radar)是RadioDetectionandRanging的缩写,原意“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。

现代雷达的任务不仅是测量目标的距离、方位和仰角,而且还包括测量目标速度,以及从目标回波中获取更多有关目标的信息。

1.1雷达组成1.2雷达测量原理1)目标斜距的测量图3雷达接收时域波形在雷达系统测试中需要测试雷达到目标的距离和目标速度,雷达到目标的距离是由电磁波从发射到接收所需的时间来确定,雷达接收波形参见图3,雷达到达目标的距离R为:R=0.5×c×tr式(2)式中c=3×108m/s,tr为来回传播时间2)目标角位置的测量目标角指方位角或仰角,这两个角位置基本上是利用天线的方向性来实现。

雷达天线将电磁能汇集在窄波束内,当天线对准目标时,回波信号最强。

回波的角位置还可以用测量两个分离接收天线收到信号的相位差来决定。

3)4)max t e min式中Pt 为发射机功率,G为天线增益,Ae为天线有效接收面积,σ为雷达回波功率截面积,Smin为雷达最小可探测信号。

雷达方程可以正确反映雷达各参数对其检测能力影响的程度,不能充分反映实际雷达的性能。

因为许多影响作用距离的环境和实际因素在方程中没有包括。

1.4雷达分类军用雷达主要分类:不能满足复杂雷达信号测试需求。

更为重要的是,雷达在实际工作过程中接收到的信号并不是纯净的发射回波,它包含各种杂波和多普勒效应,特别是在地形复杂或海面各种时,接收机接收到的杂波比需要探测的物体回波大的多,而这一切目前没有通用测量设备来生成雷达接收机所接收到的实际波形。

因此各个雷达研制单位投入大量人力、物力研制各种雷达模拟器,但这些模拟器往往受各种设计因素影响,只是实际雷达波形的简化,并只考虑到典型的应用,对复杂的应用环境无法模拟。

这样无法及时发现雷达研制和使用过程中问题和隐患。

radar 测速原理

radar 测速原理

radar 测速原理雷达是一种利用电磁波测量距离和速度的技术装置,广泛应用于军事、民用航空、气象等领域。

雷达测速原理是基于多普勒效应和时间测量的原理。

雷达测速原理主要包括以下几个方面:1.多普勒效应:多普勒效应是由于波源(或接收器)和接收器(或波源)相对运动,导致波的频率发生变化的现象。

在雷达测速中,当发射的电磁波遇到运动的物体时,被反射回来的波的频率会发生变化。

当物体远离雷达时,回波频率会降低;当物体靠近雷达时,回波频率会增加。

通过测量频率的变化,可以得到物体的速度。

2.时间测量原理:雷达发射器发送一个电磁波脉冲,随后接收到波的反射回波。

通过测量发射脉冲到达物体并返回的时间,可以计算出物体与雷达的距离。

距离计算公式为:距离=时间×光速/2。

其中光速为常数。

3.频率测量原理:通过测量发射脉冲信号与反射回波的频率,可以得到物体对雷达的速度信息。

根据多普勒效应,当物体远离雷达时,回波频率会降低;当物体靠近雷达时,回波频率会增加。

通过测量频率的变化,可以计算出物体的速度。

频率测量主要应用于测速雷达,比如交通巡逻车上用于测量车辆的速度。

4.脉冲雷达和连续波雷达:雷达有两种工作方式:脉冲雷达和连续波雷达。

脉冲雷达是通过发射脉冲信号来测量距离和速度;连续波雷达则是通过发射连续波信号并测量频率的变化来测量速度。

脉冲雷达可以精确地测量目标物体的距离和速度,但需要较长的时间来做一个测量。

连续波雷达能够实时获取目标物体的速度,但无法准确测量距离。

综上所述,雷达测速原理是基于多普勒效应和时间测量的原理。

通过测量频率的变化和发射脉冲到达物体并返回的时间,可以计算出物体的速度和距离。

雷达测速技术被广泛应用于交通巡逻、空中交通管制以及气象预报等领域,为人们提供了重要的测量和监测手段。

雷达信号测试参数指标

雷达信号测试参数指标

雷达信号测试参数指标雷达信号测试是对雷达系统的各项参数进行评估和验证的重要手段。

通过对雷达信号的测试,可以了解雷达系统的性能表现,指导系统的优化和改进。

本文将从不同角度介绍雷达信号测试的参数指标。

1. 信号强度:信号强度是指雷达系统接收到的信号的功率大小。

信号强度的测量可以通过接收到的信号的电压或功率进行评估。

信号强度的大小直接影响雷达系统的探测能力和探测距离,强的信号可以提供更远的探测距离。

2. 信噪比:信噪比是指雷达系统中信号与噪声的功率比。

信噪比的高低直接影响雷达系统的探测能力和探测精度。

信噪比越高,系统的性能越好。

因此,对于雷达信号的测试中,需要评估信噪比的大小。

3. 雷达图像质量:雷达图像质量是指雷达系统生成的图像的清晰度和准确度。

图像质量的好坏直接影响着雷达系统的目标识别和跟踪能力。

在雷达信号测试中,需要评估雷达图像的分辨率、噪声水平、图像畸变等指标。

4. 探测概率和虚警概率:探测概率和虚警概率是评估雷达系统探测性能的重要指标。

探测概率是指雷达系统正确地探测到目标的概率,虚警概率是指雷达系统错误地将噪声或杂波识别为目标的概率。

探测概率和虚警概率的大小直接影响着雷达系统的可靠性和准确性。

5. 目标跟踪精度:目标跟踪精度是指雷达系统对目标的位置、速度等参数估计的准确程度。

目标跟踪精度的高低直接影响着雷达系统的目标追踪能力和目标识别能力。

在雷达信号测试中,需要评估目标跟踪误差、速度估计误差等指标。

6. 可用性和可靠性:可用性和可靠性是评估雷达系统性能的重要指标。

可用性是指雷达系统在给定时间内正常工作的概率,可靠性是指雷达系统在给定时间内完成任务的能力。

可用性和可靠性的高低直接影响着雷达系统的实际应用价值。

7. 频率稳定性:频率稳定性是指雷达系统中发射和接收信号的频率的稳定程度。

频率稳定性的好坏直接影响雷达系统的测量精度和探测距离。

在雷达信号测试中,需要评估雷达系统的频率稳定性。

总结起来,雷达信号测试的参数指标包括信号强度、信噪比、雷达图像质量、探测概率和虚警概率、目标跟踪精度、可用性和可靠性以及频率稳定性等。

调频连续波雷达(FMCW)测距测速原理,看完这篇基本就懂了!

调频连续波雷达(FMCW)测距测速原理,看完这篇基本就懂了!

调频连续波雷达(FMCW)测距测速原理,看完这篇基本就懂了!调频连续波雷达Frequency Modulated Continuous Wave, FMCW雷达按照发射信号种类分成脉冲雷达和连续波雷达两⼤类,常规脉冲雷达发射周期性的⾼频脉冲,连续波雷达发射的是连续波信号。

连续波雷达发射的信号可以是单频连续波(CW)或者调频连续波(FMCW),调频⽅式也有多种,常见的有三⾓波、锯齿波、编码调制或者噪声调频等。

其中,单频连续波雷达仅可⽤于测速,⽆法测距,⽽FMCW雷达既可测距⼜可测速,并且在近距离测量上的优势⽇益明显。

FMCW雷达在扫频周期内发射频率变化的连续波,被物体反射后的回波与发射信号有⼀定的频率差,通过测量频率差可以获得⽬标与雷达之间的距离信息,差频信号频率较低,⼀般为KHz,因此硬件处理相对简单、适合数据采集并进⾏数字信号处理。

FMCW雷达收发同时,理论上不存在脉冲雷达所存在的测距盲区,并且发射信号的平均功率等于峰值功率,因此只需要⼩功率的器件,从⽽降低了被截获⼲扰的概率;其缺点是测距量程较短,距离多普勒耦合以及收发隔离难等缺点。

FMCW雷达具有容易实现、结构相对简单、尺⼨⼩、重量轻以及成本低等优点,在民⽤/军事领域均得到了⼴泛的应⽤。

FMCW雷达框图调频连续波雷达如要由收发器和带微处理器的控制单元组成,收发器如果使⽤单个天线进⾏同时发射和接收,FMCW雷达需要铁氧体环形器来分离发射和接收信号,对隔离度要求较⾼。

当然,若使⽤收发分离的贴⽚天线,成本会相对低⼀点。

⾼频信号由压控振荡器(VCO)产⽣,通过功率分配器将⼀部分经过额外放⼤后馈送⾄发射天线,另⼀部分耦合⾄混频器,与接收的回波混频、低通滤波,得到基带差频信号,经过模数转换后送⾄微处理器处理。

FMCW雷达的测距/测速原理以三⾓波调频连续波为例来简单介绍雷达的测距/测速原理。

如下图,红⾊为发射信号频率,绿⾊为接收信号频率,扫频周期为T,扫频带宽为B,发射信号经过⽬标发射,回波信号会有延时,在三⾓形的频率变化中,可以在上升沿和下降沿两者上进⾏距离测量。

超声波雷达的测距原理

超声波雷达的测距原理

超声波雷达的测距原理超声波雷达是一种利用高频超声波进行测距的无线电波雷达。

它的原理是利用超声波在空气中的传播速度与距离的关系,通过发射和接收超声波信号来测量距离。

超声波的频率通常在20kHz到200kHz之间,这种频率的声波在空气中传播时,具有较强的穿透力和折射力。

因此,超声波雷达可以穿透一定的障碍物,如烟雾、雾气、沙尘等,进行远距离的测量。

超声波雷达的测距原理主要分为两种:时间测距和频率测距。

一、时间测距时间测距是利用超声波在发射和接收之间传播的时间来计算距离。

超声波发射器向目标发射超声波信号,当信号遇到目标时,会被反射回来,经过接收器接收。

接收器接收到信号后,会将信号转换为电信号,然后计算发射和接收之间的时间差,再根据声波在空气中的传播速度计算出距离。

时间测距的优点是精度高,可以达到毫米级别。

但是,它的缺点是受到环境影响较大,如温度、湿度等因素会影响声波在空气中的传播速度,从而影响测距精度。

二、频率测距频率测距是利用超声波的频率变化来计算距离。

当超声波发射器向目标发射超声波信号时,信号会被目标反射回来,经过接收器接收。

接收器接收到信号后,会将信号转换为电信号,并进行频率分析。

由于声波在空气中传播时会受到多次反射和折射,所以接收到的信号会受到多普勒效应的影响,导致频率发生变化。

根据多普勒效应的原理,可以计算出发射器和目标之间的相对速度,进而计算出距离。

频率测距的优点是受环境影响较小,可以适应多种环境条件。

但是,它的缺点是精度较低,一般只能达到厘米级别。

总的来说,超声波雷达的测距原理是利用超声波在空气中的传播速度与距离的关系,通过发射和接收超声波信号来测量距离。

时间测距和频率测距是两种常用的测距方法,它们各有优缺点,需要根据具体的应用场景选择合适的方法。

雷达测量是什么原理的应用

雷达测量是什么原理的应用

雷达测量是什么原理的应用1. 引言雷达(Radar)是一种利用电磁波进行测量和探测的无线通信技术。

它广泛应用于军事、气象、航空、海洋等领域,有着重要的作用。

雷达的测量原理基于电磁波在空间中的传播和反射,本文将介绍雷达测量的原理及其应用。

2. 雷达测量原理雷达测量的基本原理是利用电磁波的传播和反射特性。

雷达系统由发射机、接收机、天线和信号处理系统组成。

其工作流程如下:2.1 发射机发射机负责产生并发射电磁波。

它将射频信号转化为微波信号,并通过天线辐射到空间中。

微波信号的频率通常在几千兆赫至几十吉赫范围内。

2.2 天线天线是雷达系统中非常重要的组成部分,它负责辐射电磁波和接收回波信号。

天线形状多样,常见的有抛物面天线、圆柱面天线等。

天线通过波束形成将辐射功率集中在一个方向上,从而提高测量的准确性。

2.3 接收机接收机接收到回波信号后,将其放大并进行频率变换。

通过解调和滤波等处理,提取出所需的信息。

接收机的性能直接影响到雷达系统的探测能力和测量精度。

2.4 信号处理系统信号处理系统对接收到的信号进行处理和分析。

常见的处理方法包括多普勒处理、目标识别、目标跟踪等。

信号处理的目的是从复杂的回波中提取出目标的相关特征,实现目标的探测和测量。

3. 雷达测量应用雷达测量在各个领域有着广泛的应用,具体包括但不限于以下几个方面:3.1 军事应用雷达在军事领域的应用非常重要。

它可以实现对空中、水下和陆地目标的探测和跟踪,为战争决策提供重要的数据支持。

军事雷达广泛应用于敌我识别、目标追踪、导弹防御等方面,对军事的战略决策具有重大意义。

3.2 气象应用雷达在气象领域的应用主要体现在天气预报和气象研究方面。

气象雷达通过探测降水、云层和风暴等信息,提供准确的天气预报和气象数据。

这对于预防天灾、航空、海上作业等具有重要意义。

3.3 航空应用航空雷达是飞行器导航和交通管制的重要设备。

它可以实时监测航空器的位置、速度和航向等信息,确保安全飞行。

电子对抗原理(1)

电子对抗原理(1)
频率特征的重要性: 频域参数反映了雷达的功能和用途; 雷达的频率捷变范围和谱宽是度量雷达抗干扰能力的重要 指标。
电子对抗原理(1)
1、概述
测频系统主要技术指标
➢测频时间 测频时间是接收机从截获信号到输出测频结果所用的
时间。 测频时间影响侦查系统的截获概率和截获时间。
对侦察接收机来说,一般要求瞬时测频(IFM)。 对于脉冲信号来说,应在脉冲持续时间内完成测频任务, 输出频率测量值fRF。
定度、调谐特性的线性度,以及调谐频率的滞后量有关。
电子对抗原理(1)
1、概述
测频系统主要技术指标
➢测频的信号形式 现代雷达信号形式: 脉冲信号、连续波信号。
脉冲信号 常规的低工作比的脉冲信号 高工作比的脉冲多普勒信号 重频抖动信号 各种编码信号以及各种扩谱信号
强信号对测频的影响
强信号频谱的旁瓣往往遮盖弱信号,引起频率测量模 糊,使频率分辨力降低。
搜索式超外差寄生信道干扰
寄生信道干扰
在混频器中,不仅有主信道,还有很多寄生信道,可能造 成测频错误。通常称这种干扰为混频器的寄生信道干扰,
或混频器组合干扰。
混频器输入端加入信号fR和本振fL,由于混频器非线性, 产生中频fi的关系为:
fI=mfL+nfR 电子对抗原理(1)
2、频率搜索 接收机
搜索式超外差寄生信道干扰
瞬时测频对雷达侦查设备要求: 1)宽的瞬时频带,如一个倍频程,甚至几个倍频程;
2)高的处理速度
电子对抗原理(1)
1、概述
测频系统主要技术指标
截获概率: 在给定的时间内正确地发现和识别给定信号的概率。
全截获概率条件: 接收空间都能与信号空间完全匹配。(实际的侦察接
收机的截获概率均小于1)。

目标的多普勒频率

目标的多普勒频率

目标的多普勒频率目标的多普勒频率是指当目标在雷达接收器的视角内移动时,由于相对运动产生的频率差异。

在雷达应用中,多普勒频率是一种非常有用的信息,它可以提供目标运动状态的关键信息。

在本文中,我们将介绍多普勒效应、多普勒频率的定义、与多普勒频率相关的雷达问题,以及一些用于测量多普勒频率的技术。

多普勒频率的定义是,当雷达接收器和目标之间存在相对运动时,接收到的信号频率与发射信号的频率之差。

如果接收到的频率比发射频率高,则称为正多普勒频率;如果接收到的频率低于发射频率,则称为负多普勒频率。

在雷达中,多普勒频率可以用来推断目标的速度和方向。

如果多普勒频率为正,说明目标在接近雷达;如果多普勒频率为负,则说明目标在远离雷达。

多普勒频率还可以用来消除雷达信号中的多普勒效应,从而提高信号的质量和可靠性。

当目标是地面或海面上的运动物体时,多普勒频率通常是小的。

但是,当目标是高速运动的飞行器时,多普勒频率可能非常高,从而使雷达探测到的信号频率比实际信号的频率更高。

通常在雷达目标距离大于250 m时可以观察到多普勒效应。

因此,雷达系统应该设计得足够敏感以检测出多普勒频率的变化。

在实际应用中,为了测量目标的多普勒频率,一般使用多普勒雷达技术。

多普勒雷达技术可以检测目标的速度和方向,从而提供有关目标动态变化的信息。

其中,脉冲多普勒雷达是使用最广泛的一种多普勒雷达技术。

它在测量多普勒频率时,通过在雷达波束中发射脉冲信号,然后接收反射脉冲信号来实现。

总之,多普勒频率是雷达应用中的重要参数。

通过检测多普勒频率,可以推断目标的位置、速度和方向。

多普勒雷达技术是一种非常有效的方法,可以用来测量多普勒频率。

它在军事、航空、天文和气象等各种领域中得到了广泛的应用。

调频连续波雷达(FMCW)测距测速原理

调频连续波雷达(FMCW)测距测速原理

调频连续波雷达(FMCW)测距测速原理FMCW雷达的工作原理基于多普勒效应和频率测量。

当发射机发送连续变化的频率调制信号时,信号的频率将会随时间线性变化。

这个频率变化的斜率称为调频斜率。

当发射信号经过天线发射出去,在遇到目标后,信号会被目标散射回来,然后被接收天线接收。

当接收天线接收到返回信号时,会将信号和发射信号进行混频处理,将其与发射信号相乘。

这样做的目的是为了提取目标的频率信息。

由于目标的速度不同,返回信号的频率也会有所不同。

根据多普勒效应的原理,当目标向雷达揭示而来时,频率会比发射信号的频率高;相反,当目标远离雷达时,频率会比发射信号的频率低。

接收到的混频信号将通过低通滤波器进行滤波,以去除不想要的频率成分。

然后,信号将被转换成数字信号,通过快速傅里叶变换(Fourier Transform)进行频谱分析。

频谱的峰值表示目标的频率,根据频率的变化可以计算出目标的速度。

根据多普勒频移的公式,测量得到的频移值与目标的速度成正比。

利用目标的速度与雷达到目标的距离之间的关系,可以通过简单的数学运算得到目标的距离。

由于信号频率的线性变化,可以通过测量信号的起始频率和终止频率,以及相应的时间间隔,计算得到距离。

在FMCW雷达系统中,还需要对信号的回波强度进行测量,以评估目标的反射特性。

这可以通过测量接收信号的功率来实现。

通过分析接收到的功率信号,可以确定目标的散射截面积(Cross Section),从而估计目标的大小。

总结起来,FMCW雷达的测距测速原理基于多普勒效应和频率测量。

通过发送频率变化的信号,接收并处理返回信号,测量目标的频率和功率,从而得到目标的距离、速度和反射特性。

这种雷达系统具有高精度、高分辨率和广泛测速范围的优势,广泛应用于交通监测、无人驾驶、气象观测等领域。

毫米波雷达测速原理

毫米波雷达测速原理

毫米波雷达测速原理
毫米波是电磁波的一种,波长介于微波和红外线之间,频率范围在
30GHz到300GHz之间。

相比其他波段的雷达,毫米波雷达具有较高的分
辨率和精度,能够提供更为精确的测速结果。

毫米波雷达测速主要依靠多普勒效应来实现。

当发射的毫米波信号与
目标物体接触后,目标物体的运动会引起信号的频率改变。

根据多普勒效
应的原理,如果目标物体远离雷达,则接收到的信号频率会减小;如果目
标物体靠近雷达,则接收到的信号频率会增大。

通过测量信号的频率差异,毫米波雷达可以计算出目标物体与雷达之
间的速度。

通常,毫米波雷达会使用两个天线来接收信号,一个天线用于
接收静止信号,另一个天线用于接收目标物体的反射信号。

通过比较两个
接收信号的频率差异,可以准确测算物体的速度。

此外,毫米波雷达还可以利用相干测量原理来测速。

相干测量是指通
过测量毫米波信号的相位差,来计算目标物体的速度。

当信号经过目标物
体反射回来时,会与发射时的信号存在不同的相位差。

通过对相位差的测量,可以计算出目标物体的速度。

毫米波雷达测速技术在交通管理、机场安全检查、智能驾驶等领域具
有广泛应用。

由于毫米波具有较高的穿透力和精确度,能够提供更准确的
测量结果,因此在各种复杂环境下都能够取得较好的性能表现。

同时,毫
米波雷达还可以实现实时测速,能够快速准确地获取目标物体的速度信息。

教学课件第2章雷达信号频率的测量

教学课件第2章雷达信号频率的测量

2) 实用的微波鉴相器原理图
U I KA2 cos
UQ KA2 sin
功率 延迟 分配 线
90o电桥
检波 器
差分 放大
鉴相输出信号

UI kA2 cosT UQ kA2 sinT
特点: l 在[0,2]无模糊 l 没有与频率无关的直流分量 输出可用于模拟测频:
tg 1U QU I /T
T是延迟线的延迟时间。
微波鉴相器用于实现信号的自相关运算,因此需要考虑 以下条件:
•相干的基本条件:
T
否则不能进行相关运算。
• 单值测量条件:
f2f11T
这是由最大相移为2决定的,相移与频率的关系为
2 f T
• 简单微波鉴相器的输出信号幅度与输入信号功率成正 比
• 简单微波鉴相器的输出信号中有与频率无关的直流分 量
2. 存在问题
❖信号谱旁瓣引起相邻多信道同时检测,可利 用相邻比较解决; ❖ 信号频率本身处于相邻信道边沿处,可利用 相邻信道处理解决。
动态范围是指保证测频接收机精确测频条件下 信号功率的变化范围,它包括: • 工作动态范围:
保证测频精度条件下的强信号与弱信号的功率 之比,也称为噪声限制动态范围。
• 瞬时动态范围: 保证测频精度条件下的强信号与寄生信号的
功率之比。
3.现代测频技术分类
测频技术
频率取样 变换法
搜索频率窗 搜索超外差接收机 射频调谐晶体视频接收机
2.1 概述
要点: l 重要性 l 主要技术指标 l 技术分类 1.重要性 载波频率是雷达的基本、重要特征,具有相对稳 定性,使信号分选、识别、干扰的基本依据。
2.主要技术指标
1) 测频时间 定义:从信号到达至测频输出所需时间,是确定 或随机的。 要求:瞬时测频,即在雷达脉冲持续时间内完成 载波频率测量。 重要性:直接影响侦察系统的截获概率和截获时 间。

探地雷达参数

探地雷达参数

探地雷达参数引言探地雷达是一种用于检测地下物体的仪器,广泛应用于军事、土木工程、考古学等领域。

在使用探地雷达时,了解和调整合适的参数设置对于获取准确的地下信息至关重要。

本文将介绍探地雷达常用的参数以及它们的作用。

探地雷达参数雷达频率雷达频率是指发送和接收雷达信号的频率。

不同的频率对应不同的探测深度和分辨率。

通常情况下,低频率的信号可以穿透更深的土壤,但分辨率较低;而高频率的信号可以提供更高的分辨率,但穿透深度较浅。

脉冲宽度脉冲宽度是指发送雷达脉冲信号时持续时间。

脉冲宽度与分辨率密切相关,短脉冲宽度可以提供更高的分辨率,但信号能量相对较弱;长脉冲宽度则可以提供更强的信号能量,但分辨率相对降低。

反射系数反射系数是指地下物体对雷达信号的反射程度。

不同的物体具有不同的反射系数,这取决于它们的电磁特性和形状。

通过了解地下物体的反射系数,可以对目标进行识别和定位。

延迟时间延迟时间是指发送雷达信号后接收到反射信号之间的时间差。

通过测量延迟时间,可以确定目标物体与雷达设备之间的距离。

根据测量结果,可以绘制出地下物体的剖面图或三维模型。

接收增益接收增益是指接收到的雷达信号被放大的程度。

调整接收增益可以改变信号强度,从而提高对地下目标的探测能力。

滤波器设置滤波器用于去除或减弱噪音干扰,以便更清晰地观察地下目标。

常见的滤波器设置包括低通滤波、高通滤波和带通滤波等。

数据采集速率数据采集速率是指在一定时间内采集到的数据点数量。

较高的数据采集速率可以提供更多详细信息,但也会导致数据处理和存储方面的挑战。

数据处理算法数据处理算法用于分析和解释探地雷达采集到的数据。

常见的数据处理算法包括时域分析、频域分析、特征提取和图像处理等。

参数调整与优化地下目标特性在调整探地雷达参数之前,了解地下目标的特性非常重要。

不同类型的目标可能需要不同的参数设置才能得到最佳结果。

地质环境地质环境也会对参数设置产生影响。

例如,土壤类型、含水量和盐度等因素都会对雷达信号的传播和反射产生影响,因此需要根据具体情况进行调整。

雷达对抗原理第2章 对雷达信号的频率测量与频谱分析PPT

雷达对抗原理第2章 对雷达信号的频率测量与频谱分析PPT
第2章 对雷达信号的频率测量与频谱分析
第2章 对雷达信号的频率测量与频谱分析
2.1 概述 2.2 频率搜索测频技术 2.3 比相法测频技术 2.4 信道化测频技术 2.5 线性调频变换测频技术 2.6 声光变换测频技术 2.7 对雷达信号的时频分析技术
第2章 对雷达信号的频率测量与频谱分析
2.1 概 述 2.1.1 频率测量和频谱分析的作用与主要技术指标
第2章 对雷达信号的频率测量与频谱分析
2) 无模糊频谱分析范围ΩSF、频谱分辨力ΔfSF和频谱分析 误差δfSF
ΩSF是指频谱分析系统最大可无模糊分析的信号频谱范围; ΔfSF是指输出相邻谱线的最小频率间隔; δfSF是指频谱分析值 与频谱真值之间的偏差。
3) 测频与频谱分析灵敏度sf min和测频与频谱分析的动态
位调制函数j(t)的时间变化率
f
def
t
jt
2πt
它的二阶导数称为调频斜率,即
(2-1)
kFMtdef22πjtt2
对于单载频射频脉冲信号,在其脉冲宽度τPW内,
f t f, k F M 0 ; 0 t P 对雷达信号的频率测量与频谱分析
相位编码调制的射频脉冲除了有限的相位跃变点以外, 脉内其它时刻的频率同式(2-3)。线性调频脉冲的频率和调频 斜率分别为
fRF=fL(t)-fi
(2-
9)
第2章 对雷达信号的频率测量与频谱分析
图2-3 搜索式超外差接收机方框图
第2章 对雷达信号的频率测量与频谱分析
2. 寄生信道干扰及其消除方法 混频器是一种非线性器件,在混频过程中, fL(t)与fs将发 生屡次差拍,只要任何一次差拍频率满足式(2-10),都将在中 放形成输出。其中只有m=1,n=-1(超外差)时的差频为正确 的测频输出(也称为主信道输出),其余那么称为寄生信道干扰。

电子对抗

电子对抗

3)导航战
由于美军推行的是全球作战战略,以 GPS为代表的全球定位导航系统是其全球 作战的必不可少的基本系统。“导航战” 计划是美国国防部“先期概念技术演示” 的一部分,其研究细节极为保密。但据透 露,其研究内容主要是围绕GPS军用所需 的干扰/反干扰技术、作战技术以及在接收 机/卫星/卫星控制等方面的改进技术。
第四是美海军的“先进综合电子战系统” (AIEWS)计划。美海军自90年代初以来,除了 对其70年代开始投入使用的舰载标准电子战系统 AN/SLQ-32(V)不断进行改进升级计划外,并开 始组织实施水面舰艇全面换装SLQ-32(V)的新计 划。1994年初开始重新启动,1996年5月,美海 军决定取消AN/SLQ-32舰用电子战系统的改进 计划,加快实施“先进综合电子战系统” (AIEWS)新计划。
1)电子战系统的综合一体化
美军在电子战系统的综合一体化方面,从 概念到装备技术的研究均投入了大量人力和财力, 目前,已有多项计划投入实施。
首 先 是 INEWS 即 综 合 电 子 战 系 统 计 划 。 INEWS最初是美国空军和海军联合研制的机载一 体化电子战系统,从1983年8月开始公开招标至 今仍在研制过程中,它是为适用90年后期和21世 纪初服役的新一代战斗机(空军F-22和海军的A -12战斗机)研制的至今最高水平的综合一体化 机载电子战系统。
1.1 基本概念及含义
要点: 含义及重要性 基本原理及主要技术特点 雷达对抗与电子战
1. 雷达对抗的含义
雷达对抗是一切从敌方雷达及其武 器系统获取信息(雷达侦察)、破坏或 扰乱敌方雷达及其武器系统的正常工作 (雷达干扰或雷达攻击)的战术技术措 施的总称。
2.雷达对抗的重要性
取得军事优势的重要手段和保证 典型战例1:二次世界大战的诺曼地登陆,盟军 完全掌握了德军德40多不雷达的参数何配置, 通过干扰何轰炸,使德军雷达完全瘫痪。盟军 参战的2127艘舰船,只损失了6艘。 海湾战争:多国部队凭借高技术优势,在战争 的整个过程中使用了各种电子对抗手段,使伊 军的雷达无法工作、通信中断、指挥失灵。双 方人员损失为百人比数十万人。

雷达站实验报告

雷达站实验报告

雷达站实验报告实验目的本次实验的目的是通过搭建一个雷达站,探究其工作原理和应用,并验证雷达站在探测目标、测距和测速等方面的能力。

实验原理雷达(Radar)是利用无线电波进行目标探测和测量的设备。

雷达站由天线、发射器、接收器和信号处理系统组成。

其工作原理是发射一束无线电波,当这些波遇到一个物体时,一部分波会被物体反射回来,接收器便能够接收到反射回来的信号。

通过测量这些接收到的信号的时间差和频率差,可以计算出目标的距离和速度。

实验过程1. 搭建雷达站:按照实验指导书上的步骤,将天线、发射器、接收器和信号处理系统连接好。

确保各部分设备的正常工作。

2. 发射信号:打开发射器,发送一束无线电波。

3. 接收信号:接收器接收反射回来的信号。

4. 信号处理:将接收到的信号进行处理,测量距离和速度。

实验结果经过一段时间的实验操作和数据处理,我们得到了如下的实验结果:1. 目标探测:雷达站成功探测到了周围的物体,包括人、建筑物和车辆等。

2. 距离测量:通过测量信号的时间差,我们成功计算出了各个物体与雷达站的距离。

3. 速度测量:通过测量信号的频率差,我们成功计算出了物体的运动速度。

实验分析根据实验结果,我们可以得出以下分析结论:1. 目标探测:雷达站的目标探测能力非常强大,可以有效地探测到周围的物体,为我们提供了有效的监测和防范手段。

2. 距离测量:通过测量信号的时间差,雷达站可以精准地测量物体与雷达站的距离。

这对于航空、海洋和交通等领域的应用具有重要意义。

3. 速度测量:通过测量信号的频率差,雷达站可以测量物体的运动速度。

这为交通监测、天气预报和航空导航等提供了重要数据支持。

实验总结本次实验通过搭建雷达站,我们深入了解了雷达的工作原理和应用。

通过实验操作和数据处理,我们验证了雷达站在目标探测、测距和测速等方面的能力。

雷达站作为一种重要的监测和测量设备,在航空、海洋、交通和军事等领域有着广泛的应用前景。

参考资料1. 《雷达原理与应用》- 张泽生、朱跃进2. 《雷达与导航》- 祝式熙、冯琳浩、宋继文。

fmcw雷达测距测速测角原理

fmcw雷达测距测速测角原理

fmcw雷达测距测速测角原理
FMCW(频率调制连续波)雷达是一种常用于测距、测速和
测角的技术。

其原理是通过发射连续调频的微波信号并接收回波,利用接收到的回波信号与发射信号之间的频率差来实现测量。

测距原理:在FMCW雷达中,发射器发射的信号频率会逐渐
变化(通常是线性变化),当这个信号遇到目标物体并发生回波时,回波信号的频率也会与发射信号的频率有所不同。

通过测量回波信号与发射信号之间的频率差,可以根据光速的知识计算出目标物体与雷达的距离。

测速原理:当目标物体与雷达相对运动时,回波信号的频率也会存在多普勒效应,即回波信号的频率会发生变化。

利用这个变化的频率可以计算出目标物体的相对速度。

测角原理:FMCW雷达还可以通过两个不同的接收天线来接
收回波信号,并通过对两个接收信号的差异进行处理来实现测量目标物体的方向角。

通过比较两个信号的相位、幅度或时间差等参数,可以计算出目标物体的角度。

总之,FMCW雷达利用发射信号和回波信号之间的频率差,
结合多普勒效应和相位差等特性,可以实现对目标物体的测距、测速和测角。

雷达复习资料

雷达复习资料
经过减法器对消后的输出电压为U。(t)=lg[(Ka/Kb)Fr(t)]它
只与侦察机定向天线的扫描有关。输助支路B不仅能够消除雷
达天线扫描对测向的影响也能够消除发射信号起伏的影响,还
能用于旁瓣匿影。只有当A支路信号电平高于B支路信号电平
时才进行测向处理。
13、(p53)多波束测向技术的基本原理(罗特曼透镜)
为了清除由于雷达天线扫描等因素引起的信号幅度起伏对角度测量的影响,可以增加一个参考支路,它采用无方向性天线,对定向支路中的信号起伏进行对消处理。假设Fr(t),Fa(t)分别为侦察天线和雷达天线的扫描函数,A(t)为脉冲包络函数,则两支路收到的信号分别为Sa(t)=Fa(t)Fr(t)A(t)cosωt;Sb(t)=Fa(t)A(t)cosωt
17、对雷达旁瓣信号的侦察
一般雷达天线主瓣很窄,又处于空间搜索状态,侦察机接收到雷达天线主瓣的辐射信号概率很低,往往需要较长时间,通过提高侦察系统灵敏度,实现对雷达天线旁瓣信号的侦收。旁瓣侦察的作用距离为Rr=[PtGsaveGrλ²/(4π)²Prmin10°`]½Gsave是雷达天线的平均旁瓣增益。实现旁瓣侦察时,侦察接收机的灵敏度需要提高35-40dB
现代测频技术的分类(p15-p16)
2、(p19)射频调谐晶体视频接收机
检波器视放
微波预选器
3、(P19)频率搜索形式:连续搜索(分为单程搜索和双程搜索),步进搜索
4、(P20)频率慢速可靠搜索
Tf≤τn=ZnTr(τn为脉冲群宽度)
满足f2-f1≤(Zn/Z)△fr公式的搜索概率为1,故称为可靠搜索,Z为满足处理机所需的脉冲个数,Tr为脉冲重复周期。频率快速可靠搜索(它与慢速可靠搜索一样,都为全概率搜索)。在脉冲宽度τ内,要搜索完整个侦察频段,即Tf≤τ,故搜索速度应满的扫频速度不宜过大,否则会引起输出幅度的严重下降,导致接收机灵敏度降低

雷达测速仪工作原理

雷达测速仪工作原理

雷达测速仪工作原理引言概述:雷达测速仪是一种常见的交通工具速度检测设备,通过使用雷达技术来测量车辆的速度。

本文将详细介绍雷达测速仪的工作原理,包括信号发送、接收、处理和测速计算等方面。

一、信号发送1.1 频率发射:雷达测速仪通过发射一定频率的电磁波信号,通常是微波频段的信号。

这些信号以一定的速度传播,并在与车辆相遇时发生反射。

1.2 方向控制:雷达测速仪通过调整天线的方向来确定测速的目标区域。

天线通常会以水平方向旋转,以便覆盖整个道路或者特定的车道。

1.3 信号功率:雷达测速仪发送的信号功率通常较小,以确保对车辆和驾驶员的安全没有任何影响。

二、信号接收2.1 反射接收:当雷达测速仪发送的信号与车辆相遇时,一部份信号会被车辆表面反射回来。

这些反射信号会被雷达测速仪的接收天线接收到。

2.2 多普勒效应:根据多普勒效应,当车辆朝向雷达测速仪挨近时,反射信号的频率会增加;当车辆远离时,反射信号的频率会减小。

雷达测速仪通过检测反射信号的频率变化来计算车辆的速度。

2.3 信号处理:接收到的反射信号经过放大和滤波等处理后,被传送到测速仪的处理单元进行后续分析和计算。

三、信号处理3.1 预处理:接收到的反射信号可能包含噪声和其他干扰。

雷达测速仪会对信号进行预处理,包括滤波、增益控制和去除杂散信号等,以提高信号质量。

3.2 速度计算:根据多普勒效应,雷达测速仪可以通过比较发送信号的频率和接收到的反射信号的频率来计算车辆的速度。

速度计算通常基于频率差异的测量,使用特定的算法进行精确计算。

3.3 结果显示:测速仪将计算得到的速度结果显示在设备的屏幕上,供交通执法人员或者驾驶员查看和记录。

四、测速误差4.1 精度限制:雷达测速仪的测速精度受到多种因素的影响,包括天气条件、设备校准和目标车辆的特性等。

因此,在实际应用中,需要根据具体情况对测速结果进行合理的误差范围估计。

4.2 测量范围:雷达测速仪的工作距离和角度范围也会对测速精度产生影响。

雷达信号的分析与信号处理技术研究

雷达信号的分析与信号处理技术研究

雷达信号的分析与信号处理技术研究随着科学技术的不断发展,雷达技术应用得越来越广泛,需要的信号处理技术也越来越复杂。

雷达信号的分析与信号处理技术研究,是雷达技术发展的重要研究方向,也是一项重要的工程实践。

本文将从雷达信号的特点、分析方法、信号处理技术等方面进行探讨。

一、雷达信号的特点雷达系统是利用电磁波来探测、测量、跟踪和识别目标的一种高科技手段。

其中雷达信号是指雷达系统所发送的电磁波信号。

雷达信号与地面目标的反射系数、目标的形状、材料属性等都有关系,其主要特点如下:1. 雷达信号的频率范围广,可从几兆赫至数百千兆赫。

2. 雷达信号在传播过程中会遭受信号衰减、多普勒效应、散射效应等干扰,导致信号失真。

3. 雷达信号的功率很小,与目标的距离和反射特性有关,需要进行信号处理才能提取有用信息。

二、雷达信号的分析方法雷达信号是一种包含多种信息的复杂信号,需要采用合适的方法对其进行分析。

常用的雷达信号分析方法有:1. 时域分析时域分析主要是采用时间序列分析法对雷达信号进行分析。

该方法能提供信号的波形、脉冲宽度、重复频率等信息。

2. 频域分析频域分析主要是采用快速傅里叶变换(FFT)等方法对雷达信号进行频域分析。

该方法能得到信号的幅度、相位、频率等信息,较为常用。

3. 时间-频率分析时间-频率分析方法是将信号在时域和频域上进行联合分析。

多尺度小波分析法是其中重要的一种方法,可以对信号进行局部化分析,得到时间-频率分布图,更好地反映信号的特性。

三、雷达信号的处理技术对于复杂的雷达信号,需要采用不同的信号处理技术进行处理,以得到有用的信息。

常用的雷达信号处理技术有:1. 脉冲压缩技术脉冲压缩技术是一种有效提高雷达分辨率和探测距离的信号处理技术。

该技术通过使短时宽带脉冲经过匹配滤波器得到压缩脉冲,使得系统的分辨率和探测距离得到提高。

2. 多普勒处理技术多普勒处理技术是一种有效提高雷达目标信号检测和跟踪性能的信号处理技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频域参数是最重要的参数之一,它反映了雷达的功能和 用途,雷达的频率捷变范围和谱宽是度量雷达抗干扰能
力的重要指标。
第2章 雷达信号频率的测量
在现代电磁环境下,为了有效干扰,必须首先对信号进行
分选和威胁识别 ,雷达的频率信息是信号分选和威胁识 别的重要参数之一。雷达的频域参数包括载波频率、 频谱和多普勒频率等。本章只讨论对雷达信号载波频 率的测量。
第2章 雷达信号频率的测量
频域的截获概率 ,即通常所说的频率搜索概率。对
于脉冲雷达信号来说,根据给定时间不同,可定义为单个 脉冲搜索概率、脉冲群搜索概率以及在某一给定的搜
索时间内的搜索概率。单个脉冲的频率搜索概率为
f r PIF 1 f 2 f1
(2―1)
第2章 雷达信号频率的测量
式中,Δfr为测频接收机的瞬时带宽;f2-f1为测频范围,
意义的。这里所说的同时到达信号是指两个脉冲的前
沿时差 Δt<10ns 或 10ns<Δt<120ns, 称前者为第一类同时 到达信号。后者为第二类同时到达信号。由于信号环 境的日益密集 ,两个以上信号在时域上重叠概率日益增 大,这就要求测频接收机能对同时到达信号的频率进行 分别精确测量,而且不得丢失其中弱信号。
第2章 雷达信号频率的测量
第 2章
雷达信号频率的测量
2.1 概述 2.2 频率搜索接收机
2.3 比相法瞬时测频接收机
2.4 信道化接收机
2.5 压缩接收机
2.6 声光接收机
第2章 雷达信号频率的测量
2.1
概述
2.1.1 雷达信号频率测量的重要性 雷达侦察系统的使命在于确定敌方雷达的存在与
否,并测定其各种特征参数。在雷达的各种特征参数中,
第2章 雷达信号频率的测量
2.1.2 测频系统的主要技术指标
1.测频时间 测频时间是接收机从截获信号到输出测频结果所 用的时间。对侦察接收机来说,一般要求瞬时测频(IFM)。 对于脉冲信号来说,应在脉冲持续时间内完成测频任务,
输出频率测量值fRF。为了实现这个目标,首先必须有宽
的瞬时频带 , 如一个倍频程 , 甚至几个倍频程 ; 其次要有 高的处理速度,应采用快速信号处理。
特性的线性度以及调谐频率的滞后量等因素有关。
第2章 雷达信号频率的测量
3.测频的信号形式
现代雷达的信号种类很多 ,可分为两大类:脉冲信号 和连续波信号。在脉冲信号中,有常规的低工作比的脉
冲信号、高工作比的脉冲多普勒信号、重频抖动信号、
各种编码信号以及各种扩谱信号 ;强信号频谱的旁瓣往 往遮盖弱信号,引起频率测量模糊,使频率分辨力降低。 对于扩谱信号 ,特别是宽脉冲线性调频信号的频率测量 和频谱分析,不仅传统测频接收机无能为力,而且有些新 的测频接收机也有困难 ,这有待于新型的数字化接收机 来解决。
第2章 雷达信号频率的测量
允许的最小脉冲宽度τmin 要尽量窄。被测信号的脉
冲宽度上限通常对测频性能影响不大 ,而脉冲宽度的下 限往往限制测频性能。脉冲宽度越窄,频谱越宽,频率模 糊问题越严重,截获概率和输出信噪比越小。
第2章 雷达信号频率的测量
4. 同时到达信号的分离能力
对于脉冲信号来说,两个以上的脉冲前沿严格对准 的概率是很小的 ,因而理想的同时到达信号是没有实际
第2章 雷达信号频率的测量
测频时间直接影响到侦察系统的截获概率和截获
时间。截获概率是指在给定的时间内正确地发现和识 别给定信号的概率。截获概率既与辐射源特性有关 ,也
与电子侦察系统的性能有关。如果在任一时刻接收空
间都能与信号空间完全匹配,并能实时处理,就能获得全 概率 , 即截获概率为 1,这种接收机是理想的电子侦察接 收机。实际的侦察接收机的截获概率均小于1。
非搜索的瞬时测频,单个脉冲的截获时间
tIF1≤Tr+tth (2―2)
式中,Tr为脉冲重复周期;tth为电子侦察系统的通过 时间,即信号从接收天线进入到终端设备输出所需要的 时间。
第2章 雷达信号频率的测量
2.测频范围、瞬时带宽、频率分辨力和测频精度
测频范围是指测频系统最大可测的雷达信号频率 范围;瞬时带宽是指测频系统在任一瞬间可以测量的雷 达信号频率范围;频率分辨力是测频系统所能分开的两 个同时到达信号的最小频率差。宽开式晶体视频接收 机的瞬时带宽与测频范围相等 ,因此对单个脉冲的频率 截获概率为1,可是频率分辨力却很低。而窄带扫频超外 差接收机,瞬时带宽很窄,其频率分辨力等于瞬时带宽,对 单个脉冲截获概率虽很低,但其频率分辨力却很高。
第2章 雷达信号频率的测量
可见,传统的测频接收机在频率截获概率和频率分 辨力之间存在着矛盾。目前,信号环境中的信号日益密 集、频率跳变的速度与范围越来越大 ,这就迫切要求研 制新型的测频接收机,使之既在频域上宽开,截获概率高, 又要保持较高的分辨力。
测频误差是指测量得到的信号频率值与信号频率 的真值之差,常用均值和方差来衡量测频误差的大小。 按起因,可将测频误差分为两类:系统误差和随机误差。 系统误差是由测频系统元器件局限性等因素引起的 ,它 通常反映在测频误差的均值上,通过校正可以减小;随机 误差是噪声等随机因素引起的 ,它通常反映在测频误差 的方差上,
即侦察频段。譬如Δfr=5MHz,f2-f1=1GHz,则PIF1=5×10-3, 可见是很低的。若能在测频范围内实现瞬时测频,即
Δfr=f2-f1,于是PIF1=1。
第2章 雷达信号频率的测量
截获时间是指达到给定截获概率所需要的时间。
它也与辐射源特性及侦察系统的性能有关。对于脉冲 雷达信号来说 ,在满足侦察基本条件的情况下,若采用
第2章 雷达信号频率的测量
5.灵敏度和动态范围
灵敏度是测频接收机检测弱信号能力的象征。正 确地发现信号是测量信号频率的前提,要精确地测频,特 别是数字式精确测频,被测信号必须比较干净,即有足够 高的信噪比。如果接收机检波前的增益足够高 ,则灵敏 度是由接收机前端器件的噪声电平确定的 ,通常称之为 噪声限制灵敏度。如果检波器前的增益不够高 ,则检波 器和视放的噪声对接收机输出端的信噪比影响较大 ,这 时接收机的灵敏度称为增益限制灵敏度。
第2章 雷达信号频率的测量
可以通过多次测量取平均值等统计方法减小。一
般,把测频误差的均方根误差称为测频精度,测频误差越 小,测频精度越高。对于即
f max
1 f r 2
(2―3)
可见, 瞬时带宽越宽 , 测频精度越低。对于超外差接 收机来说 ,它的测频误差还与本振频率的稳定度、调谐
相关文档
最新文档