数学建模的最优化方法
数学建模方法与分析
数学建模方法与分析
数学建模是利用数学方法解决实际问题的过程。
数学建模的一般步骤包括问题定义、建立数学模型、模型求解和结果分析等阶段。
数学建模方法可以分为多种,常见的方法包括:
1. 数据分析:通过统计分析和数据挖掘等方法,对问题中的数据进行处理和分析,找出其中的规律和趋势。
2. 最优化方法:根据问题的要求,建立相应的数学规划模型,通过求解最优化问题,得到最优解。
3. 随机模型:将问题建立为随机过程或概率模型,通过概率统计的方法进行分析和求解。
4. 系统动力学模型:将问题建立为动态系统模型,通过系统动力学的方法分析系统的行为和演化规律。
5. 图论和网络分析:将问题建立为图模型或网络模型,通过图论和网络分析的方法研究其结构和性质。
6. 分数阶模型:将问题建立为分数阶微分方程或分数阶差分方程,通过分数阶
微积分的方法进行分析和求解。
数学建模的分析阶段是对模型求解结果进行解释和评估。
分析结果可以包括对模型的可行性和有效性进行验证,对模型的优化方向进行探讨,以及对问题的解释和解决方案的提出等。
总的来说,数学建模方法与分析是数学建模过程中重要的环节,通过合理选择建模方法和深入分析模型结果,可以得到对实际问题有价值的解决方案。
数学建模的主要建模方法
数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。
它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。
数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。
下面将分别介绍这些主要建模方法。
1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。
它适用于对大量数据进行分析和归纳,提取有用的信息。
数理统计法可以通过描述统计和推断统计两种方式实现。
描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。
2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。
它可以用来寻找最大值、最小值、使一些目标函数最优等问题。
最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。
这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。
3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。
这种方法适用于可以用一些基本的方程来描述的问题。
方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。
通过求解这些方程,可以得到问题的解析解或数值解。
4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。
它可以用来处理随机变量、随机过程和随机事件等问题。
概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。
利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。
5.图论方法:图论方法是研究图结构的数学理论和应用方法。
它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。
图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。
最优化问题的建模与解法
最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。
最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。
本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。
一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。
1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。
例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。
类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。
约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。
最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。
例如,对于一个实数变量x,可能需要设定其上下界限。
变量范围的设定可以通过添加额外的不等式约束来实现。
二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。
1. 数学方法数学方法是通过数学分析来求解最优化问题。
其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。
最优性条件包括可导条件、凸性条件等。
(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。
2. 计算方法计算方法是通过计算机来求解最优化问题。
数学建模~最优化模型(课件)
投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
数学建模的最优化方法
8
x1
,
ห้องสมุดไป่ตู้
25 x2
x1 0
815
x2
1800
运用最优化方法解决最优化问题的一般 方法步骤如下:
①前期分析:分析问题,找出要解决的目标,约束条件, 并确立最优化的目标。
②定义变量,建立最优化问题的数学模型,列出目标函 数和约束条件。
③针对建立的模型,选择合适的求解方法或数学软件。
④编写程序,利用计算机求解。
目标函数:获得的总收益最大。 总收益可表示为:R 10x1 5x2 受一级黄豆数量限制:0.3x1 0.4x2 9
受二级黄豆数量限制:0.5x1 0.2x2 8
综上分析,得到该问题的线性规划模型
max R 10x1 5x2
0.3x1 0.4x2 9
s.t.
0.5x1 0.2x2 8
1、无约束极值问题的数学模型
min f (x) x
2、约束条件下极值问题的数学模型
min f (x) x
s.t. gi (x) 0, i 1, 2,..., m hi (x) 0, i 1, 2,..., n
其中,极大值问题可以转化为极小值问题来
进行求解。如求: max f (x) x 可以转化为:min f (x) x
ans = 175
ans = 10 15
线性规划
设某工厂有甲、乙、丙、丁四个车间,生产 A、B、C、D、E、F六种产品。根据机床性能 和以前的生产情况,得知每单位产品所需车间的 工作小时数、每个车间在一个季度工作小时的上 限以及单位产品的利润,如下表所示(例如,生产
一个单位的A产品,需要甲、乙、丙三个车间分别工作1
其中等式(3)、(4)、(5)的右边可选用(1)或(2) 的等式右边.
最新数学建模--最优化方法 31
定理3.4.4 对正定二次函数 由上面三式所确定共扼方向并采用精确一维 搜索得到的共扼梯度法,在m(≤n)次迭代后可 函数的极小点,并且对所有i(1≤i≤m)有
其中
301
FR算法
为了能将上述方法用于其它函 数,我们必须消去系数中的G. (1)Flecher-Reeves公式
3.02e-9
0.001843
30 (1+1.31e-7,1+2.69e-7)T
2.21e-14 2.89e-6
40 (1+0.51e-9,1+1.03e-9)T
2.79e-19 5.40e-9
50 (1+2.10e-12,1+4.26e-12)T 4.74e-24 2.16e-11
54 (1-1.14e-13,1-2.51e-13)T 6.14e-26 9.63e-12
f(xk) 1
||g(xk) || 2
1 (0.161264,0)T
0.771110 5.201215
2 (0.292861,0.050603)T
0.623703 7.535261
10 (1.006492,1.015405)T
6.07e-4
1.057204
20 (1.000035,1.000074)T
55 (1-1.42e-13,1-2.86e-13)T 2.06e-26 5.55e-13
从最后两组数据可以看出,虽然函数值下降,但 是迭代点离最优点的距离却有所增加.
308
对于PRP算法,计算过程类似. 计算15步收敛, x*≈(1,1)T 对于此例,PRP方法比FR方法收敛快. 计算结果见下表.
13 (1-0.69e-11,1-1.35e-11)T
数学建模方法详解三种最常用算法
数学建模方法详解三种最常用算法在数学建模中,常使用的三种最常用算法是回归分析法、最优化算法和机器学习算法。
这三种算法在预测、优化和模式识别等问题上有着广泛的应用。
下面将对这三种算法进行详细介绍。
1.回归分析法回归分析是一种用来建立因果关系的统计方法,它通过分析自变量和因变量之间的关系来预测未知的因变量。
回归分析可以通过构建一个数学模型来描述变量之间的关系,并利用已知的自变量值来预测未知的因变量值。
常用的回归分析方法有线性回归、非线性回归和多元回归等。
在回归分析中,我们需要首先收集自变量和因变量的样本数据,并通过数学统计方法来拟合一个最优的回归函数。
然后利用这个回归函数来预测未知的因变量值或者对已知数据进行拟合分析。
回归分析在实际问题中有着广泛的应用。
例如,我们可以利用回归分析来预测商品销售量、股票价格等。
此外,回归分析还可以用于风险评估、财务分析和市场调研等。
2.最优化算法最优化算法是一种用来寻找函数极值或最优解的方法。
最优化算法可以用来解决各种优化问题,例如线性规划、非线性规划和整数规划等。
最优化算法通常分为无约束优化和有约束优化两种。
无约束优化是指在目标函数没有约束条件的情况下寻找函数的最优解。
常用的无约束优化算法有梯度下降法、共轭梯度法和牛顿法等。
这些算法通过迭代计算来逐步优化目标函数,直到找到最优解。
有约束优化是指在目标函数存在约束条件的情况下寻找满足约束条件的最优解。
常用的有约束优化算法有线性规划、非线性规划和混合整数规划等。
这些算法通过引入拉格朗日乘子、KKT条件等来处理约束条件,从而求解最优解。
最优化算法在现实问题中有着广泛的应用。
例如,在生产计划中,可以使用最优化算法来确定最优的生产数量和生产计划。
此外,最优化算法还可以应用于金融风险管理、制造工程和运输物流等领域。
3.机器学习算法机器学习算法是一种通过对数据进行学习和模式识别来进行决策和预测的方法。
机器学习算法可以根据已有的数据集合自动构建一个模型,并利用这个模型来预测未知的数据。
最优化方法解可新
最优化方法解可新最优化问题是数学建模中一个重要的问题类别,它的主要目标是在给定一些约束条件下找到一个使得目标函数取得最大或最小值的最优解。
最优化方法是解决这类问题的一种有效手段,通过对问题进行数学建模和算法求解,可以得到最优解或近似最优解。
最优化问题可以分为无约束优化和有约束优化两类。
在无约束优化问题中,目标函数的优化不受约束条件的限制;而在有约束优化问题中,目标函数的优化需要满足一定的约束条件。
下面将分别介绍无约束优化和有约束优化的最优化方法。
一、无约束优化的方法:1. 梯度下降法(Gradient Descent):梯度下降法是最为常用的无约束优化方法之一。
它通过迭代的方式不断地沿着目标函数梯度的反方向更新参数,直至达到收敛条件。
梯度下降法的核心思想是利用函数的导数信息进行搜索,从而找到函数的最小值点。
2. 牛顿法(Newton Method):牛顿法是一种基于函数局部二阶泰勒展开的优化方法。
它通过迭代的方式利用目标函数的一阶和二阶导数信息来求解最优解。
牛顿法在每次迭代时通过求解线性方程组来计算更新的步长,因此通常具有更快的收敛速度。
3. 拟牛顿法(Quasi-Newton Method):拟牛顿法是对牛顿法的改进,它通过估计目标函数的二阶导数信息来近似求解最优解。
拟牛顿法不需要计算目标函数的二阶导数,而是通过迭代更新一个代表二阶导数信息的矩阵。
拟牛顿法比牛顿法更加稳定和易于实现,因此被广泛应用于实际问题中。
二、有约束优化的方法:1. 线性规划(Linear Programming):线性规划是求解线性约束下的最优解的一种方法。
它的目标函数和约束条件均为线性函数,可以利用线性规划的特殊结构进行高效求解。
线性规划在工程、经济和管理等领域有广泛应用,如生产调度、资源分配等问题。
2. 非线性规划(Nonlinear Programming):非线性规划是求解非线性约束下的最优解的方法。
它的目标函数和/或约束条件为非线性函数,常常需要使用数值优化方法进行求解。
数学建模中常用的十种算法
数学建模中常用的十种算法在数学建模中,常用的算法有很多种。
以下是数学建模常用的十种算法:1.线性回归算法:线性回归是一种用于建立变量之间线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合直线。
2.非线性回归算法:非线性回归是一种用于建立变量之间非线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合曲线。
3.最小二乘法算法:最小二乘法是一种用于估计模型参数的优化算法。
它通过最小化观测值与预测值之间的平方差来确定最佳参数值。
4.插值算法:插值是一种用于根据已知数据点推断未知数据点的技术。
其中常用的算法包括线性插值、拉格朗日插值和样条插值。
5.数值积分算法:数值积分是一种用于计算函数的定积分的技术。
其中常用的算法包括梯形法则、辛普森法则和龙贝格积分。
6.数值优化算法:数值优化是一种用于求解最优化问题的技术。
其中常用的算法包括梯度下降法、牛顿法和拟牛顿法。
7.图形算法:图形算法是一种用于处理图像和图形数据的技术。
其中常用的算法包括图像滤波、图像分割和图像识别。
8.聚类算法:聚类是一种用于将数据集分组为不同类别的技术。
其中常用的算法包括K均值聚类、层次聚类和DBSCAN。
9.分类算法:分类是一种用于将数据分为不同类别的技术。
其中常用的算法包括支持向量机、决策树和随机森林。
10.贝叶斯算法:贝叶斯算法是一种用于计算后验概率的统计推断方法。
其中常用的算法包括贝叶斯分类、朴素贝叶斯和马尔科夫链蒙特卡洛。
以上是数学建模中常用的十种算法,它们在不同的应用领域和问题中具有广泛的应用价值,并且常常可以相互结合以获得更好的建模结果。
数学建模常用算法模型
数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。
在数学建模中,算法模型是解决问题的关键。
下面介绍一些常用的数学建模算法模型。
1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。
线性规划模型的目标函数和约束条件均为线性函数。
线性规划广泛应用于供需平衡、生产调度、资源配置等领域。
2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。
非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。
3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。
整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。
4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。
动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。
5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。
随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。
6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。
进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。
7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。
神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。
8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。
模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。
除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。
不同的问题需要选择合适的算法模型进行建模和求解。
数学建模算法模型的选择和应用需要根据具体的问题和要求进行。
数学建模方法详解三种最常用算法
数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。
在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。
一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。
它的数学形式是以线性约束条件为基础的最优化问题。
线性规划的基本假设是目标函数和约束条件均为线性的。
线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。
线性规划的求解方法主要有两种:单纯形法和内点法。
单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。
内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。
二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。
整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。
整数规划的求解方法通常有两种:分支定界法和割平面法。
分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。
割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。
三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。
多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。
动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。
动态规划通常分为两种形式:无后效性和最优子结构。
无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。
最优子结构是指问题的最优解能够由子问题的最优解推导而来。
数学建模中的最优化算法
数学建模中的最优化算法数学建模是一项综合性强、难度较大的学科,涉及到数学和实际问题的结合。
在数学建模中,最常见的问题是优化问题,即在给定的约束条件下,求出最优解。
最优化算法是解决优化问题的重要手段,包括线性规划、非线性规划、动态规划等。
这些算法在不同的问题中有不同的应用,下面我们将分别介绍。
一、线性规划线性规划是一种数学工具,它可以在一系列线性约束条件下最大化或最小化具有线性关系的目标函数。
在数学建模中,线性规划被广泛应用于资源分配问题、制造流程优化等方面。
线性规划的求解方法主要有单纯形法、对偶理论、内点法等。
其中单纯形法是最常用的方法之一,它通过迭代搜索寻找最优解。
但是对于规模较大的问题,单纯形法的效率会降低,因此近年来对于线性规划的求解,研究者们也开始关注内点法这种算法。
内点法通过可行路径寻找最优解,因此在理论和实际的问题中都有广泛的应用。
二、非线性规划非线性规划主要是解决一些非线性问题,这种问题在实际问题中很常见。
与线性规划不同的是,非线性规划的目标函数往往是非线性的。
非线性规划的求解方法主要有牛顿法、梯度法、共轭梯度法等。
其中,牛顿法是一种迭代法,通过利用函数的一、二阶导数进行求解。
梯度法则是利用函数的一阶导数进行搜索最优解。
共轭梯度法是一种联合使用前两种方法的算法,比前两种算法更加高效。
三、动态规划动态规划是一个将一个问题分解为相互重叠的子问题的技巧,并将子问题的解决方法组合成原问题的解决方法。
动态规划的优势在于能够处理具有重叠子问题和最优子结构等性质的问题。
在数学建模中,动态规划通常被用来处理具有最优子结构的优化问题。
动态规划的求解方法主要有记忆化搜索、状态转移方程等。
其中,记忆化搜索是一种保存结果以便后续使用的技术。
状态转移方程则是一种寻找题目的最优子结构的方法,它通过减小问题规模寻找最优解。
总之,数学建模中的最优化算法是解决现实问题的有效手段。
通过学习和掌握这些算法,我们可以更加深入地理解和解决实际问题。
浅谈最优化方法在数学建模中的应用
clf.fit(X_train, y_train)
#在测试集上评估模型
score = clf.score(X_test, y_test)
print("Accuracy:", score)
案例分析让我们以一个简单的分类问题为例来分析最优化方法的应用。假设我 们有一个简单的二分类问题,我们希望通过建立一个分类器来预测样本的类别。 我们可以使用Scikit-learn中的SGDClassifier类来实现梯度下降法,该类使 用了随机梯度下降法来最小化损失函数,进而求解最优分类器。
最优化方法在数学建模中的优点 和不足
优点: 1、能够找到问题的最优解,提高决策效率和准确性; 2、可以处理多目标、多约束条件的问题,具有广泛的应用范围;
3、可以通过数学软件和算法实现自动化求解,降低人力成本。 不足: 1、某些情况下,最优化问题可能没有可行解或者最优解,需要谨慎处理;
2、最优化方法的效率取决于问题的复杂性和规模,对于大规模、高维度的问 题,求解时间可能较长;
三、案例分析
以一个简单的投资组合优化问题为例,说明最优化方法在数学建模中的应用。 假设投资者有10万元资金可用于投资,共有5只股票可供选择。投资者希望在 风险可控的情况下,最大化收益。为此,我们需要建立一个数学模型来描述这 个问题。
首先,我们需要确定投资组合中每种股票的投资比例。设x1,x2,x3,x4,x5分 别为五种股票的投资比例,则有以下限制条件: xi>=0, i=1,2,3,4,5 (1) xi<=1, i=1,2,3,4,5 (2) sum(xi)=1 (3)
在这个例子中,我们使用了Iris数据集进行训练和测试。首先,我们使用 train_test_split函数将数据集划分为训练集和测试集。然后,我们使用 SGDClassifier类来建立模型并训练。最后,我们使用测试集来评估模型的性 能。通过这个例子,我们可以看到最优化方法在数学建模中的应用以及 Scikit-learn的方便之处。
数学建模优化课件
一、数学建模的理解例子:二、经典最优化方法1、微分与极值2、无约束极值问题3、约束极值问题三、无约束优化问题数值解法(向量)1、最优梯度法(梯度下降法)2、牛顿法3、共轭梯度法4、阻尼牛顿法5、变尺度法1.1 无约束优化的一般形式无约束非线性规划问题为其最优解通常都是局部最优解,寻找全局最优解需要对局部最优解进行比较以后得到(如果能够求出所有局部最优解的话)。
1.2 最优性条件是最优解的必要条件为;充分条件为,且正定。
1.3 下降法的基本思想在迭代的第k步,确定一个搜索方向和一个步长,使沿此方向、按此步长走一步到达下一点时,函数值下降。
其基本步骤为1)选初始解;2)对于第次迭代解,确定搜索方向并在此方向确定搜索步长令,使<;3)若符合给定的迭代终止原则,停止迭代,最优解;否则,转2。
搜索方向的选择(不同方向产生不同的算法):1)最速下降法(梯度法)2)牛顿法3)拟牛顿法:利用第和步得到的,用BFGS公式,DFP公式,GM公式等迭代公式构造正定矩阵近似代替,或直接构造近似代替,从而由,或得到下降方向d k+1。
搜索步长的确定——线性搜索:用二分法、黄金分割法(即0.618法)、Fibonacci 法,牛顿切线法和割线法,插值方法等近似方法求一维优化问题:来确定步长。
2.1 非线性最小二乘拟合问题有一组数据要拟合一个已知函数y=f(x, t), x=(x1,x2,…,xm),, x为待定系数。
记误差,,拟合误差定义为的平方和,于是问题表示为如下的优化模型:当对(的某些分量)是非线性函数时,称非线性最小二乘拟合。
四线性规划1、线性规划的数学模型某工厂安排生产1、2两种产品,2、线性规划的图解法单纯形及其求解法1.1 线性规划的图解法线性规划的图解法只能用于求解两个决策变量(2维)的情形。
由于线性规划的约束条件和目标函数均为线性函数,所以对于2维情形,可以在平面坐标系下画出可行域和目标函数的等值线。
最优化问题的数学建模步骤
最优化问题的数学建模步骤
最优化问题的数学建模步骤可以分为以下几个步骤:
1. 指定目标函数:首先需要明确最优化问题的目标函数,即要优化的量。
这个函数通常是与实际问题相关的一些指标,例如成本、收益、效率等等。
2. 确定决策变量:在确定目标函数后,需要确定决策变量,即可以控制或调整的参数或变量。
这些变量的取值可以影响目标函数的值,因此需要选择最优的取值。
3. 建立约束条件:除了目标函数和决策变量外,还需要考虑一些约束条件。
这些约束条件通常是实际问题的限制条件,例如资源限制、技术限制、法规限制等等。
4. 建立数学模型:将目标函数、决策变量和约束条件用数学语言表达出来,建立数学模型。
这个模型通常是一个优化问题的数学表示形式,可以使用线性规划、非线性规划、整数规划等方法进行求解。
5. 求解最优解:根据建立的数学模型,使用相应的优化方法求解最优解。
这个最优解是指在满足约束条件的前提下,使目标函数取得最大值或最小值的决策变量取值。
6. 验证和分析:最后需要对求解结果进行验证和分析,看看是否符合实际需求,是否满足实际约束条件等等。
如果结果不满足要求,需要重新调整模型或重新选择优化方法进行求解。
以上是最优化问题的数学建模步骤,通过这些步骤可以将实际问题转化为数学问题,并使用数学方法进行求解,得到最优的决策方案。
数学建模案例分析最优化方法建模动态规划模型举例
§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。
多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。
例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。
因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。
(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。
(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。
随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。
使用时间俞长,处理价值也俞低。
另外,每次更新都要付出更新费用。
因此,应当如何决定它每年的使用时间,使总的效益最佳。
动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。
(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。
通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。
(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。
各阶段的状态通常用状态变量描述。
常用k x 表示第k 阶段的状态变量。
n 个阶段的决策过程有1+n 个状态。
用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。
即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。
(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。
描述决策的变量称为决策变量。
决策变量限制的取值范围称为允许决策集合。
用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。
数学建模中的主要方法和应用
数学建模中的主要方法和应用数学建模是当今现代科学技术发展中的重要组成部分,它将数学方法、计算机技术与实际问题结合,通过数学模型建立、分析和求解实际问题,为人类社会的发展提供了巨大的支持和帮助。
数学建模方法丰富多彩,如最优化方法、微分方程模型、图论模型和随机过程模型等,其中最常用的是最优化方法和微分方程模型。
下面将从理论和实践两个方面展开介绍,重点讲述数学建模中最常用的方法及其应用。
一、最优化方法最优化方法是数学建模中应用广泛的一种方法,它是求解优化问题的一类数学算法。
在数学建模中,最优化方法的应用范围非常广泛,可以用于优化问题的建模与求解,如在工业生产中,我们需要在保证质量的前提下尽量节约原材料和能源,这时就可以采用最优化方法建立优化模型。
最优化方法按不同的算法分类,可以分为线性规划、非线性规划和动态规划等,其中线性规划是最为常见和基础的一种方法。
线性规划的求解一般采用单纯形法,通过计算确定最优解。
非线性规划是线性规划的扩展,它是求解目标函数不是线性函数的规划问题。
非线性规划的求解方法有牛顿法和梯度下降法等,这些方法都需要利用微积分的基础知识。
对于一个复杂的优化问题,在建立模型的过程中,最关键的就是确定目标函数。
一个好的目标函数需要具备可行性、一致性、可表达性和可求解性等特点。
在具体求解过程中,还需要对目标函数进行求导,确定优化点,并验证该点是否为全局最优解。
二、微分方程模型微分方程模型是数学建模中常用的一种方法,它是利用微积分的基础知识建立模型,解决与时间有关的问题。
在实际生活中,许多问题都与时间有关,如人口增长、物种灭绝、气候变化等,这些问题的变化过程都可以通过微分方程模型进行描述和分析。
微分方程模型按不同级别分类,可以分为一阶微分方程、二阶微分方程和高阶微分方程等,其中最为常用的是一阶微分方程。
一阶微分方程是指微分方程中未知函数的导数最高次数为一的情况,它可以描述很多与时间相关的变化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数fminbnd的算法基于黄金分割法和二次插值法,它要求 目标函数必须是连续函数,并可能只给出局部最优解.
MATLAB(wliti1)
例 1 求 x = 2ex sin x 在 0< x <8 中的最小值与最大值.
主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8)
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
output= iterations: 108 funcCount: 202
algorthm: 'Nelder-Mead simplex direct search '
有约束最优化
最优化方法分类
(一)线性最优化:目标函数和约束条件都是线 性的则称为线性最优化。
解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:
(8 25 2% x1 8 15 5% x2 ) 2 8x1 12 x2
故目标函数为:
min z (32 x1 24 x2) (8x1 12 x2 ) 40 x1 36 x2
x1, x2 0
用Matlab编程求解程序如下:
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) f = -[10 5]; A = [0.3 0.4;0.5 0.2]; B = [9;8]; [X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b)
f1='-2*exp(-x).*sin (x)'; [xmax,ymax]=fminbnd (f1, 0,8)
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?
X= 10.0000 15.0000
FVAL = -175.0000
用YALMIP编程求解程序如下: x=sdpvar(1,2); C=[10 5]; a=[0.3 0.4;0.5 0.2];b=[9 8]; f=C*x'; F=set(0<=x<=inf); F=F+set(a*x'<=b'); solvesdp(F,-f) double(f) double(x)
或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
x1
4
x2
16 12
x1, x2 0
问题二: 某厂每日8小时的产量不低于1800件.为了进行质量
控制,计划聘请两种不同水平的检验员.一级检验员的标准为: 速度25件/小时,正确率98%,计时工资4元/小时;二级检验员 的标准为:速度15件/小时,正确率95%,计时工资3元/小时.检 验员每错检一次,工厂要损失2元.为使总检验费用最省,该工 厂应聘一级、二级检验员各几名?
于是,我们可建立如下数学模型:
6
max z c j x j j 1
s.t.
6
aij x j bi
j 1
0
xj
bi ,且为整数 m1aix4 {aij}
计算结果:
i 1,2,3,4 j 1,2,3,4,5,6
Z(百元) x1
x2
x3
x4
x5
x6
1320
0
0
60 40 100 40
最优化模型
一、最优化方法概述 二、无约束最优化问题 三、无约束最优化问题的 MATLAB求解 四、有约束最优化问题
最优化方法概述
1、最优化理论和方法是近二十多年来发展十分迅 速的一个数学分支。
2、在数学上,最优化是一种求极值的方法。 3、最优化已经广泛的渗透到工程、经济、电子技
术等领域。
• 在实际生活当中,人们做任何事情,不管是分 析问题,还是进行决策,都要用一种标准衡量
MATLAB(wliti2)
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边 长为0.5m时水槽的容积最大,最大容积为2m3.
2.多元函数无约束优化问题
标准型为:min F(X )
命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options);
1、无约束极值问题的求解
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。
解:令f(x)=y=2x3+3x2-12x+14
f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142, 综上得, 函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
max f (x) x
s.t. ......
其中f(x)为目标函数,省略号表示约束式子,可以是 等式约束,也可以是不等式约束。
最优化方法主要内容
根据目标函数,约束条件的特点将最优 化方法包含的主要内容大致如下划分:
线性规划 整数规划 非线性规划 动态规划 多目标规划
对策论
两个引例
问题一:某工厂在计划期内要安排生产I、II两种产品, 已知生产单位产品所需的设备台时及A、B两种原材料的 消耗,如下表所示
小时、2小时和4小时)
问:每种产品各应该每季度生产多少,才能使这 个工厂每季度生产利润达到最大。
生产单位
每个车间
ห้องสมุดไป่ตู้
产品所需 车间的工
A
B
C
D
E
F
一个季度 工作小时
作小时数
的上限
甲
11 1 3 2
3
500
乙
2
55
500
丙
42
5
500
丁
13
8
500
利润 (百元) 4.0 2.4 5.5 5.0 4.5 8.5
解 设剪去的正方形的边长为 x ,则水槽的容积为: (3 2x)2 x
建立无约束优化模型为:min y =- (3 2x)2 x , 0< x <1.5
先编写M文件fun0.m如下:
function f=fun0(x)
f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
目标函数:获得的总收益最大。 总收益可表示为:R 10x1 5x2 受一级黄豆数量限制:0.3x1 0.4x2 9
受二级黄豆数量限制:0.5x1 0.2x2 8
综上分析,得到该问题的线性规划模型
max R 10x1 5x2
0.3x1 0.4x2 9
s.t.
0.5x1 0.2x2 8
ans = 175
ans = 10 15
线性规划
设某工厂有甲、乙、丙、丁四个车间,生产 A、B、C、D、E、F六种产品。根据机床性能 和以前的生产情况,得知每单位产品所需车间的 工作小时数、每个车间在一个季度工作小时的上 限以及单位产品的利润,如下表所示(例如,生产
一个单位的A产品,需要甲、乙、丙三个车间分别工作1
问:应如何安排制作计划才能获得最大收益。
一、问题前期分析
该问题是在不超出制作两种不同口感豆腐所需黄 豆总量条件下合理安排制作计划,使得售出 各种豆腐能获得最大收益。
二、模型假设
1.假设制作的豆腐能全部售出。 2.假设豆腐售价无波动。
变量假设: 设计划制作口感鲜嫩和厚实的豆腐各x1千克
和 x2千克,可获得收益R元。
计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
几个概念
• 最优化是从所有可能方案中选择最合理的一种 以达到最优目标的学科。
• 最优方案是达到最优目标的方案。 • 最优化方法是搜寻最优方案的方法。 • 最优化理论就是最优化方法的理论。
经典极值问题
包括: ①无约束极值问题 ②约束条件下的极值问题
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
这是一个典型的最优化问题,属线性规划。
假设:产品合格且能及时销售出去;工作无等待情况等
变量说明:
xj:第j种产品的生产量(j=1,2,……,6) aij:第i车间生产单位第j种产品所需工作小时数