霍尔传感器(3144E)

合集下载

A3144_44E_3144E_霍尔传感器_霍尔元件解析

A3144_44E_3144E_霍尔传感器_霍尔元件解析

A3144 44E 3144E 霍尔传感器霍尔元件A3144E霍尔元件44E OH44E 霍尔传感器霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

产品特点体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高典型应用无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统极限参数(25℃)电源电压V24VCC··························输出反向击穿电压V ce50V···················输出低电平电流I OL50mA···················E档: -20~85℃,L档: -40~150℃工作环境温度 TA··············-65~150 ℃贮存温度范围TS ········H41双极锁存霍尔开关电路产品特点. 电源电压范围宽. 可用市售的小磁环来驱动. 无可动部件、可靠性高. 尺寸小. 抗环境应力. 可直接同双极和MOS逻辑电路接口典型应用. 高灵敏的无触点开关. 直流无刷电机. 直流无刷风机. 无触点开关AH41霍尔开关电路最适于响应变化斜率陡峭的磁场并在磁通密度较弱的场合使用,适用于单极或多对磁环工作,它由反向电压保护器、电压调整器、霍尔电压发生器、信号放大器、史密特触发器和集电极开路的输出级组成。

A3114E霍尔传感器

A3114E霍尔传感器

A3114E霍尔传感器
1、简介
A3144E霍尔传感器应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

2、特点
体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高
3、参数
极限参数
电特性(T A=25℃)
磁特性(V CC=4.5~24V)
4、应用前景
无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统
5、实物图片与接口
VCC:接电源正极3.3-5V
GND:接电源负极
DO:模块数字信号输出,有磁感应是输出低电平
AO:霍尔实时电压输出。

A3144_44E_3144E_霍尔传感器_霍尔元件-8页文档资料

A3144_44E_3144E_霍尔传感器_霍尔元件-8页文档资料

A3144 44E 3144E 霍尔传感器霍尔元件A3144E霍尔元件44E OH44E 霍尔传感器霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

产品特点体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高典型应用无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统极限参数(25℃)电源电压V24VCC··························输出反向击穿电压Vce (50V)50mA输出低电平电流I OL···················E档: -20~85℃,L档: -40~150℃工作环境温度 TA··············-65~150 ℃贮存温度范围TS ········H41双极锁存霍尔开关电路产品特点. 电源电压范围宽. 可用市售的小磁环来驱动. 无可动部件、可靠性高. 尺寸小. 抗环境应力. 可直接同双极和MOS逻辑电路接口典型应用. 高灵敏的无触点开关. 直流无刷电机. 直流无刷风机. 无触点开关AH41霍尔开关电路最适于响应变化斜率陡峭的磁场并在磁通密度较弱的场合使用,适用于单极或多对磁环工作,它由反向电压保护器、电压调整器、霍尔电压发生器、信号放大器、史密特触发器和集电极开路的输出级组成。

霍尔传感器A3144EU

霍尔传感器A3144EU

SUPPLY CURRENT IN mA
2.0
0 0
TA = +25°C
5
10
15
SUPPLY VOLTAGE IN VOLTS
20
25
Dwg. GH-041-1
4.0
B ≤ BRP
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE IN °C
125
150
Dwg. GH-039-1
Supply Voltage Output Saturation Voltage Output Leakage Current
VCC VOUT(SAT)
IOFF
Operating IOUT = 20 mA, B > BOP VOUT = 24 V, B < BRP
4.5

24

175
400

<1.0
115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 Copyright © 1993, 1999, Allegro MicroSystems, Inc.
3141 THRU 3144 SENSITIVE
Always order by complete part number, e.g., A3141ELT .
3141 THRU 3144 SENSITIVE HALL-EFFECT SWITCHES FOR HIGH-TEMP. OPERATION
FUNCTIONAL BLOCK DIAGRAM

3144霍尔元件工作原理

3144霍尔元件工作原理

3144霍尔元件工作原理3144霍尔元件是一种基于霍尔效应工作的电子元件,它的工作原理是利用外加磁场对电流的影响,实现电流的检测和控制。

本文将详细介绍3144霍尔元件的工作原理及其在实际应用中的作用。

一、霍尔效应简介霍尔效应是指当电流通过导体时,如果该导体处于垂直磁场中,那么在导体两侧会产生一种电压差,这种现象被称为霍尔效应。

霍尔效应的原理是基于洛伦兹力和电荷载流子的相互作用,当电荷载流子受到磁场力的作用时,会在导体中产生电荷分布不均,从而形成电压差。

二、3144霍尔元件的结构和特点3144霍尔元件通常由霍尔片、电流传感器和输出放大器等组成。

其中,霍尔片是核心部件,它由半导体材料制成,具有高灵敏度和稳定性。

电流传感器用于感应电流信号,输出放大器用于放大电流信号并进行处理。

3144霍尔元件的特点是体积小、功耗低、响应速度快、精度高以及可靠性强。

它能够在较宽的温度范围内正常工作,并且对温度变化的影响较小。

此外,3144霍尔元件还具有较高的抗干扰能力和较长的使用寿命。

三、3144霍尔元件的工作原理3144霍尔元件的工作原理是基于霍尔效应,在外加磁场的作用下,电流通过霍尔片时,会在霍尔片两侧产生电压差。

具体而言,当电流方向与磁场方向垂直时,正电荷受到向上的洛伦兹力的作用,电子受到向下的洛伦兹力的作用,从而导致电荷分布不均,形成电压差。

根据洛伦兹力的方向,可以确定电压差的极性。

3144霍尔元件的输出电压与外加磁场的强度和电流的大小成正比。

当磁场强度或电流增大时,输出电压也会相应增大。

此外,电流的正负方向也会影响输出电压的极性。

四、3144霍尔元件的应用3144霍尔元件广泛应用于工业自动化控制、电力电子、仪器仪表等领域。

具体应用包括以下几个方面:1. 电流检测:通过测量霍尔元件的输出电压,可以实时监测电流的变化,并进行控制。

比如在电力系统中,可以用于电流的保护和监测。

2. 位置检测:利用霍尔元件对磁场的敏感性,可以实现位置的检测。

A3144 44E 3144E 霍尔传感器 霍尔元件教程文件

A3144 44E 3144E 霍尔传感器 霍尔元件教程文件

A314444E3144E 霍尔传感器霍尔元件A3144 44E 3144E 霍尔传感器霍尔元件A3144E霍尔元件44E OH44E 霍尔传感器霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

产品特点体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高典型应用无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统极限参数(25℃)电源电压V CC (24V)输出反向击穿电压V ce (50V)输出低电平电流I OL···················50mA工作环境温度 T A··············E档: -20~85℃,L档: -40~150℃贮存温度范围T S ········-65~150 ℃H41双极锁存霍尔开关电路产品特点. 电源电压范围宽. 可用市售的小磁环来驱动. 无可动部件、可靠性高. 尺寸小. 抗环境应力. 可直接同双极和MOS逻辑电路接口典型应用. 高灵敏的无触点开关. 直流无刷电机. 直流无刷风机. 无触点开关AH41霍尔开关电路最适于响应变化斜率陡峭的磁场并在磁通密度较弱的场合使用,适用于单极或多对磁环工作,它由反向电压保护器、电压调整器、霍尔电压发生器、信号放大器、史密特触发器和集电极开路的输出级组成。

A314444E3144E霍尔传感器霍尔元件

A314444E3144E霍尔传感器霍尔元件

A3144 44E 3144E 霍尔传感器霍尔元件A3144E霍尔元件44E OH44E 霍尔传感器霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

产品特点体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高典型应用无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统极限参数(25℃)电源电压V CC (24V)输出反向击穿电压V ce (50V)输出低电平电流I OL···················50mA工作环境温度T A··············E档: -20~85℃,L档: -40~150℃贮存温度范围T S ········-65~150 ℃H41双极锁存霍尔开关电路产品特点. 电源电压范围宽. 可用市售的小磁环来驱动. 无可动部件、可靠性高. 尺寸小. 抗环境应力. 可直接同双极和MOS逻辑电路接口典型应用. 高灵敏的无触点开关. 直流无刷电机. 直流无刷风机. 无触点开关AH41霍尔开关电路最适于响应变化斜率陡峭的磁场并在磁通密度较弱的场合使用,适用于单极或多对磁环工作,它由反向电压保护器、电压调整器、霍尔电压发生器、信号放大器、史密特触发器和集电极开路的输出级组成。

A3144 44E 3144E 霍尔传感器 霍尔元件

A3144 44E 3144E 霍尔传感器 霍尔元件

A3144 44E 3144E 霍尔传感器霍尔元件A3144E霍尔元件44E OH44E 霍尔传感器霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

产品特点体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高典型应用无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统极限参数(25℃)电源电压V24VCC··························输出反向击穿电压Vce···················50V输出低电平电流I OL50mA···················E档: -20~85℃,L档: -40~150℃工作环境温度 TA··············贮存温度范围T-65~150 ℃S ········H41双极锁存霍尔开关电路产品特点. 电源电压范围宽. 可用市售的小磁环来驱动. 无可动部件、可靠性高. 尺寸小. 抗环境应力. 可直接同双极和MOS逻辑电路接口典型应用. 高灵敏的无触点开关. 直流无刷电机. 直流无刷风机. 无触点开关AH41霍尔开关电路最适于响应变化斜率陡峭的磁场并在磁通密度较弱的场合使用,适用于单极或多对磁环工作,它由反向电压保护器、电压调整器、霍尔电压发生器、信号放大器、史密特触发器和集电极开路的输出级组成。

霍尔传感器AH3144[1]

霍尔传感器AH3144[1]

磁场强度(Gs )
150
100
BOP
200
IOUT=20mA Vcc=4.5-24V
50
BRP
Vcc=8V
0 -50 -25 0 25 50 75 100 125
温度 Ta (℃)
100
0 -50 -25 0 25 50 75 100 125
温度 Ta (℃)
封装形式 (单位:mm)
4.06± 0.10
VCC=4.5~24V 1mT=10Gs
符号
型号及量
最小
典型
值 最大
BOP
-
-
11
BRP
2.0
-
-
BH
1.0-
4.0
-
单位
mT mT mT
单位
V mV μA mA μS μS
深圳市裕辉美科技有限公司 销售电话:0755-25910727/84660586 传真:0755-84662603 地址:深圳市龙岗区龙岗街道东方明珠城4座3003室
深圳市裕辉美科技有限公司 销售电话:0755-25910727/84660586 传真:0755-84662603 地址:深圳市龙岗区龙岗街道东方明珠城4座3003室
AH3144 系列霍尔开关电路 NhomakorabeaAH3144 系列霍尔开关电路
裕辉美科技
YUHUIMEI TECHNOLOGY
功能方框图
1,电源 Vcc
REG
3, 输出, Vo
AH3144
磁电转换特性
Vout BH
特征曲线
2, 地, GND
BRP
BOP
B
工作点和释放点的温度特性 200
输出饱和电压的温度特性 300

常用传感器 霍尔传感器的用法 3144 A44E

常用传感器 霍尔传感器的用法 3144  A44E

常用传感器应用一、温度传感器1、热敏电阻:分类:正温度系数(PTC)、负温度系数(NTC)、临界温度热敏电阻(CTR ) 实验室使用的是电阻值随温度的增加而减小的热敏电阻(负温度系数热敏电阻),常温状态下热敏电阻阻值约为9.3K 。

应该指出,由于热敏电阻的线性不好,现在已基本不再用来作温度测量使用了。

但是由于成本低,在定点温度控制等场合中还有较大的应用市场。

单点测温电路如下:(电路中R2的作用是改善RT 随温度变化的非线性性)2、温控开关:按开关类型分为常开可逆、常闭可逆和常开不可逆、常闭不可逆四种。

还可以按照临界温度分,温控开关的临界温度一般标称在开关体上。

二、声电式传感器1、压电陶瓷片:工作原理:当压电陶瓷片上受到外加压力时,陶瓷片发生机械变形,其极化强度随之变小,使一部分附加在陶瓷片表面的电荷释放出来,而产生放电现象。

当压力取消后,又恢复原状,极化强度增大,电极上又吸附一部分电荷,出现充电现象。

这种由机械能转变为电能的现象,称为“正压电效应”。

反之,当在压电陶瓷片上加一电场,陶瓷片则发生机械变形。

当外加电场方向陶瓷片极化方向相同时,极化强度增大,使陶瓷片沿极化方向伸长。

当外加电场方向与陶瓷片极化方向相反时,陶瓷片沿极化方向缩短。

这种由电能转变为机械能的现象,称为“反压电效应”。

测试电路图如下:(电路连接时注意区分正负极,与背面金属铜连接的为负端,涂银层为正端)R23.6K R610KR310KR510KR71KR410KR9A 5KR1RTVCCR81KD1LEDU1OPQ19013Q29013Q39013R3680R4350K R513K R62.7KR21KR1A500KY1C110u F OUTC247u F +5V2、驻极体话筒:驻极体话筒及其电路的接法有两种:源极输出与漏极输出。

源极输出类似晶体三极管的射极输出。

需用三根引出线。

漏极D 接电源正极。

源极S 与地之间接一电阻Rs 来提供源极电压,信号由源极经电容C 输出。

常用传感器霍尔传感器的用法3144A44E

常用传感器霍尔传感器的用法3144A44E

常用传感器应用一、温度传感器1、热敏电阻:分类:正温度系数 (PTC)、负温度系数 (NTC) 、临界温度热敏电阻(CTR )实验室使用的是电阻值随温度的增加而减小的热敏电阻(负温度系数热敏电阻),常温状态下热敏电阻阻值约为9.3K。

应该指出,由于热敏电阻的线性不好,现在已基本不再用来作温度测量使用了。

但是由于成本低,在定点温度控制等场合中还有较大的应用市场。

单点测温电路如下:(电路中 R2的作用是改善 RT随温度变化的非线性性)VCCR1R2R33.6K10KRTU1R4 10KR6 1 0K R81 KOPR9 A R55 K10KD1LEDR71 K2、温控开关:按开关类型分为常开可逆、常闭可逆和常开不可逆、常闭不可逆四种。

还可以按照临界温度分,温控开关的临界温度一般标称在开关体上。

二、声电式传感器1、压电陶瓷片:工作原理:当压电陶瓷片上受到外加压力时,陶瓷片发生机械变形,其极化强度随之变小,使一部分附加在陶瓷片表面的电荷释放出来,而产生放电现象。

当压力取消后,又恢复原状,极化强度增大,电极上又吸附一部分电荷,出现充电现象。

这种由机械能转变为电能的现象,称为“正压电效应”。

反之,当在压电陶瓷片上加一电场,陶瓷片则发生机械变形。

当外加电场方向陶瓷片极化方向相同时,极化强度增大,使陶瓷片沿极化方向伸长。

当外加电场方向与陶瓷片极化方向相反时,陶瓷片沿极化方向缩短。

这种由电能转变为机械能的现象,称为“反压电效应”。

测试电路图如下: ( 电路连接时注意区分正负极,与背面金属铜连接的为负端,涂银层为正端 )+5VR1 AR3R4R5R66 80350K13K 2.7 K500 KC1C2R2OUT1 K10u F 4 7u FQ1Q2Q3901 39013901 3Y12、驻极体话筒:驻极体话筒及其电路的接法有两种:源极输出与漏极输出。

源极输出类似晶体三极管的射极输出。

需用三根引出线。

漏极 D 接电源正极。

A3144E霍尔元件

A3144E霍尔元件

3144 已经内置放大器,所以外面不需要放大器,只需要有个上拉电阻输出就可以。

3144属于单极性霍尔开关集成电路,(由于原装进口的厂家已经停产,所以目前市场上的3144都是国产的.建议选用正规的大厂家产品使用.也可以选用S18霍尔型号来代替)
霍尔原理:
所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。

当电流通过霍尔元件时,若在垂直于电流的方向施加磁场,则霍尔元件两侧面会出现横向电位差(即称为霍尔电压),由于磁场的变化,于是霍尔元件发出脉冲信号传输给控制器来处理,从而实现测速测位置等传感器或开关作用。

所以说,需要有磁场的变化,才能有相应的霍尔脉冲信号输出,你使用了圆形的磁铁固定在点机轴,如果是四周都一样的磁场,那么就不会有输出变化,所以你应该选用一个高磁性的较小体积的磁铁(比如长方体的或扁平体)用N极或S极垂直于电机轴固定在电机上,由于你使用的是单极性的霍尔,那么你就用磁铁的一极朝向霍尔的正面感应区,那么等到电机轴上的磁铁转到霍尔放置的位置时,就会因为受到磁场变化,并切割磁力线,霍尔就会输出脉冲信号。

所有的霍尔都会随着温度的变化,霍尔的BOP和BRP的高斯值会出现不同程度的飘逸(俗称温飘)但是根据你的描述,估计你是用来测位置(相位传感器)或转速(转速传感器)的。

那么你的温度环境应该不会太高,选用-40至85度的霍尔就可以了,价格相对便宜。

如果超过85度环境就要用到-40到150的霍尔产品,价格会贵很多。

最新A3144_44E_3144E_霍尔传感器_霍尔元件

最新A3144_44E_3144E_霍尔传感器_霍尔元件

A3144_44E_3144E_霍尔传感器_霍尔元件A3144 44E 3144E 霍尔传感器霍尔元件A3144E霍尔元件44E OH44E 霍尔传感器霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

产品特点体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高典型应用无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统极限参数(25℃)电源电压V CC (24V)输出反向击穿电压V ce (50V)输出低电平电流I OL···················50mA工作环境温度 T A··············E档: -20~85℃,L档: -40~150℃贮存温度范围T S ········-65~150 ℃H41双极锁存霍尔开关电路产品特点. 电源电压范围宽. 可用市售的小磁环来驱动. 无可动部件、可靠性高. 尺寸小. 抗环境应力. 可直接同双极和MOS逻辑电路接口典型应用. 高灵敏的无触点开关. 直流无刷电机. 直流无刷风机. 无触点开关AH41霍尔开关电路最适于响应变化斜率陡峭的磁场并在磁通密度较弱的场合使用,适用于单极或多对磁环工作,它由反向电压保护器、电压调整器、霍尔电压发生器、信号放大器、史密特触发器和集电极开路的输出级组成。

AH3144E、AH3144L磁敏传感电路

AH3144E、AH3144L磁敏传感电路

2.70
12.7min
4.06± 0.10
1.5+0.1 0.8
0
1.96

0.34
作作作作作
0.89
0.43
0.38
0.38
标志面
12 3
1.27 2.34
45
TO-92UA 封装及敏感点位置
管脚说明
1. 电源 2. 地 3. 输出
使用注意
1、安装时应尽量减小作用到霍尔电路上的机械应力; 2、在保证焊接质量的条件下,尽量使焊接温度低,时间短。
产品特点
. 电源电压范围宽 . 开关速度快,无瞬间抖动。 . 工作频率宽(DC~100KHz) . 寿命长、体积小、安装方便 . 能直接和晶体管及 TTL、MOS 等逻辑电路接口.
典型应用
. 无触点开关 . 转速检测 . 直流无刷电机 . 汽车点火器
. 位置控制 . 隔离检测 . 电流传感器 . 安全报警装置
封装形式 (单位:mm)
4.5± 0.1
2.0± 0.1 1.0
BRP
BOP
B
2.26
0.64 作用区深度
1.34
4.0± 0.1
2.70
12.7min


0.43
标志面
0.38
1.27
2.34

0.38 1 23
TO-92T 封装及敏感点位置

管脚说明
1. 电源 2. 地 3. 输出
3.1+00.1
磁特性
参数
工作点 释放点 回差
TA=25℃
符号
测试条件
VCC
VOL
Iout=25mA B>BOP

霍尔传感器ES3144中文手册

霍尔传感器ES3144中文手册
灵敏度高,反应迅速 可靠性高,小型化,超薄封装 工作温度范围宽40- 150℃
3. 应用
限位开关 电流限制 转速测量 电流传感器 接近磁定位开关
©2009-2012 Innosen Technology Co., Ltd. 1/7
Rev3.0.0.121130

单极霍尔效应开关ES3144 4. 功 能 框 图
Datasheet
1.52 0.1 0.75 0.05
4.0 0.1
3 - 0.44 3.90
0.05 3 - 0.38
3.90
3144 xxxxx
1.2 7
1.6. 0.1 14.5 1.0
3 1 45 1
0.89 0.1
3.0 0.1
霍尔板位置
有源区深度: 3 1
0.84(Nom) 6 1
VDD
电压调节器
霍尔板 5.引脚定义
放大器
Datasheet
输出

Name
V DD GND Output
TO-92S 封装 引脚1 - DDV 引脚2 - GND 引脚3 - Output
SOT-23 封装 引脚1 - DDV 引脚2 - Output 引脚3 - GND
P/I/O
P P O
引脚#
TO-92S Package SOT-23 Package
最小典型
90
120 180
40
70 130
-
50
Gs Gs
Gs
©2009-2012 Innosen Technology Co., Ltd. 3/7
Rev3.0.0.121130

单极霍尔效应开关ES3144 9.磁电转换特性

常用传感器霍尔传感器的用法3144A44E

常用传感器霍尔传感器的用法3144A44E

一、温度传感器1、热敏电阻:分类:正温度系数(PTC)、负温度系数(NTC)、临界温度热敏电阻(CTR)实验室使用的是电阻值随温度的增加而减小的热敏电阻(负温度系数热敏电阻),常温状态下热敏电阻阻值约为9.3K。

应该指出,由于热敏电阻的线性不好,现在已基本不再用来作温度测量使用了。

但是由于成本低,在定点温度控制等场合中还有较大的应用市场。

单点测温电路如下:(电路中R2的作用是改善2、温控开关:按开关类型分为常开可逆、常闭可逆和常开不可逆、常闭不可逆四种。

还可以按照临界温度分,温控开关的临界温度一般标称在开关体上。

二、声电式传感器1、压电陶瓷片:工作原理:当压电陶瓷片上受到外加压力时,陶瓷片发生机械变形,其极化强度随之变小,使一部分附加在陶瓷片表面的电荷释放出来,而产生放电现象。

当压力取消后,又恢复原状,极化强度增大,电极上又吸附一部分电荷,出现充电现象。

这种由机械能转变为电能的现象,称为“正压电效应”。

反之,当在压电陶瓷片上加一电场,陶瓷片则发生机械变形。

当外加电场方向陶瓷片极化方向相同时,极化强度增大,使陶瓷片沿极化方向伸长。

当外加电场方向与陶瓷片极化方向相反时,陶瓷片沿极化方向缩短。

这种由电能转变为机械能的现象,称为“反压电效应”。

测试电路图如下:(电路连接时注意区分正负极,与背面金属铜连接的为负端,涂银层为正端)常用传感器应用RT随温度变化的非线性性)驻极体话筒及其电路的接法有两种:源极输出与漏极输出。

源极输出类似晶体三极管的射极输出。

需用三根引出线。

漏极D接电源正极。

源极S 与地之间接一电阻Rs 来提供源极电压,信号由源极经电容C输出。

编织线接地起屏蔽作用。

源极输出的输出阻抗小于2k,电路比较稳定,动态范围大。

但输出信号比漏极输出小。

漏极输出类似晶体三极管的共发射极放入。

只需两根引出线。

oD外形鈿離1S oS内部电路1 ---------DGDG漏极D与电源正极间接一漏极电阻RD信号由漏极D经电容C输出。

AH44E

AH44E

TA
高温贮存温度
TS
典型应用 . 无触点开关 . 转速检测 . 直流无刷电机 . 汽车点火器
. 位置控制 . 隔离检测 . 电流传感器 . 安全报警装置
量值
单位
24
V
不限
mT
40
V
25
mA
-40~150

-20~85

150

电特性
参数
电源电压 输出低电平电 压 输出高电平电 流 电源电流 输出上升时间 输出下降时间
AH3144 系列霍尔开关电路
AH3144
功能方框图 1,电源 Vcc
REG
3, 输出, Vo
磁电转换特性 Vo ut
BH
特征曲线
2, 地, GND
BRP BOP B
0.89
输出饱和电压 VOL (mV)
工作点和释放点的温度
200
特性
150
100
BO
P
300 200
输出饱和电压的温度特性
IOUT=20mA Vcc=4.5-24V
2.7 0
12.7min
0.43 0.38 0.38
1.27 2.34
12 3
标志 面
管脚说明 1. 电源 2. 地 3. 输出
45 使用注意1、安装时应尽量减小作用到霍尔电路上的机械应力; 2、在保证焊接质量的条件下,尽量使焊接温度低,时间短。
深圳市霍尔微电子有限公司 2
电话:0755-25910727/36673607 地址:深圳市宝安区龙华上塘路口盈安大厦408室
AH3144 系列霍尔开关电路
TA=25℃
符号
测试条件
VCC

传感器AH3144介绍

传感器AH3144介绍

产品特点
. 电源电压范围宽 . 开关速度快,无瞬间抖动。 . 工作频率宽(DC~100KHz) . 寿命长、体积小、安装方便 . 能直接和晶体管及 TTL、MOS 等逻辑电路接口.
典型应用
. 无触点开关 . 转速检测 . 直流无刷电机 . 汽车点火器
. 位置控制 . 隔离检测 . 电流传感器 . 安全报警装置
极限参数
参数
电源电压
磁感应强度
输出反向击穿电压
输出低电平电流
工作环境温度
AH3134L AH3134E
符号 VCC B Vce IOL TA TA
量值 24 不限 40 25
-40~150 -20~85
单位 V mT V mA ℃ ℃
高温贮存温度
TS
150

电特性
参数
TA=25℃
符号
测试条件
电源电压 输出低电平电压 输出高电平电流 电源电流 输出上升时间 输出下降时间
管脚说明
1. 电源 2. 地 3. 输出
使用注意
1、安装时应尽量减小作用到霍尔电路上的机械应力; 2、在保证焊接质量的条件下,尽量使焊接温度低,时间短。
2
AH3144 系列霍尔开关电路
BH
特征曲线
2, 地, GND
BRP
BOP
B
工作点和释放点的温度特性 200
输出饱和电压的温度特性 300
0.89
输出饱和电压 VOL (mV)
磁场强度(Gs )
150
100
BOP
200
IOUT=20mA Vcc=4.5-24V
50
BRP
Vcc=8V
0 -50 -25 0 25 50 75 100 125

霍尔传感器(3144E)

霍尔传感器(3144E)

/********************************************************************汇诚科技实现功能:此版配套测试程序使用芯片:AT89S52晶振:11.0592MHZ波特率:9600编译环境:Keil作者:zhangxinchunleo网站:淘宝店:汇诚科技【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!*********************************************************************/ /********************************************************************说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平*********************************************************************/ #include //库文件#define uchar unsigned char//宏定义无符号字符型#define uint unsigned int //宏定义无符号整型/********************************************************************I/O定义*********************************************************************/ sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/********************************************************************延时函数*********************************************************************/ void delay()//延时程序{uchar m,n,s;for(m=20;m>0;m--)for(n=20;n>0;n--)for(s=248;s>0;s--);}/********************************************************************主函数*********************************************************************/ void main(){while(1) //无限循环{LED=1; //熄灭P1.0口灯if(DOUT==0)//当浓度高于设定值时,执行条件函数{delay();//延时抗干扰if(DOUT==0)//确定浓度高于设定值时,执行条件函数{LED=0; //点亮P1.0口灯}}}}/********************************************************************结束*********************************************************************//********************************************************************汇诚科技实现功能:0~9999计数器使用芯片:AT89S52晶振:11.0592MHZ波特率:9600编译环境:Keil作者:zhangxinchunleo网站:淘宝店:汇诚科技【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!******************************************************************/#include#define uchar unsigned char#define uint unsigned intuchar duan[10]={0xc0,0Xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //所需的段的位码//uchar wei[4]={0XEf,0XDf,0XBf,0X7f}; //位的控制端(开发板) uchar wei[4]={0X80,0X40,0X20,0X10}; //位的控制端(仿真) uint z,x,c,v, date; //定义数据类型uint dispcount=0;/******************************************************************延时函数******************************************************************/void delay(uchar t){uchar i,j;for(i=0;i {for(j=13;j>0;j--);{ ;}}}/**********************************************************************数码管动态扫描*********************************************************************/void xianshi(){/*****************数据转换*****************************/z=date/1000; //求千位x=date%1000/100; //求百位c=date%100/10; //求十位v=date%10; //求个位P2=wei[0];P0=duan[z];delay(50);P2=wei[1];P0=duan[x];delay(50);P2=wei[2];P0=duan[c];delay(50);P2=wei[3];P0=duan[v];delay(50);}/*************************************************************************中断函数**************************************************************************/ void ExtInt0() interrupt 0 //中断服务程序{dispcount++; //每按一次中断按键,计数加一if (dispcount==9999) //计数范围0-9999{dispcount=0;}}/*************************************************************************主函数**************************************************************************/ void main(){TCON=0x01; //中断设置IE=0x81;while(1){date=dispcount;xianshi();}}/********************************************************************结束*********************************************************************/。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/********************************************************************
汇诚科技
实现功能:此版配套测试程序
使用芯片:AT89S52
晶振:11.0592MHZ
波特率:9600
编译环境:Keil
作者:zhangxinchunleo
网站:
淘宝店:汇诚科技
【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!
*********************************************************************/ /********************************************************************说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平
*********************************************************************/ #include //库文件
#define uchar unsigned char//宏定义无符号字符型
#define uint unsigned int //宏定义无符号整型
/********************************************************************
I/O定义
*********************************************************************/ sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端
sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/********************************************************************
延时函数
*********************************************************************/ void delay()//延时程序
{
uchar m,n,s;
for(m=20;m>0;m--)
for(n=20;n>0;n--)
for(s=248;s>0;s--);
}
/********************************************************************
主函数
*********************************************************************/ void main()
{
while(1) //无限循环
{
LED=1; //熄灭P1.0口灯
if(DOUT==0)//当浓度高于设定值时,执行条件函数
{
delay();//延时抗干扰
if(DOUT==0)//确定浓度高于设定值时,执行条件函数{
LED=0; //点亮P1.0口灯
}
}
}
}
/********************************************************************
结束
*********************************************************************/
/********************************************************************
汇诚科技
实现功能:0~9999计数器
使用芯片:AT89S52
晶振:11.0592MHZ
波特率:9600
编译环境:Keil
作者:zhangxinchunleo
网站:
淘宝店:汇诚科技
【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!
******************************************************************/
#include
#define uchar unsigned char
#define uint unsigned int
uchar duan[10]={0xc0,0Xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //所需的段的位码
//uchar wei[4]={0XEf,0XDf,0XBf,0X7f}; //位的控制端(开发板) uchar wei[4]={0X80,0X40,0X20,0X10}; //位的控制端(仿真) uint z,x,c,v, date; //定义数据类型
uint dispcount=0;
/******************************************************************
延时函数
******************************************************************/
void delay(uchar t)
{
uchar i,j;
for(i=0;i {
for(j=13;j>0;j--);
{ ;
}
}
}
/**********************************************************************
数码管动态扫描
*********************************************************************/
void xianshi()
{
/*****************数据转换*****************************/
z=date/1000; //求千位
x=date%1000/100; //求百位
c=date%100/10; //求十位
v=date%10; //求个位
P2=wei[0];
P0=duan[z];
delay(50);
P2=wei[1];
P0=duan[x];
delay(50);
P2=wei[2];
P0=duan[c];
delay(50);
P2=wei[3];
P0=duan[v];
delay(50);
}
/*************************************************************************
中断函数
**************************************************************************/ void ExtInt0() interrupt 0 //中断服务程序
{
dispcount++; //每按一次中断按键,计数加一
if (dispcount==9999) //计数范围0-9999
{dispcount=0;}
}
/*************************************************************************
主函数
**************************************************************************/ void main()
{
TCON=0x01; //中断设置
IE=0x81;
while(1)
{
date=dispcount;
xianshi();
}
}
/********************************************************************
结束
*********************************************************************/。

相关文档
最新文档