随米文库 华中科技大学~第一学期概率论与数理统计试卷
华中科技大学概率论复习资料
多个事件的独立性 P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C),那么 A、B、C 相互独立。 对于 n 个事件类似。
P(A)= (1 ) ( 2 ) ( m ) = P(1 ) P( 2 ) P( m )
·密度函数具有下面 2 个性质: 1°
x
f ( x) 0 。
2°
f ( x)dx 1
。
四年生活,为华科人打造的大学生成长服务平台。
( 3)离散与连续型随机变量 的关系
· P ( X x ) P ( x X x dx ) f ( x ) dx 积分元 f ( x ) dx 在连续型随机变量理论中所起的作用与 P( X xk ) pk 在离散型随机变量理 论中所起的作用相类似。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。 设随机变量 X 的值只落在[a F (b) F (a ) 可以得到 X 落入区间 ( a , b ] 的概率。 分布函数 F ( x ) 表示随机变量
f ( x) 在[a,b]上为常数
落入区间(– ∞,x]内的概率。 ·分布函数具有如下性质: 1° 0 F ( x ) 1, x ; 2° F ( x ) 是单调不减的函数,即 x1 x 2 时,有 F ( x1) F ( x 2 ) ; 3° 4° 5° ( 4)分布函数 ( 5)八大分布 泊松分布 超几何分布
A Bi
i 1 n
第二章 随机变量及其分布
( 1)离散型随机变量的分布律 。 ·设离散型随机变量 X 的可能取值为 Xk(k=1,2,…) 且取各个值的概率,即事件 (X=Xk) 的概率为
概率论与数理统计试题与答案(DOC)
概率论与数理统计试题与答案(2021-2021-1)概率统计模拟题一一、填空题〔此题总分值18分,每题3分〕1、设,3.0)(,7.0)(=-=B A P A P 那么)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,假设95)1(=≥X p ,那么=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,那么=+-)543(Y X D 。
4、设随机变量X 的方差为2,那么根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,那么统计量∑==n1i iXY 服从分布。
6、设正态总体),(2σμN ,2σ未知,那么μ的置信度为α-1的置信区间的长度=L 。
〔按下侧分位数〕 二、选择题〔此题总分值15分,每题3分〕 1、假设A 与自身独立,那么〔 〕(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P 2、以下数列中,是概率分布的是〔 〕(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,那么有〔 〕(A) np X E 2)12(=- (B) )1(4)12(p np X D -=- (C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,那么随着σ的增大,概率()σμ<-X P 〔 〕。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,那么以下结果错误的选项是......〔 〕。
华中科技大学文华学院10-11-1概率统计考题(经管题目及答案)
华中科技大学文华学院2010~2011第一学期《概率论与数理统计》考试试卷课程性质:必修使用范围:经管类本科 考试时间:2010年12月1日考试方式:闭卷(120分钟)学部 班级 姓名 学号 成绩 0一、选择题(每小题3分,共18分)1.对于事件B A ,,下列命题正确的是( D ))(A 如果B A ,互不相容,则B A ,也互不相容 )(B 如果B A ⊂,则B A ⊂ )(C 如果B A ⊃,则B A ⊃ )(D 如果B A ,对立,则B A ,也对立2.设B A ,为随机事件,且()()0,1P B P A B >=,则必有( A )()()()A P AB P A ⋃= ()()()B P A B P B ⋃= ()()()C P A B P A ⋃> ()()()D P A B P B ⋃>3.若随机变量X 的分布函数为)(x F ,则=≤≤)(b X a P ( B ))()()(a F b F A - )()()()(a X P a F b F B =+- )()()()(a X P a F b F C =-- )()()()(b X P a F b F D =+-4.设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,且X ,Y 相互独立,则=--)43(Y X D ( C )13)(-A 15)(B 19)(C 23)(D5. 总体2~(,)X N μσ, 123,,X X X 为取自总体X 的简单随机样本,在以下总体均值μ的四个无偏估计量中,最有效的是( D )1123111()236A X X X μ∧=++21311()22B X X μ∧=+3123131()555C X X X μ∧=++4123111()424D X X X μ∧=++6. 设12,,,n X X X ()2n ≥为来自总体()0,1N 的简单随机样本,2S 为样本方差,则下面结论正确的是( A )()22()(1)~1A n S n χ-- ()22()(1)~B n S n χ-()22()~1C nS n χ- ()22()~D nS n χ二、填空题(每题3分,共30分)1.设B A ,相互独立且都不发生的概率为91,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则()=P A __2/3__.2.在时间],0[T 内通过某交通路口的汽车数X 服从泊松分布,且已知3(3)(4)P X P X ===,则 参数=λ 12 .3.设随机变量X 的概率分布为)(x F 为其分布函数,则)3(F = _53/56_____.4. 设随机变量),2(~p B X ,),3(~p B Y ,若(1)≥P X = 95,则(1)≥P Y = _19/27__5. 设随机变量X 的概率密度为)(x f =⎩⎨⎧≤≤,,0,0,242其他c x x ,则常数c =__1/2__6.设随机变量()~1,4,X N )(x Φ为标准正态分布函数,已知Φ(1)=0.8413,Φ(2)=0.9772, 则(3)P X ≤=_0.8185__.7.设Y X ,为随机变量,已知协方差3),(=Y X Cov ,则=)3,2(Y X Cov __18___8.设随机变量()~0.5,X E ,用切比雪夫不等式估计(23)P X -≥49≤.9. 设123,,X X X 为总体X 的样本,3216121kXXX T ++=,已知T 是E X 的无偏估计,则k = 1/310.设n X X X ,,,21 是来自正态总体()3,4,N 的样本,则∑=-ni i X 12)3(41~()2n χ.(标明参数)三、计算题(共52分)1.(10分)某商店有100台相同型号的冰箱待售,其中60台是甲厂生产的,25台是乙厂生产的,15台是丙厂生产的,已知这三个厂生产的冰箱质量不同,它们的不合格率依次为0.1、0.4、0.2,现有一位顾客从这批冰箱中随机地取了一台,试求: (1)该顾客取到一台合格冰箱的概率;(2)顾客开箱测试后发现冰箱不合格,试问这台冰箱来自甲厂的概率是多大? 解:以A 表示冰箱为合格品,B i 表示“第i 厂生产”,则(1)()()()()123P A P AB P AB P AB =++()()()()()()112233P B P A B P B P A B P B P A B =++ 0.60.90.250.60.150.80.81=⨯+⨯+⨯=(2)()()()()()()11111P AB P B P A B P B A P A P A==-0.60.1610.8119⨯==-2.(10分)设随机变量X 的概率密度为⎩⎨⎧<<+=,x b ax x f 其他,0,10,)(且E X =127.求:(1)常数,a b ;(2) D X解:(1)由归一性可得:()()1012+∞-∞==+=+⎰⎰a fx dxax b dxb ,()1073212a b E X x ax b dx =+=+=⎰解得 11,2a b ==(2)()122015212E Xx x dx ⎛⎫=+= ⎪⎝⎭⎰()()()2211144D XE XE X ⎡⎤∴=-=⎣⎦ 3.(10分)设二维随机向量(),X Y 的联合分布列为:试求:(1)a 的值;(2)X 与Y 是否独立?为什么?(3)()E X Y + 解:(1)由归一性可得:0.71,0.3a a +=∴=(2)至少存在 01010.10.40.4p p p =≠=⨯ 故 X 与Y 不是相互独立的(3)()00.410.320.30.9E X =⨯+⨯+⨯=,()10.420.6 1.6E Y =⨯+⨯= ()()() 2.5E X Y E X E Y ∴+=+= 4.(10分)设二维随机变量(),X Y 的概率密度为(),01,0,x x y fx y α≤≤≤⎧=⎨⎩其他求(1) α的值; (2) 计算()1+≤P X Y . 解:(1)由归一性可得:()011(,)x y f x y dxdy k x y dxdy +∞+∞-∞-∞≤≤≤==+⎰⎰⎰⎰116xdx xdy αα==⎰⎰ 6α∴=(2)()11201164x xP X Y dx xdy -+≤==⎰⎰5.(12分)设总体X 的概率密度为⎩⎨⎧>=+-,,0;1,);()1(其他x x x f θθθ其中)1(>θθ是未知参数,n X X X ,,,21 是来自该总体的样本,试求θ的矩估计和最大似然估计. 解:(1) 令 ()111X E X x x d xθθθθ+∞-+==⋅=-⎰解得θ的矩估计为 ˆ1X =X θ-(2)似然函数 ()()()1111 nn niii i L x xθθθθθ-+-+====∏∏对数似然函数 ()()1l n () l n 1l n ni i L n xθθθ==-+∑ 令()1l n ()l n 0ni i d L n x d θθθ==-=∑ 解得θ的极大似然估计为 ()1ˆln nii n=x θ=∑。
大学《概率统计》试题及答案
《概率论与数理统计》考试题及答案一、填空题(每小题3分,共30分)1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 .2、设()0.7,()0.3P A P AB ==,则()P A B =________________.3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 .4、设随机变量X 的分布律为(),(1,2,,8),8aP X k k ===则a =_________.5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= .6、设随机变量X 的分布律为,则2Y X =的分布律是 .21011811515515kXp -- 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ .8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X服从的分布是.二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它 (1)确定常数k ; (2)求X 的分布函数()F x ; (3)求712P X ⎧⎫<≤⎨⎬⎩⎭.四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y Xa 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - 二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .......... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= .............................. 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== .......................................................... 12分三、(本题12分)解 (1)由概率密度的性质知340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰ 故16k =. ............................................................................................................ 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰; 当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰; 故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩................................................................. 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.................................................. 12分 四、解 (1)由分布律的性质知 01.0.20.10.10.21a +++++=故0.3a = ............................................................................................................... 4分 (2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3Xp ....................................................................................... 6分120.40.6Y p ............................................................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ..................................................................................... 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ...................... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ ................................................ 9分 221()()[()].6D XE X E X =-= ............................................................................. 12分一、 ..........................................................填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
完整版概率论与数理统计习题集及答案文档良心出品
《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。
§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。
随米-武汉理工大学2009~2010学年第一学期《概率论与数理统计》期末试卷(A卷)及参考答案
武汉理工大学考试试题纸(A 卷)课程名称概率论与数理统计专业班级全校本科2008级备注:学生不得在试题纸上答题(含填空题、选择题等客观题)一、填空题、)4283('=⨯'1. 已知()0.3P A =,()0.4P B =,()0.25P AB =,则=)(B A P . 2. 设二维随机变量),(Y X 满足{}30,07P X Y ≥≥=,且{}{}3007P X P Y <=<=,则{}max(,)0P X Y ≥=.3. 设二维随机变量),(Y X 的概率密度(2)2,0,0,(,)0,.x y e x y f x y -+⎧>>=⎨⎩其它则{}P Y X ≤=.4. 已知随机变量X 服从参数为1的泊松分布,则{}2()P X E X ==.5. 已知~(0,36)X N ,~(Y U ,相关系数0.5XY ρ=-,则ov(,)C X Y =.6. 1234,,,X X X X 是来自总体),(~2σμN X 的样本,2343X X X Y ++=,()422*212i i S X Y ==-∑,则1*X S μ-服从的分布是. 7. 设12,,,n X X X 为总体X 的一个随机样本,2(),()E X D X μσ==,要使()12211ˆn i i i a X X σ-+==-∑是2σ的无偏估计,则常数=a .8. 设921,,,X X X 为正态总体),(~2σμN X 的样本,其中29σ=,样本均值8.52x =,则总体均值μ的置信度为%95的置信区间为.(小数点后保留两位)二、)01('已知甲乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中装有2件合格品和1件次品,现从甲箱中任取2件放入乙箱,然后再从乙箱中任取一件产品,求该产品为次品的概率及该次品是在从甲箱中没取到次品的情况下取得的概率(结果用分数形式表示).三、)01('一箱子装有6个球,其中红,白,黑球的个数分别为1,2,3个;现从箱中随机的取出2个球,设X 为取出的红球个数,Y 为取出的白球个数.试求随机变量),(Y X 的联合分布律及Y X ,的边缘分布律(要求画出分布律表格且结果用分数形式表示),并判断,X Y 是否相互独立.四、)01('设连续型随机变量X 的分布函数为:0,1,()ln ,1,1,.x F x A x x e x e <⎧⎪=≤<⎨⎪≥⎩试求:①常数A;②概率{0P X <≤;③X 的概率密度函数()f x .五、)01('设随机变量X 的概率密度为()14,1112,120,X x f x x -<<⎧⎪=≤<⎨⎪⎩其他,令2Y X =,求Y 的分布函数()Y F y .六、)01('某高校图书馆阅览室共有940个座位,该校共10000名学生,已知每天晚上每个学生到阅览室去自习的概率为10%.试估算阅览室晚上座位不够用的概率(小数点后保留三位).七、)01('设总体X 的概率密度函数为11()0,1x x f x x θθ--⎧>=⎨≤⎩,,其中1θ>是未知参数,12n,...,X X X 为来自该总体的一个样本,该样本取值为12,...,n x x x .求θ的矩估计量和极大似然估计量.八、)01('假定某车间生产的电子元件的寿命(小时h )服从正态分布2(,)N μσ,已知技术改变前的平均寿命为1000h ,现在随机测试9个革新以后的电子元件的寿命,计算得样本均值1124x =h ,样本标准差152S h =. 请问在显著性水平05.0=α下, 是否有理由认为技术革新改变了产品质量?九、)6('设连续型随机变量(0,1)X N ,Y 表示对X 的5次观测中事件{}||1X >发生的次数,试判断Y 的分布,并求Y 的方差(小数点后保留三位).查表数据:(1.00)0.8413Φ=975.0)96.1(=Φ95.0)645.1(=Φ9332.0)50.1(=Φ8595.1)8(05.0=t 3060.2)8(025.0=t 8331.1)9(05.0=t 2622.2)9(025.0=t2009~2010学年第一学期《概率论与数理统计》期末试卷(A 卷)参考答案一、填空题:(每空5分,共25分)(1)、0.4 (2)、57 (3)、1/3 (4)、1e- (5)、-3(6)、(2)t (7)、12(1)n - (8)、(6.56, 10.48)二、(共10分)解:设i A 表示“从甲箱中取了i 件次品放入乙箱”,0,1,2i =; B 表示“从乙箱中取到的是次品”。
概率论和数理统计期末考试题库
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
2020年大学基础课概率论与数理统计期末考试题及答案精华版
2020年大学基础课概率论与数理统计期末考试题及答案(精华版),02未知,X ,X ,X ,X 为其样本,下列各项不是统计量的是 1234(A) X =11 X4ii =1(B) X + X — 2R14(A) X = - 1 X4ii =1(B) X + X — 2R14(C) K = — 1(X — X )202ii =1【答案】C 4、若X 〜t (n )那么%2〜【答案】A5、设X ,X ,…,X 为总体X 的一个随机样本,E (X ) = R ,D (X )=02 12 n C=(C) K = — 102i =1(X — X )2i(D) S 2 = 1 1(X — X )3ii =1【答案】C 2、设 X 〜P(1, p ) ,X ,X ,…,X ,是来自X 的样本,那么下列选项中不正确的是 12n-A) 当n 充分大时 近似有X 〜N B) P {X = k } = C k p k (1 — p )n —k , k =0,1,2,…,n n C) k 、 一 〜、 ・—一P { X =—} = C k p k (1— p )n -k , k =0,1,2,…,n n n D) P {X= k } = C k p k (1 — p )n -k ,1 < i <n 【答案】B 3、设 X ~ N (R ,O 2),其中R 已知,o 2未知,X , X , X , X 为其样本,下列各项不是统计量的是 1234(A)F (1,n )(B )F (n ,1)(C)殍(n )(D) t (n)一、单选题1、设X 〜N (R ,o 2),其中R 已知(D) S 2 =1 X ( X —X )3i0 2= C 乏1(X — X )2为02的无偏估计, i +1 i【答案】C6、对于事件人,B,下列命题正确的是(A)若A, B互不相容,则才与B也互不相容。
(B)若A, B相容,那么%与B也相容。
华中科技大学概率论复习资料
第 3 页
WEDO 出品 丨 版权所有,侵权必究
华中科技大学·2015 年秋季期末复习真题卷---概率论
·设 X 为随机变量, x 是任意实数,则函数 F ( x) P( X x) 称为随机变量 X 的分布函数,本质上 是一个累积函数。 · P(a 几何分布
P ( X k ) q k 1 p , k 1,2,3, ,其中 p≥0,q=1-p。
1
。
此公式即为贝叶斯公式。 · P( Bi ) ,( i 1 , 2 ,…, n ),通常叫先验概率。 · P( Bi / A) ,( i 1 , 2 ,…, n ),通常称为后验概率。 ·贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
F ( x) 是随机变量 X 的分布函数,若存在非负函数 f ( x) ,对任意实数 x ,有 F ( x) f ( x)dx ·设 f ( x) 称为 X 的概率密度函数或密度函数,简称概率密度。 则称 X 为连续型随机变量。
1 , ba
F ( ) lim F ( x ) 0 ,
x
F ( ) lim F ( x ) 1 ;
x
1 , f ( x) b a 0,
·设 A、B、C 是三个事件,如果满足两两独立的条件,
m A所包含的基本事件数 n 基本事件总数
四年生活,为华科人打造的大学生成长服务பைடு நூலகம்台。
第 2 页
WEDO 出品 丨 版权所有,侵权必究
华中科技大学·2015 年秋季期末复习真题卷---概率论
设事件 (15)全概率公式
B1, B 2, , Bn 满足
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种 方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种 方法来完成,则这件事可由 m×n 种方法来完成。 ·重复排列和非重复排列(有序) ·顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但 在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如 下性质: · 对立事件(至少有一个)
概率论与数理统计试卷合集附答案
《概率论与数理统计》期末试题一一、 填空题(每小题4分,共40分)1、 设A 与B 为互不相容的两个事件,0)B (P >,则=)|(B A P 0 。
2、 事件A 与B 相互独立,,7.0)(,4.0)(=+=B A P A P 则 =)(B P 0.5 。
3、 设离散型随机变量X 的分布函数为0 1-<x=)(x F a 11<≤-xa 32- 21<≤x b a + 2≥x且21)2(==X P ,则=a61 =b , 65。
4、 某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。
5、 设随机变量X 与Y 相互独立,X 服从“0-1”分布,4.0=p ;Y 服从2=λ的泊松分布)2(π,则._______24.2____)(_______,4.2____)(=+=+Y X D Y X E6、 已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =-7、 设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。
8、 设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。
(96.1975.0=u )9、 若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。
二、 计算题(每小题10分,共60分)1、 (10分)已知8只晶体管中有2只次品,从其中取两次,每次任取一只,做不放回抽样。
求下列事件的概率:(1)一只是正品,一只是次品;(2)第二次才取得次品;(3)第二次取出的是次品。
概率论与数理统计习题册答案
第一章 随机事件与概率 § 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=Φ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间1. {}3,420,,2 []0,100 3. z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度;三、1任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=2{}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=,{}6AB ω=,{}15,AB ωω=四、1ABC ;2ABC ;3“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;4A B C ;5“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB ACBC .§ 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排;故8!3!1()10!15P A ⋅==; 2. 样本空间样本点7!5040n ==,设事件A 表示这7个字母恰好组成单词SCIENCE,则因为C 及C, E 及E 是两两相同的,所以A 包含的样本点数是2!2!4A =⨯=,故2!2!1()7!1260P A ⋅==二、求解下列概率1. 1 25280.36C C ≈; 2 1515373766885!0.3756!C C C A C A == 2. 412410.427112A -≈3. 由图所示,样本点为随机点M 落在半圆202 ()y ax x a <<-为正常数内,所以样本空间测度可以用半圆的面积S 表示;设事件A 表示远点O 与随机点M 的连线OM 与x 轴的夹角小于4π,则A 的测度即为阴影部分面积s , 所以2221142()22a a s P A S aπππ+===+ §概率的性质 一. 填空题 1.; 2. 1p -; 3. 16; 4. 712二. 选择题1. C;2. A;3. D;4. B;5. B. 三. 解答题解:因为,AB A AB ⊆⊆所以由概率的性质可知:()()().P AB P A P A B ≤≤又因为()0,P AB ≥所以可得 ()()(),P AB P A P B ≤+于是我们就有()P AB ≤ ()()P A P A B ≤()()P A P B ≤+.如果,A B ⊆则,AB A = ()()P AB P A =; 如果,B A ⊆则,AB A =这时有()().P A P A B =如果,AB φ=则(0,P AB =)这时有()()().P A B P A P B =+§ 条件概率与事件的独立性aa2a1.1图一. 填空题 1.23;2. 0.3、;3. 23;4. 14; 5. 2; 5. 因为AB AB =,所以()(),()()AB AB AABB AB AB AB AB φ====,则有,AB A B A B φ=+=+=Ω,因为,AB A B φ=+=Ω且所以A 与B 是对立事件,即A B A B ==,;所以,()()1,P A B P A B ==于是()()2P A B P A B +=二. 选择题1. D ;2. B ;3. A ;4. D ;5. B1. 已知()()1,P A B P A B +=又()()1,P A B P A B +=所以()(),P A B P A B =于是得()()()()P AB P AB P B P B =,注意到()()(),()1(),P AB P A P AB P B P B =-=-代入上式并整理后可得()()()P AB P A P B =;由此可知,答案D; 三. 解答题 1.33105,; 2. 2n§ 全概率公式和逆概率Bayes 公式 解答题 1. 2. 1;23.10.943;20.848§ 贝努利概型与二项概率公式 一. 填空题1. 11(1),(1)(1)n n n p p np p ----+-;2.23二. 解答题 1. .2. 0.94n,222(0.94)(0.06)n n n C --,11(0.94)(0.06)(0.94)n n n ---3.1,2,3章节测验一. 填空题 1.825; 2. 对立;3. 0.7; 4. 84217,二. 选择题 三、解答题 1.1; 22232. .0038 四、证明题略; 随机变量 分布函数一、填空题1.)(1a F -;)1()1(--F F ;)()()(b F a F b F -;2. 1,12a b ==/π;3.121--e二、选择题1、D ;2、A ; 三、计算题1.所以得随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5,154,10443,1013,0)(x x x x x F2.解:1由条件知,当1-<x 时,0)(=x F ; 由于81}1{=-=X P ,则81}1{)1(=-≤=-X P F ; 从而有 8581411}1{}1{1}11{=--=-=-=-=<<-X P X P X P ;由已知条件当11<<-x 时,有 )1(}111{+=<<-≤<-x k X x X P ; 而1}1111{=<<-≤<-X X P ,则21=k 于是,对于11<<-X 有}111{}11{}11,1{}1{<<-≤<-⋅<<-=<<-≤<-=≤<-X x X P X P X x X P x X P 16)1(52185+=+⨯=x x 所以 167516)1(581}1{}1{)(+=++=≤<-+-≤=x x x X P X P x F 当1≥x 时,1)(=x F ,从而⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,16751,0)(x x x x x F2略;离散型与连续性随机变量的概率分布 一、填空题1.3827;2.2二、选择题; ;三、计算题1.12,1==B A ;2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<≤<=2,121,12210,20,0)(22x x x x x x x x F ;343 2.略;常用的几个随机变量的概率分布 一、填空题1.649;2.232-e ;3.2.0 二、计算题 1、43;2、352.0;3、5167.0;4、19270.01)5.1()5.2(=-Φ+Φ;229.3=d随机向量及其分布函数 边际分布 一、填空题1、(,)(,)(,)(,)F b b F a b F b a F a a --+;(,)(,)F b b F a b -;2、0;1 二、计算题1、12,2,12πππ===C B A ;2161; 3R x x x F X ∈+=),2arctan 2(1)(ππ,R y yy F Y ∈+=),3arctan 2(1)(ππ 2、1⎩⎨⎧≤>-=-0,00,1)(2x x e x F x X ,⎩⎨⎧≤>-=-0,00,1)(y y e y F y Y ,;242---e e;3、⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππx x x x x x F X ,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππy y y y y y F Y二维离散型与连续性随机向量的概率分布一、填空题1、87;2、∑+∞=1j ij p ,∑+∞=1i ij p ;3、41;4、41二、计算题1、1=c ;⎩⎨⎧≤>=-0,00,)(x x e x f xX ;⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2y y y y f Y2、16,(,)(,)0,x y Df x y ∈⎧=⎨⎩其它;226(),01()0,X x x x f x ⎧-<<=⎨⎩其它;),01()0,Y y y f y ⎧<<⎪=⎨⎪⎩其它3、条件分布 随机变量的独立性一、选择题1、B ;2、A ;3、D ;4、C ;5、D 二、计算题1、2、||2,012,01(|),(|)0,0,X Y Y X x x y y f x y f y x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其它其它 3、18=c ;241}2{=<X Y P ;3不独立; 4、)1(11121Φ-+⎪⎪⎭⎫ ⎝⎛--e π 随机变量函数的概率分布一、填空题1、2、1,01()0,Y y f y ≤≤⎧=⎨⎩其它二、选择题1、B ;2、D ; 三、计算题1、⎩⎨⎧<<=else y y f ,010,1)(;2、⎪⎩⎪⎨⎧≥-<<-<=--1,)1(10,10,0)(z e e z e z z f z zZ3、⎪⎪⎩⎪⎪⎨⎧≥<<≤=1,110,21,0)(z z z z f Z ;⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<≤=1,21110,20,0)(z zz z z z F Z 第二章测验一、填空题1、41;2、34;3、0;4、2.0 二、选择题1、C ;2、A ;3、B 三、计算题1、~(3,0.4)X B ,则随机变量的概率函数为其分布函数为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x x x x x F2、124=A ;2⎩⎨⎧≤≤-=其它,010),1(12)(2x x x x f X ,⎩⎨⎧≤≤-=其它,010),1(12)(2y y y x f X ;3不独立;4⎪⎩⎪⎨⎧<<<<=⎪⎩⎪⎨⎧<<<<--=其它其它,010,10,2)|(,,010,10,)1()1(2)|(2|2|y x x y x y f y x y x y x f X Y Y X ;3、1⎩⎨⎧≤>=-0,00,)(z z ze z f z Z ;2⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2z z z z f Z第三章 随机变量的数字特征数学期望 一 、填空题1、13,23,3524 ; 2、21,0.2 3、 2 ,4796二、计算题1. 解: 11211()(1)(1)1k k k k k a a a E X k k a a a -+∞+∞+==⎛⎫== ⎪+++⎝⎭∑∑ 根据公式()''12111(1)11k k k k x kx x x x x +∞+∞-==⎛⎫⎛⎫===< ⎪ ⎪-⎝⎭-⎝⎭∑∑ 得到221()(1)11a E X a a a a ==+⎛⎫- ⎪+⎝⎭2. 0 ;3.:2a4. 2/3,4/3 ,-2/3,8/5 ; 5.4/5,3/5,1/2,16/15 方差一、填空题1. 0.49 ;2. 1/6 ;3. 8/9 ;4. 8 , 二、计算题 1.: , 提示: 设0,1,i i X i ⎧=⎨⎩部件个不需要调整部件个需要调整则123,,X X X 相互独立,并且123X X X X =++,显然1(1,0.1),X B2(1,0.2),X B 3(1,0.3)X B2.:1/3,1/3 ; 3.: 16/3 ,28三、 证明题提示: [][]22()())D XY E XY E XY E XY EX EY =-=-[]2)E XY YEX YEX EX EY =-+-[]2()()E Y X EX EX Y EY DX DY =-+-≥ 协方差与相关系数 一、 选择题 1. A ; ; 二、 计算题1. ()()0E X E Y ==,()()0.75D X D Y ==, 0XY ρ=, () 1.5D X Y += X 与Y 不独立2. 0 ,0提示:111()0Y y f y π⎧=-≤≤⎪=⎨⎪⎩⎰其它 1211()10E Y yy dy π-=-=⎰()0.25D Y =同理可得()()0E X E Y ==,()()0.25D X D Y ==221(,)()0x y xyCov X Y E XY dxdy π+≤===⎰⎰3. :2222a b a b-+ 矩与协方差矩阵1. 33321132v v v v μ=-+2.1,,, ;2 ;340.210.020.020.24-⎡⎤⎢⎥-⎣⎦第三章 测验 一、 填空题1. ; 2. 1 ,; 3. ab二、 选择题 1.B ; ;三、 计算题1.解:设X 表示该学徒工加工的零件中报废的个数,又设 0,1,i i X i ⎧=⎨⎩第个零件未报废第个零件报废则由题设知1111iX i i i ⎡⎤⎢⎥⎢⎥++⎣⎦于是有 101i i X X ==∑ 且1()(1,2,,10)1i E X i i ==+从而1010101111111()()() 2.0212311i i i i i E X E XE X i =======+++=+∑∑∑ 2.: 10分25秒提示:设乘客到达车站的时间为X ,由题意可知X 为0,60上的均匀分布,根据发车时间可以得到等候时间Y ,且Y 是关于X 的函数10010301030()553055705560X X X X Y g X X X XX -<≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-<≤⎩3. 0,0第四章习题切比雪夫不等式 随机变量序列的收敛性 1.解:由切比雪夫不等式知,2221(37)(|5|2)12221(|5|8)832P X P X P X <<=-<≥-=->≤=2.解:设X 为在n 次试验中事件A 出现的次数,则~(,)X B n p ,Xn为频率. 21110.750.25()()0.750.75,()()X X E E X n D D X n n n n n n⨯==⨯⨯=== 由题意知{0.70.8}0.9,XP n<<≥而由切比雪夫不等式有20.750.25{|0.75|0.05}10.05X n P n ⨯-<≥- 所以有20.750.2510.90.05n ⨯-=,得750n =大数定理1. 证:有题设知n n=2,3,…的概率分布为:故n 的数学期望为()012101n -)(n =⨯+⎪⎪⎭⎫⎝⎛-⨯+⨯=nn n n X EX n 的方差为()(22222121()[()]012n nn D X E X E X n n n⎛⎫=-=⨯+⨯-+⨯= ⎪⎝⎭故∑==Nnn X NX 11的数学期望 ()()01111==⎪⎪⎭⎫ ⎝⎛=∑∑==Nnn Nn n X E N X NE X E方差()()NN X D N X ND X D Nn Nn n Nn n 2211112121===⎪⎪⎭⎫ ⎝⎛=∑∑∑===在利用车比雪夫不等式得(){}()0222−−−−→−≤≤≥-+∞→N N X D XE X P εεε因此,X 1,X 2,…,X n ,…服从大数定理;2.证:由于X 1,X 2,…,X n 相互独立,且()i i E X μ=,()i D X 存在,令 n 11ni i X X n ==∑则 ()()k k 111111n nn nki i i EX E X E X n n n μ===⎛⎫=== ⎪⎝⎭∑∑∑有限;()()k k 211110n n n ni i D X D X D X n n →∞==⎛⎫==−−−→ ⎪⎝⎭∑∑故由车比雪夫不等式知,0>∀ε; ()()()()1222111nknn k n n D XD X P XE X n εεε→∞=-≤≥-=-−−−→∑即 1111lim {||}1n ni i n i i P X n n με→+∞==-<=∑∑中心极限定理1.解:设X 为抽取的100件中次品的件数,则(100,0.2)XB ,()1000.220,()200.816E X D X =⨯==⨯=则18202025201205{1825}{}{}444244(1.25)(0.5)(1.25)(0.5)10.89440.691510.5859X X P X P P ----<<=<<=-<<=Φ-Φ-=Φ+Φ-=+-=2.解:1 设X 为一年中死亡的人数,则(,)XB n p ,其中n =10000,p =保险公司亏本则必须1000X>120000,即X>120 P{保险公司亏本}={120}P X >=P >=7.769}P >1(7.769)0≈-Φ=2P{保险公司获利不少于40000元}{120000100040000}{80}(2.59)0.995P X P X P -≥=≤=≤=Φ=3.解:设X i ={每个加数的舍入误差},则X i ~ U, ,()0i =X E ,()121i =X D ,i = 1, 2, …故由独立同分布中心极限定理知X 1,X 2,…服从中心极限定理;1[][][]802.10)9099.01(2)4.31(121)4.31(21)4.31()4.31(11211500015001512115000150012115000150015-1151511511515001150011500115001=-⨯=Φ-=-Φ-=-Φ-Φ-≈⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯--=⎪⎭⎫⎝⎛≤≤--=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>∑∑∑∑====i i i i i i i i X P X P X P X P 21{||10}0.9n i i P X =<≥∑,|0.9n i X P ⎧⎫⎪⎪⎪<≥⎨⎪⎪⎩∑由中心极限定理得,210.9,0.95Φ-≥Φ≥,所以1.65≥,解得440n =.第四章 测验一、填空题 1.1/4;211k-. 2.221n σε-.提示:利用切比雪夫不等式估计. 3.1/12 4.0. 5.. 6.()x Φ. 二、选择题1.A 2.C 3 D .三、应用题1.解:设X 为1000次中事件A 出现的次数,则(1000,0.5)X B()500,()5000.5250E X D X ==⨯=25039{400600}{|500|100}10.9751000040P X P X <<=-<≥-==2.解:设至少要掷n 次,有题设条件知应有()9.06.04.0≥<<n X P其中∑==nii X nX 1n1, i=1,2,…独立同分布,且()()5.001i i ====X P X P , 5.0)(i =X E ,25.05.05.0)(i =⨯=X D1 用切比雪夫不等式确定()()()2n 1.011.05.06.04.0nn X D X P X P -><-=<<而()nnX D n X n D X D ni ni i ni 25.05.0111)(12212n ===⎪⎪⎭⎫ ⎝⎛=∑∑∑==即要求90.01.025.012≥-n即)次(2501.025.03=≥n 即至少应掷250次才能满足要求; 2用中心极限定理确定()0.40.60.50.50.5210.90555n n X P X P n n n n n n ⎛⎫<<=<<⎛⎫⎛⎫⎛⎫=Φ-Φ-=Φ-≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得10.900.9552n ⎛⎫+Φ≥= ⎪ ⎪⎝⎭查标准正态分布表的645.15≥n ,225.8645.15=⨯≥n所以6865.67225.82≈=≥n即在这种情况下至少应掷68次才能满足要求; 3.解:设X 为每天去阅览室上自习的人数; 则有(12000,0.08),()120000.08960,()9600.92883.2X B E X D X =⨯==⨯=1{880}1{880}9608809601{}883.2883.21( 2.692)(2.692)0.996P X P X X P >=-≤--=-≤≈-Φ-=Φ= 2设总座位数为n960960{}0.8,{}0.8883.2883.2X n P X n P --<=≤=由中心极限定理知, 960()0.8883.2n -Φ=,查表得960883.2n -=,986n =,所以应增添986-880=105个座位; 4.解:令n 为该药店需准备的治胃药的瓶数 X 为在这段时间内购买该药的老人数则由题意知(2000,0.3)XB ,()20000.3600,()6000.7E X D X =⨯==⨯{}0.99600600{}0.99420420P X n X n P ≤=--≤=由中心极限定理知, 600()0.99420n -Φ≈,查表得6002.33420n -=,所以648n ≈四、证明题1.证明:设则有,11,()()(1)4nn k k k k k k k M X E X p D X p p ====-≤∑ 11111()()().nknn n k k k k k pM E E X E X n n n n======∑∑∑12221111114()()().4nnnn k k k k k M D D X D X n n n nn=====≤≤∑∑∑ 由切比雪夫不等式得,1222()111{||}4nn nM D M p p p n P n n n εεε++-≤-≤-<,所以当n →+∞时121{||}1n nM p p p P n nε++≤-<≤,即12{||}1n n M p p p P n nε++-<=.2.证:因为12,,,n X X X 相互独立且同分布,所以21X ,22X ,…,2n X 相互独立且同分布,且有相同的数学期望与方差:()22a X E i =,()()()[]()0a -22242242≠=-==σa X E X E X D ii i满足独立分布中心极限定理条件,所以∑=nii X 12近似服从正太分布()22,σn na N,即∑==ni i nX n Y 121近似服从⎥⎦⎤⎢⎣⎡-n a a a N 2242)(, 第五章 数理统计的基本概念总体 样本 统计量 一、选择题 1.D2.A ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑3. D二、应用题1. 5,2.551251511()(,,...)(),,...0,i X i i b a f x x x f x a x x b=⎧⎪-==<<⎨⎪⎩∏其它3.0,11,124()3,2341,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩抽样分布 一、选择题 1.C 注:1~(1)t n -才是正确的.2.B 根据()()2221~1n S n χσ--得到()221()~1ni i X X n χ=--∑ 3.A 解:()99211~(0,9)9~0,1ii i i XN X N ==⇒∑∑,()92219~9i i Y χ=∑由t()9t 二、应用题 1. (1,1)F n -2. 13~(10,)2X N 23.第五章 测验一、选择题 1. C2.C 注:统计量是指不含有任何未知参数的样本的函数 3D对于答案D,由于~(0,1),1,2,,i X N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.C 注:1~(0,)X N n~(1)t n -才是正确的5.C 12345{max(,,,,)15}P X X X X X >123451{max(,,,,)15}P X X X X X =-≤ ()15115,,15P X X =-≤≤=5)]5.1([1Φ- 二、填空题 1.μ,2nσ2.1nii Xn=∑()2111n i i X X n =--∑,11i n k i X n =∑,()11nk i i X X n =-∑ 3. ,pqp n4. 252(1)n χ-三、应用题1.(1)21211(,,...)()!!n n knn n ni i f x x x e e k k λλλλ+--====∏∏2. 0.13.(1)t n -第六章 参数估计参数的点估计 一、选择题二、解答题 1.解 1()()∑∑∞=-∞=-===1111}{x x x p p x x X xP X E ∑∞='⎪⎪⎭⎫ ⎝⎛-==11x x q q p q dq dpp1=()p q -=1 用X 代替()X E ,则得p 的矩估计量Xp 1=⎪⎭⎫ ⎝⎛=∑=n i i X n X 112分布参数p 的似然函数()()∏∏=-=-===ni x i n i p p x X P p L i 1111}{()∑-=-=ni i nx np p 11取对数 ()()p n x p n p L n i i -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1解似然方程 ()011ln 1=⎪⎭⎫⎝⎛---=∑=n i i n x p p n dp p L d得p 的极大似然估计量 Xp 1=⎪⎭⎫⎝⎛=∑=n i i X n X 112.解 1()()()26;32θθθθθ=-==⎰⎰∞+∞-dx x x dx x xf X E ,用∑==ni i X n X 11代替总体均值()X E ,则得参数θ的矩估计量为.2X =θ2()()()⎪⎭⎫ ⎝⎛===∑=n i i X n D X D X D D 11442θ()()()∑====ni iX D nX nD nX D n122444因为()()()()⎰∞+∞-⎪⎭⎫⎝⎛-=-=22222;][θθdx x f x X E XE X D ()⎰=--=θθθθθ022332046 dx x x 所以 ()nn D 520422θθθ==3.解 取()()∑-=+-=112121,,,,n i i i n X X C X X X ϕ由定义()]()⎢⎢⎣⎡⎢⎣⎡=⎥⎦⎤-=∑-=+112121,,,n i i i n X X C E X X X E ϕ()∑-=+=-1121n i i i X X E C][=+-∑-=++1121212n i i i i i X X X X E C ()()()][∑-=++=+-1121212n i i i i i X E X X E X E C()()()()][=+-∑-=++1121212n i iii i X E X E X E XE C ()()()][∑-=+=+-1122212n i ii X E X E X E C()()21122221σσσσ=-=+∑-=n i n C C所以 ()121-=n C参数的区间估计 一、选择题1. C2. A一个总体均值的估计1.解 由于,99.01=-α 故,31,01.0=-=n 又α查t 分布表得()0.0123 5.841,t =又%,03.0%,34.8==s x 故得μ的99%的置信区间为][%428.8%,252.8)%403.0841.534.8()%,403.0841.534.8( =⎢⎣⎡⎥⎦⎤⨯+⨯- 2.解 计算得样本均值16,0171.0,125.22===n s x10.120.10,1.645,0.01,u ασ=== 总体均值μ的90%的置信区间为]22 2.121, 2.129x u x u αα⎡⎤⎡-+=⎢⎣⎢⎣2.151,10.0=-=n α查t 分布表得()0.1215 1.753t =()753.11510.0=t ,总体均值μ的90%的置信区间为((]2211 2.117, 2.133x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣3.解:计算得265,3000,0.05x s α===, n -1=7,查t 分布表得()0.1027 1.895t =,计算得株高绝对降低值μ的95%的置信下限为(2128.298x t n α--=. 4.解 每20.10hm 的平均蓄积量为315m ,以及全林地的总蓄积量375000m ,估计精度为0.9505A =5. ,一个总体方差与频率的估计1.解 由样本资料计算得3750.60=x ,3846.02=s ,6202.0=s ,又由于05.0=α,025.02=α,975.021=-α,151=-n 查2χ分布表得临界值,488.27)15(2025.0=χ,262.6)15(2975.0=χ从而2σ及σ的置信概率为%95的置信区间分别为,与,.2. 解 1由于,14=n ,05.0=α查t 分布表得()0.05213 2.16,t =又67.1,7.8==s x ,故得总体均值μ的95%的置信的区间为((]22117.736,9.664x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣2由于,10.0=α 05.0=2α,,95.021=-α,131=-n 查2χ分布表得()362.2213205.0=χ,()892.513295.0=χ,故得总体方差2σ的90%的置信区间为()()()()][153.6,621.111,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n S n n S n ααχχ 3. 解,41,95.021,05.02,10.0=-=-==n ααα查2χ分布表得(),488.94205.0=χ ()711.04295.0=χ,又计算得1.21=x ,505.82=s ,故得该地年平均气温方差2σ的90%的置信区间为()()()()][85.47,58.311,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n s n n s n ααχχ 4. 解 造林成活率的置信区间为[0.8754,0.9369] 两个总体均值差的估计1. 解 由于182,05.021=-+=n n α,查t 分布表得临界值()0.05218 2.101.t =又,8.126,06.14,1021====y x n n ,96.71,93.162221==s s 从而求得21μμ-的置信概率为95%的置信区间为,.即以95%的概率保证每块试验田甲稻种的平均产量比乙稻种的平均产量高7.536kg 到20.064kg.2.解由样本值计算得5,5,27,4.24221=====A B A n n y x σ,82=Bσ,05.0=α,,96.105.0=u 故21μμ-的95%的置信区间为()()]5.76,0.56A B A B x y x y ⎡⎢⎡---+=-⎣⎢⎣3.解由样本值计算得222211.10,875.75,30.11,44.81====B B A A s y s x ,,91=n ,82=n ,05.0=α 查t 分布表得()0.05215 2.131,t =故得B A μμ-的95%的置信区间为4. ,两个总体方差比的估计解 ,025.02,05.0,911===-=-ααB A n n 查F 分布表得()=--1,12B A n n F α()(),03.49,91,1025.02==--F n n F A B α故 2221σσ的95%的置信区间为:()()][⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤----6008.3,2217.01,1·,1,11·222222 n n F s s n n F s s A B BA B AB A αα第六章 测验一、选择题二、填空题 1.12α=2.21ˆ2X θ-= 3. ][588.5,412.4 4. 21;1λλ 5. ()0.351t n k -=三、计算题1.解 因为X ~N (),4,2μ所以(),9492222χχ~S =于是, ⎩⎨⎧=⎭⎬⎫>=>1.0169169}{22σS P a S P 查2χ分布表得,684.14169=a所以.105.26≈a ()(()(12212222 5.58,16.71.A B A B x y t n n x y t n n αα⎡--+-⎢⎣⎡⎤⎤-++-=-⎢⎥⎥⎦⎦⎣2.解 1()()λλλ-==∏∏==ex x f x x x f n i ni ix in i1121!;,,, ∏=-∑==ni i x n x eni i 1!·1λλ;2()()()λλλnn S E nX D X E n 1,,2-===. 3.解 因为X ~N()22,30 ,于是()(),)21(,30)162(,3022 =N ~N X 从而()1,02130 ~N X U -=,故 }{⎩⎨⎧⎭⎬⎫-<-<-=<<2/130312/1302/130293129X P X P()()()9545.0197725.0212222221302=-⨯=⎩⎨⎧-Φ=-Φ-Φ=⎭⎬⎫<-<-=X P4.解 1178320,314022====b x σμ ;219813322==s σ5.解 设施肥与不施肥的收获量分别为总体,,Y X 且X ~N (),,21σμY ~N)(~22σμ,N Y ,计算可得,1738.1,9227.0,7.9,4.11222221====s s y x 又,05.0,162,10,82121==-+==αn n n n 查t 分布表得临界值()0.05216 2.12,t =从而计算均值差21μμ-的95%的置信区间为()()][.7773.2,6227.016810181738.199227.0712.27.94.11,16810181738.199227.0712.27.94.112222=⎥⎦⎤⨯⨯⨯+⨯+-⎢⎣⎡⨯⨯⨯+⨯--故在置信概率下,每201亩水稻平均收获量施肥比不施肥的增产到斤.第七章 假设检验假设检验概念和原理 一、填空题:1、概率很小的事件在一次试验抽样中是不至于发生的;2、0H 为真,通过一次抽样拒绝0H 所犯错误; 0H 为假,通过一次抽样接受0H 所犯错误; 二、选择题 1、B ;2、D;三、应用计算题1、解:{}1232|1258P x x x p α=++≥=={}1232|14364P x x x pβ=++<==2、解:1、0.62c ==2、因c u α= 故拒绝原假设00:0H μμ==;3、{}1.15P x P α⎫=≥=≥[]3.6412(3.64)10.0003P ⎫⎪=≥=-Φ-=⎬⎪⎭一个总体参数的假设检验 一、填空题:1、X U =12(,,):1n X x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭;3、1(,,):n R x x u p α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭二、选择题1.A 3. B 三、应用计算题1、1若根据以往资料已知σ=14 ;2σ未知; 解:101:500:500H H μμ=↔≠ 0.452x u ===因 20.452 1.96u u α=<= 故接受原假设0H . 从而包装机工作正常; 2.先检验标准差 0010:=15:H H σσσσ≥↔< 22222(1)(101)1610.2415n S χσ--=== 22110.24 3.325(1)n αχχ-=<=- 故拒绝原假设00:=15H σσ≥其次检验01:500:500H H μμ=↔≠ 0.395x T ===因2T 0.395 2.262(1)t n α=<=- 故接受原假设0:500H μ= 所以,综合上述两个检验可知包装机工作正常;2、解:0010:=0.3:=0.3H H σσσσ≤↔<22222(1)(251)(0.36)0.3456(0.3)n S χσ--=== 220.345636.415(1)n αχχ=<=- 故接受原假设;标准差没有明显增大;3、解:0010:0.9:0.9H p p H p p ≤=↔>= 4400.88500W ==1.49U ===-0.050.011.645, 2.33u u ==0.05 1.645U u <= 0.01 2.33U u <= 故两个水平下均接受原假设;两个总体参数的假设检验 一、填空题 1、等方差; 2、22122212S S F σσ=服从12(1,1)F n n --.分布;3、U =, 其中112212n W n W W n n +=+;二、选择题 1、 B 2. A 三、应用计算题1、解:012112::H H μμμμ=↔≠X YT =0.206==-因20.206 2.131(15)T t α=<= 故接受原假设;2、解:检验012112::H H μμμμ=↔≠1.5X Y U ==-因21.5 1.96U u α=<= 故接受原假设即认为两种工艺下细纱强力无显著差异; 3、解:012112::H p p H p p ≤↔>1202000.1W == 2152000.75W ==112212350.07500nW n W W n n +===+5.97U ==因 5.97 1.645U u α=>= 故拒绝原假设,即认为乙厂产品的合格率显著低于甲厂; 非参数假设检验 一、填空题 1、1m k --2、由抽样检验某种科学科学理论假设是否相符合;3、(1)(1)r c --; 二、选择题 1. A ;2. C 三、应用计算题1、解:0:H 该盒中的白球与黑球球的个数相等;记总体X 表示首次出现白球时所需摸球次数,则X 服从几何分布{}1(1)k P X k p p -==-,1,2,k=其中p 表示从盒中任摸一球为白球的概率;若何种黑球白球个数相等,则此时12p = 从而{}1112p P X ===, {}2214p P X === ,{}3318p P X === {}44116p P X ===,{}552116kk P X +∞-=≥==∑2521() 3.2i i i i v np np χ=-=∑2(4)9.488αχ= 223.29.488(4)αχχ<= 则接受原假设;2、解:0:H X 的概率密度为()2f x x = (01)x <≤{}100.250.0625p P X =<≤=,{}20.250.50.1875p P X =<≤={}30.50.750.3125p P X =<≤=,{}40.7510.4375p P X =<≤= 2421()64 1.82935i i i i v np np χ=-==∑ 2(3)7.815αχ= 因221.8297.815(3)αχχ<=故接受原假设即认为X 的概率密度为()2f x x = (01)x <≤; 3、解:0:H 公民对这项提案的态度与性别相互独立223211()2173.7ij ij i j ijn e e χ==-==∑∑因222173.7 5.991(2)αχχ>= 故拒绝0H ,即认为公民对这项提案的态度与性别不独立;4、略;第七章 测验一、填空题每小题4分,共20分1、12(,,):2n X R x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2、X T =3、222(1)n S χσ-=;2χ;4、2122S F S =;(){}222211221212,,:,n R x x S S F S S F αα-=≥≤或;5、 =14α; 916β=.二、选择题每空4分,共20分1、A ;2、C ;3、B ;4、C ;5、A三、应用题共60分1、解:检验01:70:70H H μμ=↔≠ 1.4x T ===因2T 1.4 2.02(1)t n α=<=- 故接受原假设0:70H μ= 2、解: 001:=8:8H H σσσ=↔≠ 2220(1)(101)75.73310.6564n S χσ--⨯===221210.65 2.7(1)n αχχ-=>=- 故拒绝原假设00:=8H σσ=3、解:先检验2222012112::H H σσσσ=↔≠2122 3.3251.492.225S F S ==2212S S > 查表的212((1),(1)) 5.35F n n α--=因2121.49 5.35((1),(1))F F n n α=<=--故可认为方差相等; 其次检验012112::H H μμμμ≤↔>X YT =3.52=-因 3.52 2.552(18)T t α=-<= 故接受原假设012:H μμ≤ 4、解:0010:0.2:H p p H p p ≤=↔>,3.5U ===因 3.5 1.645U u α=>= 故拒绝原假设; 5、解:(1)1.026α= (2)0.0132β=第八章 方差分析与回归分析方差分析的概念与基本思想 一、名词解释1. 因素:影响试验指标变化的原因;2. 水平:因素所设置的不同等级3. 单因素试验:在试验中仅考察一个因素的试验4. 多因素试验:在试验中考察两个或两个以上因素的试验,这类试验一般可用因素的数目来命名5. 处理:一个试验中所考察因素不同水平的组合6. 处理效应组间误差:试验中所考虑且加以控制的因素不同水平对试验指标的影响7. 随机误差:试验中为考虑或未控制的随机因素所造成的试验指标的变异 二、问答题1. 单因素试验中,因素的每一个水平即为一个处理,试验有几个水平,就相应地有几个处理;多因素试验中,处理的数目是各因素水平的乘积;例如,三因素试验中,A 因素有a 个水平,B 因素有b 个水平,C 因素有c 个水平,则处理数为abc 个;2. 方差分析的基本思想:将测量数据的总变异按照变异来源分解为处理效应和随机误差,利用数理统计的相关原理建立适当的统计量,在一定显著性水平下比较处理效应和随机误差,从而检验处理效应是否显著; 单因素方差分析 一、填空题1. 平方根变换,角度弧度反正弦变换,对数变换;2. 最小显著差数法,最小显著极差法;新复极差法,q 法;3. 总平方和,随机误差平方和,组间平方和; 二、计算题 1.2.解:112229i n r i j i j T X ====∑∑,211199327in rij i j X ===∑∑, ()222112229199327589.3625in rT ij i j T SS X n ===-=-=∑∑()()222122291200704219024174724495.36525ri A i iT T SS n n ==-=+++-=∑589.36495.3694e T A SS SS SS =-=-=方差分析表如下:因为0.01=26.35 4.43(4,20)F F >=,所以,当显著性水平=0.01α,5个温度对产量的影响有显著差异;3.该题属于单因素4水平等重复试验的方差分析;其方差分析表如下:多重比较省略;4.母猪对仔猪体重存在极显著的影响作用; 双因素方差分析1.F 检验结果表明,品种和室温对家兔血糖值的影响均达极显著水平; 2.; 回归分析的基本概念1.如何用数学语言描述相关关系相关关系就是一个或一些变量X 与另一个或一些变量Y 之间有密切关系,但还没有确切到由其中一个可以唯一确定另一个的程度,其数学语言描述可为:如果给定变量X 任意一个具体取值0x ,存在变量Y 的一个概率分布与其对应,并且该概率分布随0x 的不同而不同;同时给定变量Y 任意一个具体取值0y ,存在变量X 的一个概率分布与其对应,并且该概率分布随0y 的不同而不同,则称X 与Y 之间具有相关关系;相关关系是两个随机变量之间的平行相依关系;2.什么是回归关系回归关系与相关关系有何联系回归关系是指在相关关系中,如果X 容易测定或可人为控制,就将X 看成为非随机变量,并记为x 称为预报因子,这时x 与Y 称为预报量之间的关系称为回归关系; 回归关系是相关关系的简化,是变量之间的因果关系;一元线性回归模型的建立与检验 一、填空题 1.()211ˆ2n i i i Y y n =--∑; 2.01ˆˆy x ββ=- , ()()()1121ˆ=ni i xy i n xxi i x x Y Y L L x x β==--=-∑∑; 二、应用题1. 解:21111211113755.68,11xx i i i i L x x ==⎛⎫=-= ⎪⎝⎭∑∑11111111118708.58,11xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭∑∑∑2111121116050.58311yy i i i i L y y ==⎛⎫=-= ⎪⎝⎭∑∑1先求回归方程,由于1=0.633,xy xxL L β=01=-38.97,y x ββ-=所以Y 关于x 的回归方程为ˆy0.633-38.97,x = 2用相关系数检验法计算样本相关系数00.955r ==因为()0.0190.7348,r =而()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的 3把0200x =代入回归直线方程,得ˆ0.633200-38.9787.63y=⨯=, 2. 略; 3. 证明略;预测、控制与残差分析(1) 解:211112211113675051013104.55,1111xx i i i i L x x ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑11111111111139105102143988.18,1111xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-=-⨯⨯= ⎪⎪⎝⎭⎝⎭∑∑∑2111122111154222141258.731111yy i i i i L y y ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑1先求回归方程,由于13988.18=0.304,13104.55xy xxL L β==01214510=0.304 5.36,1111y x ββ-=-⨯= 所以Y 关于x 的回归方程为ˆy5.360.304,x =+ 在检验,用相关系数检验法计算样本相关系数00.982r ===取=0.01α,查相关系数检验表得,()0.0190.7348,r =由于()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的;2把075x =代入回归直线方程,得ˆ 5.360.3047528.16y=+⨯=, ˆ 2.301σ==,0.05(9) 2.626t =, 故当075x s =时,腐蚀深度Y 的95%预测区间为[]28.16 2.262 2.301 1.074,28.16 2.262 2.301 1.074,-⨯⨯+⨯⨯即 []22.57.7,335. 3要使腐蚀深度在1020m μ之间,即1210,20,y y Y ==的取值在区间[]1020,内时,则由方程组10112012ˆ2ˆ2,y x y x ββσββσ=+-⎧⎨=++⎩ 解得()()()()1101220111ˆ210 5.362 2.30130.40,0.30411ˆ220 5.362 2.30133.02.0.304x y x y βσββσβ=-+=⨯-+⨯==--=⨯--⨯=可线性化的一元非线性回归 一、填空题011ln ,ln ,ln ,Y Y x x ββββ''''====;00111ln ,,ln ,Y Y x xββββ''''====;ln ,lg Y Y x x ''==;二、解答题解:做散点图如右图;由于Y 与x 散点图呈指数曲线形状,于是有•,x Y e βαε=()2ln 0,N εσ两边取对数,令ln ,ln ,,,ln Y Y a b x x αβεε'''=====模型转化为线性模型()2,0,Y a bx N εεσ''''=++对所给数据进行形影变换得到10ˆˆ0.29768,8.164585ββ=-= 所以Y '对x '的样本回归方程为 8.164585-0.29768Y x ''=用t 检验法检验'Y 对'x 的回归效果是否显著,取显著性水平为,可得()0.02532.36938 2.3060t t ==>=即线性回归效果是显著的;代回原变量,得曲线回归方程()0.29768ˆˆexp 3514.26x yy e -'== 第八章 测验一、选择题1、A ;2、C ;3、B ;4、D 二、填空题1. 正态 ,独立, 等方差 ;2. ()201,~0,Y x N ββεεσ=++;3. ˆr β=三、解答题 1.提示与解答:方差分析结果表明,农药的杀虫效果是极显著的;2. 提示与解答:一元线性回归方程建立、检验、应用. 销售费用Y 与销售收入x 之间的经验回归方程为ˆ 3.140.108Yx =+ 销售费用Y 与销售收入x 之间的线性回归关系是显著的;。
概率论及数理统计期末试卷习题及标准答案.doc
概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。
2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。
3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。
25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。
6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。
7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。
8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。
0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。
0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。
若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。
a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。
华中科技大学概率论与数理统计模拟试题
《概率论与数理统计》课程考试试卷 (闭卷)请勿发群里。
做完尽快交 对的有奖励。
完成后可答疑。
一、填空题(每小题3分,共21分)1. 设P(A ) = 0.4,P(B ) = 0.3, P(B A ) = 0.6,则P(B A ) = 。
2. 设随机变量X 的概率分布列是20120.30.10.20.4-⎛⎫ ⎪⎝⎭,则2(1)P X ≥= 。
3. 设),(Y X 服从区域}1,0,0|),{(<+>>=y x y x y x D 上的均匀分布,则),(Y X 关于X 的边缘密度=)(x f X 。
4. 设随机变量X ~ N(μ, σ 2),且关于y 的一元二次方程220y y X ++=无实根的概率为1/2,则μ= 。
5. 设随机变量序列X 1,X 2,…,X n ,…独立同分布,且2(),()i i E X D X μσ==, i =1, 2, …,n ,则当n 充分大时≈≤∑=)(1x X P ni i 。
6. 设总体X 服从指数分布E (λ),X 1,X 2,…,X n 为来自总体X 的样本,∑==ni i X n X 11,则=)(2X E 。
7. 设12,,,n X X X 为来自总体2(,)N μσ的样本,μ 和σ 2为未知参数,2,X S 分别为样本均值和样本方差,22[(),()]X k X k αα为μ 的置信度为(1-α)的置信区间,则k= 。
1/3,面试官每次随机点一名学生进行面试,则女生全部面试完且有k 名男生待面试的概率是( )。
(A)kN N N k N C ----⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛3/23/13/13231 (B) 31(C)kN Nk N N C C --3/23/2 (D)N k 2. 设随机变量X ~ N(μ1, σ12),Y ~ N(μ2, σ22),且12(1)(1)P X P Y μμ-<>-<,则 必有( )。
第一学期《概率论与数理统计I》考试试卷有答案
齐鲁工业大学14/15学年一学期《概率论与数理统计I 》考试试卷设X 的分布函数F(x) = A + — arctgx ,则A =712. 事件C 表示“A 与B 同时发生的事件”,则C 可表示为.3. 设 P(A) = 0.2,P(8) = 0.5,且 A 与 B 相互独立,则 P(AB)=4. 设 X 〜7V(l,4),y ~ N(0,3),则 E(X + 2V)=5. 设随机变量X 在[0, 1]上服从均匀分布,则X 的概率密度/(x)=1. 设A 、B 为任意两个事件,则事件(4 + 5)3 +百)表示( (B) 不可能事件2. 设A 、B 为任意两个事件,则一定有F(A + 8) = (B) P(A) + P(B) - P(A)P(B)3. 设随机变量X 〜"(2,0.8),则DX = (A)2(B) 0.2(C) 0.8 (D)0.324. 设X, Y 为任意两个随机变量,下列表达式正确的是5.设总体X 〜Ng),次己知,则女的置信度为1_。
的置信区间为((A) (X±^Z a ) yin 2(B)5 2(A 卷)(适用班级:计科13-1, 2欧美、对日)(本试卷共4页)一、填空题(满分20分,其中每小空格4分) 二、选择题(满分20分,其中每小题4分)(A)必然事件 (C) A 与B 恰有一个发生(D) A 与B 不同时发生(A) P(A) + P(B) (C) 1 - P( A)P(B)(D) F(A) + P(8) — P(A3)(A) D(XY) = DX ・ DY (B) E(X + Y) = EX-hEY (C) E(XY) = EX • EY(D) D(X-Y) = DX-DY(C)2(B) (X±^=t a )5 2三、(本题满分10分)袋中有100个小球,其中90个红球,10个白球,从中任取5 个球,试求恰好取到2个白球的概率。
四、(本题满分10分)设盒子中装有编号为1〜5的5个小球,现从中任取3个,记乂=“任取的3个球的号码的最大者”,试求X的分布律。
华中科技大学概率论复习资料
多个事件的独立性 P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C),那么 A、B、C 相互独立。 对于 n 个事件类似。
P(A)= (1 ) ( 2 ) ( m ) = P(1 ) P( 2 ) P( m )
·条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如:P(Ω/B)=1 P( B /A)=1-P(B/A)
P ( AB ) P ( A ) P ( B / A )
·更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0, 则有
P ( A1 A2 … An ) P ( A1) P ( A2 | A1) P ( A3 | A1 A2) …… P ( An | A1 A2 … An 1) 。 P ( AB ) P ( A) P ( B ) ,则称事件 A 、 B 是相互独立的。 P ( A) 0 ,则有 P ( AB ) P ( A) P ( B ) P( B) P ( A) P ( A)
WEDO 出品 丨 版权所有,侵权必究
四年生活,为华科人打造的大学生成长服务平台。
华中科技大学·2015 年秋季期末复习真题卷---概率论
·A、B 中至少有一个发生的事件:A B,或者 A+B。 ·属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B ,也可表示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。 ·A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,称事 件 A 与事件 B 互不相容或者互斥。 基本事件是互不相容的。 · -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生的事件。 互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) (12)条件概率 (11)减法公式 (10)加法公式 (9)几何概型
(完整版)概率论与数理统计试题及答案
2008-2009学年 第1学期 概率论与数理统计(46学时) A一、单项选择题(本大题共5小题,每小题3分,共15分)。
1、A B 、为两个随机事件,若()0P AB =,则(A )A B 、一定是互不相容的; (B )AB 一定是不可能事件; (C )AB 不一定是不可能事件; (D )()0P A =或()0P B =.2、二维离散型随机变量(,)X Y 的分布律为(,)F x y 为(,)X Y 的联合分布函数,则(1.5,1.5)F 等于(A )1/6; (B )1/2; (C )1/3; (D )1/4.3、X Y 、是两个随机变量,下列结果正确的是 (A )若()E XY EXEY =,则X Y 、独立; (B )若X Y 、不独立,则X Y 、一定相关;(C )若X Y 、相关,则X Y 、一定不独立; (D )若()D X Y DX DY -=+,则X Y 、独立.YX 0 1 2 1 1/61/3 0 21/41/61/124、总体2212~(,),,,,,n X N X X X μσμσ均未知,为来自X 的一个简单样本,X 为样本均值,2S 为样本方差。
若μ的置信度为0.98的置信区间为(X c X c -+,则常数c 为(A )0.01(1)t n -; (B )0.01()t n ;(C )0.02(1)t n -; (D )0.02()t n .5、随机变量12,,,n X X X 独立且都服从(2,4)N 分布,则__11ni i X X n ==∑服从(A )(0,1)N ; (B )(2,4)N n ;(C )(2,4)N n n ; (D )4(2,)N n .二、填空题(本大题共5小题,每小题3分,共15分)。
6、已知A B 、为两个随机事件,若()0.6,()0.1,P A P AB ==则(|)P A AB =1.7、已知随机变量X 服从区间(0,2)上的均匀分布,则(2)E X =( ).8、已知连续型随机变量X 的概率密度函数为2,01()0,x x f x <<⎧=⎨⎩其它,则概率(||12)P X <=( ).9、随机变量12(3,),(3,)33Xb Yb ,且,X Y 独立,则()D X Y -=( ).10、已知随机变量,1,2,3i X i =相互独立,且都服从(0,9)N 分布,若随机变量2222123()(3)Y a X X X χ=++,则常数a =( ).三、解答题(本大题共6小题,每小题10分,共60分)。
《概率论与数理统计》第一章 习题及答案
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚均匀的硬币抛两次,事件CA,,分别表示“第一次出现B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C,中的样本点。
A,B解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A(正,正),(正,反)};{=B(正,正),(反,反)} {=C(正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D,分别表示“点数之和为,A,CB偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D--+,C,中,AB-,ABABCCB的样本点。
解:{})6,6(,2,1(),1,1(),Ω;=),2,6(),1,6(,),6,1(,6,2(,),2,2(),1,2(),{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+B=A;3,1(),1,1(),5,1(),CA;=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。
试用A,B,表示以下事件:A,BC(1)只订阅日报;(2)只订日报和晚报;2(3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++; (6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
精选新版2020年概率论与数理统计期末考试题库288题(含标准答案)
2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.某切割机在正常工作时,切割得每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
今从一批产品中随机抽取16段进行测量,计算平均长度为x =10.48cm 。
假设方差不变,问在0.05α=显著性水平下,该切割机工作是否正常? 0.050.050.025((16)=2.12, (15)=2.131, 1.960 )t t U =已知:解: 待检验的假设为0:H 10.5μ=选择统计量x U =当0H 成立时, U ~()0,1N0.025{||}0.05P U u >= 取拒绝域w={|| 1.960U >}由已知10.4810.580.5330.151541.960U U -====< 接受H ,即认为切割机工作正常。
2.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则=)(XY E ( A )。
A. 3B. 6C. 10D. 123.已知随机变量X 的概率密度为)(x f X ,令32+-=X Y ,则Y 的概率密度)(y f Y 为( A )。
A. )23(21---y f X B. )23(21--y f X C. )23(21+--y f X D. )23(21+-y f X 4.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.9P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y ΦB.90()3y -Φ C.(90)y Φ- D.90()9y -Φ5.连续型随机变量X 的密度函数f (x)必满足条件( C )。
A. 0() 1B.C. () 1D. lim ()1x f x f x dx f x +∞-∞→+∞≤≤==⎰在定义域内单调不减6.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.7P A =,10021X X X ,,, 相互独立。
《概率论与数理统计》第一章-习题及答案
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚匀整的硬币抛两次,事务C,分别表示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事务C,中的样本点。
A,B解:{=Ω(正,正),〔正,反〕,〔反,正〕,〔反,反〕} {=A(正,正),〔正,反〕};{=B〔正,正〕,〔反,反〕} {=C(正,正),〔正,反〕,〔反,正〕}2. 在掷两颗骰子的试验中,事务D,,分别表示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事务D-+,-,,中AB-,ABCABCBCA的样本点。
解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。
试用A,B,表示以下事务:A,BC〔1〕只订阅日报;〔2〕只订日报和晚报;〔3〕只订一种报; 〔4〕正好订两种报; 〔5〕至少订阅一种报; 〔6〕不订阅任何报; 〔7〕至多订阅一种报; 〔8〕三种报纸都订阅; 〔9〕三种报纸不全订阅。
解:〔1〕C B A ; 〔2〕C AB ;〔3〕C B A C B A C B A ++; 〔4〕BC A C B A C AB ++;〔5〕C B A ++; 〔6〕C B A ;〔7〕C B A C B A C B A C B A +++或C B C A B A ++ 〔8〕ABC ; 〔9〕C B A ++4. 甲、乙、丙三人各射击一次,事务321,,A A A 分别表示甲、乙、丙射中。