第二章 8086系统结构
微机原理(杭州电子科技大学【4】8086系统结构[2-3]
15:28
22
二、系统的复位与启动
【8086CPU时序】
① 复位信号:通过RESET引脚上的触发信号来引起8086系统复位和启
动,RESET至少维持4个时钟周期的高电平。
② 复位操作:当RESET信号变成高电平时,8086/8088CPU结束现行
操作,各个内部寄存器复位成初值。
标志寄存器
清零
指令寄存器 CS寄存器 DS寄存器 SS寄存器 ES寄存器
的比例倍频后得到CPU的主频,即: CPU主频 = 外频 × 倍频系数
⑥ PC机各子系统时钟(存储系统,显示系统,总线等)是由系统频率按 照一定的比例分频得到。
15:28
5
内频 550MHz Pentium III
倍频系数5.5
L1 Cache
L2 550MHz Cache
处理机总线 100MHz
微机原理与接口技术
第四讲
15:28
第二章 8086系统结构
内容提要
z微型计算机的发展概况 z8086CPU内部结构 z8086CPU引脚及功能 z8086CPU存储器组织 z8086CPU系统配置 z8086CPU时序
15:28
2
※有关概念介绍
z 主频,外频,倍频系数 z T状态 z 总线周期 z 指令周期 z 时序 z 时序图
总线操作
读存储器操作 (取操作数)
写存储器操作 (将结果存放到内存)
读 I/O 端口操作 (取 I/O 端口中的数)
写 I/O 端口操作 (往 I/O 端口写数)
中断响应操作
总线周期
存储器读周期 存储器写周期 I/O 端口读周期 I/O 端口写周期 中断响应周期
15:28
第2章-8086微处理器part2
8086 CPU在最小模式中引脚定义
M/#IO:Memory/Input & Output,三态输出
存储器或I/O端口访问信号 。指示8086的访问对象,发 给MEM或I/O接口。 M/# IO为高电平时,表示 当前CPU正在访问存储器;
M/# IO 为低电平时,表 示当前CPU正在访问I/O端 口
数据驱动器数据流向控制信 号,输出,三态。
在8086系统中,通常采用 74LS245、8286或8287作 为数据总线的驱动器,用 DT/#R信号来控制数据驱动 器的数据传送方向。 当DT/#R=1时,进行数据 发送; 当DT/#R=0时,进行数据 接收。
8086 CPU在最小模式中引脚定义
READY:准备就绪信号 由外部输入,高电平有效 ,表示CPU访问的存储器 或I/O端口己准备好传送 数据。 当READY无效时,要求 CPU插入一个或多个等待 周期Tw,直到READY信 号有效为止。
S3 0 1 0 1
当前正在使用的段寄存器 ES SS CS或未使用任何段寄存器 DS
8086 CPU在最小模式中引脚定义
#BHE/S7:高8位总线允许(Bus High Enable)
T1:指示高8位数据总线上的数据 是否有效 (#BHE:AD0)配合:00时读写字 ,01时读写奇地址字节,10时读写 偶地址字节 其他T周期:输出状态信号S7(S7 始终为逻辑1,未定义) DMA方式下,该引脚为高阻态。
最大模式引脚信号(续)
LOCK# :总线封锁(优先权锁定) 三态输出,低电平有效。 LOCK有效时表示CPU不允许其它总线主控者占用 总线。 ห้องสมุดไป่ตู้ 这个信号由软件设置。 • 当在指令前加上LOCK前缀时,则在执行这条 指令期间LOCK保持有效,即在此指令执行期 间,CPU封锁其它主控者使用总线。 在保持响应期间,LOCK#为高阻态。
第二章 8086体系结构
8086微处理器概览
标志位寄存器(FR) • 16位标志位寄存器FR,共有9个
标志位。其中6个是状态标志位, 3个是控制标志位,用于反映 CPU运行过程中的某些状态特征。
标志位寄存器
3、标志寄存器FR
标志寄存器FR中共有9个标志位,可分成两类: ➢状态标志 表示运算结果的特征,它们是 CF、PF、AF、 ZF、SF和OF ➢控制标志 控制CPU的操作,它们是IF、DF和TF。
IP :BIU要取指令的地址。
IP
三、8086CPU的管脚及功能
8086是16位CPU。它采用高性能的N— 沟道,耗尽型负载的硅栅工艺(HMOS)制 造。由于受当时制造工艺的限制,部分管 脚采用了分时复用的方式,构成了40条管 脚的双列直插式封装
1、 8086的两种工作方式
最小模式:系统中只有8086一个处理器,所有的控制信号都 是由8086CPU产生(MN/MX=1)。
最大模式:系统中可包含一个以上的处理器,比如包含协处 理器8087。在系统规模比较大的情况下,系统控 制信号不是由8086直接产生,而是通过与8086配 套的总线控制器等形成(MN/MX=0)。
三总线结构 数据线DB 地址线AB 控制线CB
微机的三总线结构
➢ 最小模式下的引脚说明
( 1 ) AD15 ~ AD0 (Address Data Bus):
堆栈指针用于存放栈顶的逻辑偏移地 址,隐含的逻辑段地址在SS寄存器中。
寄存器的特殊用途和隐含性质
在指令中没有明显的标出,而这些寄存器参 加操作,称之为“隐含寻址”。
具体的:在某类指令中,某些通用寄存器有指 定的特殊用法,编程时需遵循这些规定,将某些 特殊数据放在特定的寄存器中,这样才能正确的 执行这些指令。采用“隐含”的方式,能有效地 缩短指令代码的长度。
微机原理课件第二章 8086系统结构
但指令周期不一定都大于总线周期,如MOV AX,BX
操作都在CPU内部的寄存器,只要内部总线即可完成,不 需要通过系统总线访问存储器和I/O接口。
2021/8/17
17
• 8086CPU的典型总线时序,充分体现了总 线是严格地按分时复用的原则进行工作的。 即:在一个总线周期内,首先利用总线传 送地址信息,然后再利用同一总线传送数 据信息。这样减少了CPU芯片的引脚和外 部总线的数目。
• 执行部件(EU)
• 功能:负责译码和执行指令。
2021/8/17
5
• 联系BIU和EU的纽带为流水指令队列
• 队列是一种数据结构,工作方式为先进先出。写入的指令 只能存放在队列尾,读出的指令是队列头存放的指令。
2021/8/17
6
•BIU和EU的动作协调原则 BIU和EU按以下流水线技术原则协调工作,共同完成所 要求的任务: ①每当8086的指令队列中有空字节,BIU就会自动把下 一条指令取到指令队列中。 ②每当EU准备执行一条指令时,它会从BIU部件的指令 队列前部取出指令的代码,然后译码、执行指令。在执 行指令的过程中,如果必须访问存储器或者I/O端口, 那么EU就会请求BIU,完成访问内存或者I/O端口的操 作; ③当指令队列已满,且EU又没有总线访问请求时,BIU 便进入空闲状态。(BIU等待,总线空操作) ④开机或重启时,指令队列被清空;或在执行转移指令、 调用指令和返回指令时,由于待执行指令的顺序发生了 变化,则指令队列中已经装入的字节被自动消除,BIU会 接着往指令队列装入转向的另一程序段中的指令代码。 (EU等待)
•CF(Carry Flag)—进位标志位,做加法时最高位出现进位或 做减法时最高位出现借位,该位置1,反之为0。
第二章 8086微处理器
第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。
2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。
3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。
难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。
学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。
2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。
第二章 8086系统结构
执行下面两个数相加:
1010 0011 0100 1101
+ 0011 0010 0001 1001
1101 0101 0110 0110 分析其结果对下列标志位有何影响: (SF)= 1 1 (ZF)=
(PF)=
(CF)=
0 (AF)= 0 (OF)=
1 0
11
习题 CH2 8086系统结构
数据线和地址线是以 分时复用 方式轮流使用的。
1
习题 CH2 8086系统结构
8086的ALE引脚的作用是
锁存地址
。
8086/8088CPU构成的微机中,每个主存单元对应
两种地址: 逻辑地址 和 物理地址 。 CPU访问存储器时,在地址总线上送出的地址我们 物理 地址。 8086CPU的最小工作模式是 称为
7
习题 CH2 8086系统结构
当M/IO#=0,RD#=0,WR#=1时,CPU完成的
B 。 A. 存储器读 C.存储器写
操作是
B. I/O读
D.I/O写
8088/8086CPU的复位信号至少维持 D 个时钟
周期的高电平有效。 A.1 B.2 C.3 D.4
8
习题 CH2 8086系统结构
3
习题 CH2 8086系统结构
8086系统中,存储器分为奇、偶两个存储体,
其中,奇地址存储体的数据信号线固定与数据总 线的 相连,偶地址存储体数据 高八位 总线的 低八位 相连。 8086CPU从偶地址读出两个字节时,需要 1 个 总线周期;从奇地址读两个字节时,需要 2 个 总线周期。 8086/8088CPU上电复位后,执行第一条指令的 地址是 FFFF0 H。
8086对存储器的管理为什么采用分段的办法?
微机原理课件 第2章 8086系统结构
通 用 寄 存 器
AH AL BH BL CH CL DH DL SP BP DI SI
AX BX CX DX
∑
地址总线 20位 数据总线 8088:8位 8086:16位
段寄存器
指令指针
ALU数据总线(16位)
CS DS SS ES IP 内部暂存器
总线 控 制逻辑
运算寄存器
EU 控 制系统
指令队列 Q总线 (8位) 1 2 3 4 5 6 8088 8086
8086/8088CPU提供的指令,能够直接处理的最大无符号数就是一个字(16 位),如果超出这个范围,就必须使用多字节来表示要计算的数据。 这个原理不光只在8086/8088芯片中有,任何芯片,无论它处理的数据范围多 么大,它总是一个有限的单位,如果超出这个单位,就必须使用标志位作为运算 的中介。 b. 在执行移位指令时, CF标志用于存放移出位的值。 例如对01010011实行逻辑右移,即把这个字节中的每一位向右移动一位,左 边空出的那一位置为0,以前最右边那一位就被移出字节范围外了,那么这一位 就是移出位,移出位都是保存在 CF中的。这个例子中,移位完成后, CF应该 等于1。 c. CF标志位还能够为一些条件转移指令提供判别依据。 例如JC指令,它就是先判别CF标志位的值,如果CF=1,就跳转到指令中给出 地址继续执行程序,如果 CF=0,就不作跳转,CPU会顺序执行下一条指令。也 就是说,在程序中,可以根据CF标志取值的不同来实现程序的分支或循环结构。
OF—溢出标志位,OF溢出的判断方法如下: 加法运算: 若两个加数的最高位为0,而和的最高位为1,则产生溢出; 若两个加数的最高位为1,而和的最高位为0,则产生溢出; 两个加数的最高位不相同时,不可能产生溢出。 减法运算: 若被减数的最高位为0,减数的最高位为1,而差的最高位为1, 则产生溢出; 若被减数的最高位为1,减数的最高位为0,而差的最高位为0, 则产生溢出; 被减数及减数的最高位相同时,按两数的大小判断溢出。 如果所进行的运算是带符号数的运算,则溢出标志恰好能够 反映运算结果是否超出了8位或16位带符号数所能表达的范围, 即字节运算大于十127或小于-128时,字运算大于十32767或小 于-32768时,该位置1,反之为0。
第二章 8086系统
8086/8088微处理器的结构及指令执行的操作 过程 8086/8088微处理器的寄存器组织、存储器组 织、I/O组织、堆栈 8086/8088在最小模式下引脚功能 8086/8088微处理器在最小模式下的典型配置 8086的操作时序
第二章
8086/8088系统结构
2、物理地址和逻辑地址 8086系统中的每个存储单元在1M内存空间中的位 置可以用2个形式的地址来表示。 物理地址(实际地址、绝对地址)和逻辑地址。
物理地址:是用唯一的20位二进制数所表示的地 址,规定了1M字节存储体中某个具体单元的地址 。 CPU与存储器之间进行信息交换都需要提供的地 址,范围00000H—FFFFFH。
BP作基址寻址 SS 一般数据存取 源字符串 目的字符串 DS DS ES
5、8086存储器的分体结构 由于访问存储器的操作类型不同,BIU所使用的逻辑 地址来源也不同。 (1)存储体
15 00001 00003 00005 512KB× 8(位) 奇地址存储体 (A0=1) 512KB× 8(位) 偶地址存储体 (A0=0) 8 7 0 00000 00002 00004
数据DS、ES:存放数据和运算结果; 堆栈段SS:用来传递参数,保存数据和状态信息。
CS IP
0000
代码段
DS或ES
0000
数据段
SI、DI或BX
SS
0000 SP或BP
堆栈段 存储器
段寄存器和偏移地址寄存器组合关系
存储器分段的好处 (1)使指令系统中的大部分指令仅涉及16位偏移 地址,减少了指令长度,提高了程序的执行速度。 (2)为程序在内存中的浮动分配创造了条件。由 于程序可以浮动地装配在内存任何一个区域。这 使得多道程序和多任务程序能充分使用现有的存 储器容量。
微机原理课件第二章8086系统结构
介绍8086处理器的程序转移指令,包括无条 件跳转和条件跳转等操作。
8086中断处理
硬件中断
解释硬件中断的工作原理和处 理过程,以及8086处理器与外 部设备之间的中断信号传递。
软件中断
了解软件中断的使用方法和处 理过程,以及如何在程序中触 发软件中断。
异常中断
探索异常中断的发生原因和处 理机制,以及在运行过程中如 何处理异常中断。
3
总线周期和总线控制信号
介绍8086系统的总线周期和各种总线控制信号的含义和作用。
8086寄存器结构
1 通用寄存器
2 段寄存器
了解8086处理器的通用寄存器,包括数据 寄存器、指令寄存器和堆栈指针寄存器。
探索8086处理器的段寄存器,包括代码段 寄存器、数据段寄存器和堆栈段寄存器。
3 指令指针寄存器
4 标志寄存器
了解8086处理器的指令处理器的标志寄存器,包括各个 标志位的含义和影响。
8086系统工作模式
实模式
保护模式
虚拟8086模式
详细介绍8086处理器的实模式, 了解8086处理器的保护模式, 包括内存寻址方式和运行特点。 包括内存管理机制和特权级别。
8086系统结构
本课件介绍了8086微处理器的系统结构,包括处理器的基本特点、逻辑结构、 功能模块、与外部设备的接口与控制,以及与存储器的接口与控制。
8086系统总线结构
1
物理地址与逻辑地址转换
解释如何将物理地址转换为逻辑地址,并且了解逻辑地址和物理地址之间的关系。
2
地址线和数据线
探索8086系统的地址线和数据线的数量、作用和连接方式。
2 寄存器观察
探索如何使用单步执行技术来逐条执行和 调试程序。
微机原理 第2章_8086系统结构
8086 CPU的引脚及其功能
8086 CPU的两种工作模式
最小模式:用于单机系统,系统所需要的控 制信号由8086直接提供,MN/MX=1,CPU 工作于最小模式 最大模式:用于多处理机系统,系统所需的 控制信号由总线控制器8288提供, MN/MX=0,CPU工作于最大模式
8086 CPU在最小模式下的引脚定义 8088与8086的区别
通 用 寄 存 器
AX BX CX DX SP BP SI DI
8086 CPU结构框图
20位地址总线
Σ
数据 总线 16位
ALU数据总线 (16位) 暂存器
队列 总线 (8位)
CS DS SS ES IP 内部寄存器 指令队列
总线 控制 电路 8086 总线
ALU
标志寄存器
EU 控制器
1 3 4 5 6
PSW
存放状态标志、控制标志和系统标 志
PSW格式:
15 11 10
OF DF
9 IF
8
7
6
4 AF
2 PF
0 CF
TF SF ZF
状态标志
状态标志用来记录程序中运行结果的状态信息,它们根据有关指 令的运行结果由CPU自动设置,这些状态信息往往作为后续条件 转移指令的转移控制条件,包括6位: OF:溢出标志,在运算过程中,如操作数超出了机器数的表示范 围,称为溢出,OF=1,否则OF=0 SF:符号标志,记录结果的符号,结果为负SF=1,否则SF=0 ZF:零标志,运算结果为0,ZF=1,否则ZF=0 CF:进位标志,进行加法运算时从最高位产生进位,或减法运算 从最高位产生借位CF=1,否则CF=0 AF:辅助进位标志:本次运算结果,低4位向高4位产生进位或借 位,AF=1,否则AF=0 PF:奇偶标志,用来为机器中传送信息时可能产生的代码出错情 况提供检验条件,当结果操作数中低8位中1的个数为偶数时PF=1, 否则PF=0
2.第二章 8086系统结构
总线接口部件BIU SI:(Source Index):SI含有源地址意思,产 生有效地址或实际地址的偏移量。 总线接口部件BIU内部设 有四个16位段地址寄存器: DI:(Destination Index):DI含有目的意思, 代码段寄存器CS、数据段寄 产生有效地址或实际地址的偏移量。 存器DS、堆栈段寄存器SS和 播 音 附加段寄存器ES,一个16位 : 指令指针寄存器IP,一个6字 16位字利用了9位。 标志分两类: 节指令队列缓冲器,20位地 状态标志(6位):反映刚刚完成的操作结果情况。 址加法器和总线控制电路。
志(结果低8 CLC(复位), 位1的个数 CMC(求反)。 为偶数 PF=1) 。
15
14
13
12
11
10
9
8
3
2
1
0
OF DF IF TF
SF ZF
AF
PF
CF
DF:方向标志 .DF=1使串 操作按减地址进行,DF=0按 增地址进行。指令: CLD(复位), STD(置位).
TF:陷阱标志或单步操作标志 IF:中断允许 标志 图 2-6 8086CPU标志寄存器 目录
通用寄存器(数据寄存器) : AX 累加器 BX 基址寄存器 CX 计数寄存器 DX 数据寄存器
SP BP SI DI
IP
地址指针和变址寄存器: SP 堆栈指针寄存器 BP 基址指针寄存器 SI 源变址寄存器 控制寄存器: DI 目的变址寄存器 IP 指令指针寄存器
FLAGS
CS DS SS ES
段寄存器: CS 代码段寄存器 DS 数据段寄存器 SS 堆栈段寄存器 ES 附加段寄存器
EU 总线 忙
执行1 忙
执行2 忙
第2章 80888086系统硬件结构
OF DF IF TF SF ZF
AF
PF
CF
条件码标志:
OF SF ZF CF AF PF
控制标志:
方向标志
系统标志位:
IF 中断标志 TF 陷阱标志
溢出标志 DF 符号标志 零标志 进位标志 辅助进位标志 奇偶标志
第2章 8088/8086系统硬件结构
程 序 状 态 字 ( ) PSW
第2章 8088/8086系统硬件结构
第2章 8088/8086系统硬件结构
1、存储器地址的分段
•每个段的最大长度可达
64KB,段内地址是连续的、 线性增长的,允许单个逻辑 段在整个1MB存储空间内浮 动。
•可以有相连的段(如:C和D
段)、不相连的段(如:A和B 段)以及相互重叠的段(如:B 和C段)
第2章 8088/8086系统硬件结构
第2章 8088/8086系统硬件结构
2、段寄存器(CS、 DS、 SS、 ES、 FS、GS)
存放段地址,确定一个段的的起始地址. 用途各不相同:
代码段(CS):存放当前正在运行的程序 数据段(DS):存放当前运行程序所用的数据 ,或串处理指令
中的源操作数
堆栈段(SS):定义堆栈(后进先出)的所在区域 附加段(ES):附加的数据区,或串处理指令中的目的操作数
-)
79000H
2450H
即SP值为2450H.
第2章 8088/8086系统硬件结构
2.1.2 8088CPU的两大功能结构
8088CPU的两大功能结构为总线接口单元 BIU(BusInterfaceUnit)和指令执行单元 EU(ExecutionUnit),如图2.4所示。 U单元负责指令的执行,由算术逻辑单元ALU、标 志寄存器F、通用寄存器及EU控制器等组成,主要进 行16位的各种运算及有效地址的计算。EU不与计算机 系统总线(外部总线)相关,而从BIU中的指令队列取得
微机原理与接口技术第2章8086系统结构
第二章8086体系结构与80x86CPU1.8086CPU由哪两部分构成?它们的主要功能是什么?答:8086CPU由两部分组成:指令执行部件(EU,Execution Unit)和总线接口部件(BIU,Bus Interface Unit)。
指令执行部件(EU)主要由算术逻辑运算单元(ALU)、标志寄存器FR、通用寄存器组和EU控制器等4个部件组成,其主要功能是执行指令。
总线接口部件(BIU)主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或I/O端口读取操作数参加EU运算或存放运算结果等。
2.8086CPU预取指令队列有什么好处?8086CPU内部的并行操作体现在哪里?答:8086CPU的预取指令队列由6个字节组成,按照8086CPU的设计要求,指令执行部件(EU)在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。
从速度上看,该指令队列是在CPU 内部,EU从指令队列中获得指令的速度会远远超过直接从内存中读取指令。
8086CPU内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。
3.8086CPU中有哪些寄存器?各有什么用途?答:指令执行部件(EU)设有8个16位通用寄存器AX、BX、CX、DX、SP、BP、SI、DI,主要用途是保存数据和地址(包括内存地址和I/O端口地址)。
其中AX、BX、CX、DX主要用于保存数据,BX可用于保存地址,DX还用于保存I/O端口地址;BP、SI、DI主要用于保存地址;SP用于保存堆栈指针。
标志寄存器FR用于存放运算结果特征和控制CPU操作。
BIU中的段寄存器包括CS、DS、ES、SS,主要用途是保存段地址,其中CS代码段寄存器中存放程序代码段起始地址的高16位,DS数据段寄存器中存放数据段起始地址的高16位,SS堆栈段寄存器中存放堆栈段起始地址的高16位,ES扩展段寄存器中存放扩展数据段起始地址的高16位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16位指令指针寄存器 20位物理地址加法器 6字节指令队列 总线控制逻辑 (4) BIU的基本工作原理 (*)
安徽建筑大学电子与信息学院
• 16位段地址寄存器: CS------代码段寄存器 DS------数据段寄存器 ES------附加段寄存器 SS------堆栈段寄存器
34000H + 00C5H ---------------
340C5H 4.指令指针寄存器IP
IP由BIU自动将其修改
安徽建筑大学电子与信息学院
5.标志寄存器PSW
15
11 10 9 8 7 6
4
2
0
OF DF IF TF SF ZF
AF
PF
CF
(1)CF ----进位标志位,运算中最高位有进位为1,无进位为0 (2)PF ----奇偶校验位,运算结果低8位有偶数个1为1,奇数个为0 (3)AF ----辅助进位标志位,低4位向高4位有进位为1,无进位为0 (4)ZF ----全零标志位,运算结果为0, ZF=1;否则 ZF=0 (5)SF ----符号标志位,运算结果为负数时为1,否则为0 (6)OF ----溢出标志位,运算结果溢出为1,否则为0
在字符串运算指令中作源变址寄存器
SI
在间接目的变址寄存器
DI
在间接寻址中作变址寄存器
BP 在间接寻址中作基址指针 SP 在堆栈操作中作堆栈指针
安徽建筑大学电子与信息学院
1. 数据通用寄存器
15 8 7
0
15
AX AH
AL 累加器
CS
BX BH
BL 基址寄存器
DS
ES 段寄存器
IP
附加段寄存器
0 指令指针寄存器
SI
源变址寄存器
PSWH PSWL 标志位寄存器
DI
目的变址寄存器 指令指针和标志位
内部数据操作寄存器
寄存器
图2—4 8086CPU寄存器组
安徽建筑大学电子与信息学院
寄存器的特殊用途:
表2-1 寄存器的特殊用途
寄存器名
特殊用途
AX,AL AH AL
BX CX CL DX
在输入输出指令中作数据寄存器 在乘法指令中存放被乘数或乘积,在除法指令中存放被除数或商 在LAHF指令中作目标寄存器 在十进制运算指令中作累加器 在XLAT指令中作累加器 在间接寻址中作基址寄存器 在XLAT指令中作基址寄存器 在串操作指令和LOOP指令中作计数器 在移位/循环移位指令中作移位次数寄存器 在字乘法/除法指令中存放乘积高位或被除数高位或余数 在间接寻址的输入输出指令中作寻址寄存器
第二章 8086系统结构
2.1 8086微处理器结构 2.2 8086CPU的引脚、系统配置及时序 2.3 8086存储器组织
安徽建筑大学电子与信息学院
由于制造工艺的限制,微处理器结构受以下限制: 引脚数限制 芯片面积限制 器件速度限制
16位微处理器的特点: 引脚功能复用 单总线 可控三态电路 总线分时复用
ALU
队列 EU 总线 控制器 (8位)
标志寄存器 指令执行单元(EU)
指令队列 123456
总线接口单元(BIU)
图2-1 8086CPU内部结构
安徽建筑大学电子与信息学院
1.总线接口部件BIU(Bus Interface Unit)
(1) BIU的功能:地址形成、取指令、指令排队、读/写操作 数和总线控制等功能
BP联用
SI联用
(1)SS与 SP
(2)DS与
DI
(3)ES与DI联用 (4)CS与IP联用
安徽建筑大学电子与信息学院
3.段寄存器
例2-1:代码段寄存器CS存放当前代码段基地址,IP指令 指针寄存器存放了下一条要执行指令的段内偏移地址, 其中CS=3400H,IP=00C5H。通过组合,形成20位存储 单元的寻址地址为340C5H。
• 指令执行部件的工作过程(*)
安徽建筑大学电子与信息学院
2.1.2 8086处理器中的内部寄存器
15 8 7
0
15
0
AX AH
AL 累加器
CS
代码段寄存器
BX BH
BL 基址寄存器
DS
数据段寄存器
CX CH
CL 计数寄存器
SS
堆栈段寄存器
DX DH
DL
15
SP
BP
数据寄存器 0
堆栈指针寄存器 15 基址指针寄存器
CX CH
CL 计数寄存器
SS
DX DH
DL 数据寄存器
ES
15
SP
0
段寄存器
堆栈指针寄存器 15
BP
基址指针寄存器
IP
SI
源变址寄存器
PSWH PSWL
DI
目的变址寄存器 指令指针和标志位
内部数据操作寄存器 寄存器 安徽建筑大学电子与信息学院
2.指针和变址寄存器:
主要指BP,SP,SI,DI寄存器
通常8位微机是串行执行的,而16位可并行操作,提出 顺序与流水线重叠的概念。
安徽建筑大学电子与信息学院
2.1.1 8086微处理器的内部结构
AH
AL
BH
BL
CH
CL
DH
DL
SP
BP
DI
SI
暂存器
ALU数据总线 (16位)
∑
数据 总线
(16位)
CS
DS
SS
ES
IP
内部寄存器 总线 控制 电路
8086总线 (16位数据总线)
(7)TF ----单步标志位 (8)IF ----中断标志位 (9)DF ----方向标志位
安徽建筑大学电子与信息学院
表2-2 PSW中标志位的符号表示
标志名
OF
溢出(是/否)
DF
方向(减/增量)
IF
中断(允许/关闭)
SF
符号(负/正)
ZF
零(是/否)
AF
辅助进位(是/否)
PF
奇偶(偶/奇)
CF
安徽建筑大学电子与信息学院
例2-2 将5796H与-757BH两数相加,并说明其标志位状态
0101 0111 1001 0110 + 1000 1010 1000 0101
1110 0010 0001 1011
运算结果为-1DE5H 标志位CF=0,PF=1,AF=0,ZF=0,SF=1,OF=0
进位(是/否)
标志为1 OV DN EI NG ZR AC PE CY
标志为0 NV UP DI PL NZ NA PO NC
• 16位指令指针寄存器IP:存放下一条要执行指令的偏移 地址。
• 20位物理地址加法器:将16位逻辑地址变换成存储器 读/写所需要的20位物理地址,实际上完成地址加法操 作。
安徽建筑大学电子与信息学院
2.指令执行部件EU(Execution Unit)
• 指令执行部件的组成:算术逻辑运算单元ALU 标志寄存器PSW 寄存器 EU控制器