第二章_8086体系结构与8086CPU

合集下载

第2章-8086微处理器part2

第2章-8086微处理器part2

8086 CPU在最小模式中引脚定义
M/#IO:Memory/Input & Output,三态输出
存储器或I/O端口访问信号 。指示8086的访问对象,发 给MEM或I/O接口。 M/# IO为高电平时,表示 当前CPU正在访问存储器;
M/# IO 为低电平时,表 示当前CPU正在访问I/O端 口
数据驱动器数据流向控制信 号,输出,三态。
在8086系统中,通常采用 74LS245、8286或8287作 为数据总线的驱动器,用 DT/#R信号来控制数据驱动 器的数据传送方向。 当DT/#R=1时,进行数据 发送; 当DT/#R=0时,进行数据 接收。
8086 CPU在最小模式中引脚定义
READY:准备就绪信号 由外部输入,高电平有效 ,表示CPU访问的存储器 或I/O端口己准备好传送 数据。 当READY无效时,要求 CPU插入一个或多个等待 周期Tw,直到READY信 号有效为止。
S3 0 1 0 1
当前正在使用的段寄存器 ES SS CS或未使用任何段寄存器 DS
8086 CPU在最小模式中引脚定义
#BHE/S7:高8位总线允许(Bus High Enable)
T1:指示高8位数据总线上的数据 是否有效 (#BHE:AD0)配合:00时读写字 ,01时读写奇地址字节,10时读写 偶地址字节 其他T周期:输出状态信号S7(S7 始终为逻辑1,未定义) DMA方式下,该引脚为高阻态。
最大模式引脚信号(续)
LOCK# :总线封锁(优先权锁定) 三态输出,低电平有效。 LOCK有效时表示CPU不允许其它总线主控者占用 总线。 ห้องสมุดไป่ตู้ 这个信号由软件设置。 • 当在指令前加上LOCK前缀时,则在执行这条 指令期间LOCK保持有效,即在此指令执行期 间,CPU封锁其它主控者使用总线。 在保持响应期间,LOCK#为高阻态。

第二章 8086 CPU[2-3]

第二章 8086 CPU[2-3]
除了74LS373,还有74LS273、74LS374等
应用例子:发光二极管接口
+5V
D0~D7 A0~A15
IOW
20:49
D|0 Q0
1
R
D7
...
...
...
...


CP

R
Q7
1
74LS273
12
§2-4 8086的工作模式和总线操作
3、时钟发生器8284A
产生CLK信号,作为8086CPU的内部和外部的时间基准信号 提供系统时钟(CLK)、READY同步和RESET同步信号
第二章 8086 CPU
内容提要
引言 8086 CPU的内部结构 8086/8088 CPU的引脚功能 8086的存储器组织 8086的工作模式和总线操作
20:49
2
§2-4 8086的工作模式和总线操作
1、电源要求
8086/8088微处理器都是用+5.0V电源电压,其允许偏差为±10%。
OE
地址总线
存储器
I/O芯片
20:49
T 74LS245 /8286/82 87
OE
数据总线
15
§2-4 8086的工作模式和总线操作
2.4.3 总线操作时序
相关概念介绍
➢时钟周期
➢总线周期
➢指令周期
➢时序 ➢时序图
时序就是指系统中各总线信号(即地址、 数据和控制信号)产生的先后次序。
20:49
16
在8086/8088CPU中,一个总线周期至少包括4个时钟周期。
1~2个
若干个
T1 T2 T3 T4 Ti Ti T1 T2 T3 Tw Tw Tw T4 Ti Ti

【教学课件】第2章 8086微处理器

【教学课件】第2章  8086微处理器

控制 电路
局部总线 接口
SYSB/RESB
1
20
2
19
3
18
4
17
5
8289 16
6
15
7
14
8
13
9
12
10
11
INIT
BCLK BREQ BPRN BPRO BUSY CBRQ
总线仲裁 信号
AEN
V CC S1 S0 CLK
LOCK
CRQLCK ANYRQST
AEN CBRQ BUSY
2021/8/17
DEN CEN
INTA IORC AIOWC IOWC
2021/8/17
23
2.总线仲裁控制器8289
仲裁电路
状态
S2
信号
S1
S0
状态 译码器
多路总线 接口
控制 输入
LOCK CLK
CRQLCK
RESB ANYRQST
IOB
S2 IOB
RESB BCLK INIT BREQ BPRO BPRN
GND
数据总线
2021/8/17
S0
S1
S2
INTR R Q / G T0
R Q / G T1
8288 总线控制器
IN T A
8259A 及有关电路
控制总线 中 断 请 求
22
1.总线控制器8288
状态
S2
信号
S1
S0
状态 译码器
控制 输入
CLK
AEN CEN IOB
控制 电路
命令 信号 发生器
控制信号 发生器
2.3.1 最小模式和最大模式的概念

第二章 8086体系结构

第二章  8086体系结构

8086微处理器概览
标志位寄存器(FR) • 16位标志位寄存器FR,共有9个
标志位。其中6个是状态标志位, 3个是控制标志位,用于反映 CPU运行过程中的某些状态特征。
标志位寄存器
3、标志寄存器FR
标志寄存器FR中共有9个标志位,可分成两类: ➢状态标志 表示运算结果的特征,它们是 CF、PF、AF、 ZF、SF和OF ➢控制标志 控制CPU的操作,它们是IF、DF和TF。
IP :BIU要取指令的地址。
IP
三、8086CPU的管脚及功能
8086是16位CPU。它采用高性能的N— 沟道,耗尽型负载的硅栅工艺(HMOS)制 造。由于受当时制造工艺的限制,部分管 脚采用了分时复用的方式,构成了40条管 脚的双列直插式封装
1、 8086的两种工作方式
最小模式:系统中只有8086一个处理器,所有的控制信号都 是由8086CPU产生(MN/MX=1)。
最大模式:系统中可包含一个以上的处理器,比如包含协处 理器8087。在系统规模比较大的情况下,系统控 制信号不是由8086直接产生,而是通过与8086配 套的总线控制器等形成(MN/MX=0)。
三总线结构 数据线DB 地址线AB 控制线CB
微机的三总线结构
➢ 最小模式下的引脚说明
( 1 ) AD15 ~ AD0 (Address Data Bus):
堆栈指针用于存放栈顶的逻辑偏移地 址,隐含的逻辑段地址在SS寄存器中。
寄存器的特殊用途和隐含性质
在指令中没有明显的标出,而这些寄存器参 加操作,称之为“隐含寻址”。
具体的:在某类指令中,某些通用寄存器有指 定的特殊用法,编程时需遵循这些规定,将某些 特殊数据放在特定的寄存器中,这样才能正确的 执行这些指令。采用“隐含”的方式,能有效地 缩短指令代码的长度。

微机原理和接口技术(第三版)课本习题答案解析

微机原理和接口技术(第三版)课本习题答案解析

第二章 8086 体系结构与80x86CPU1.8086CPU 由哪两部份构成?它们的主要功能是什么?答:8086CPU 由两部份组成:指令执行部件<EU,Execution Unit>和总线接口部件<BIU,Bus Interface Unit>。

指令执行部件〔EU 主要由算术逻辑运算单元<ALU>、标志寄存器F R、通用寄存器组和E U 控制器等4个部件组成,其主要功能是执行指令。

总线接口部件<BIU>主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或者I/O 端口读取操作数参加E U 运算或者存放运算结果等。

2.8086CPU 预取指令队列有什么好处? 8086CPU 内部的并行操作体现在哪里?答: 8086CPU 的预取指令队列由6个字节组成,按照8086CPU 的设计要求, 指令执行部件〔EU 在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。

从速度上看,该指令队列是在C PU 内部,EU 从指令队列中获得指令的速度会远远超过直接从内存中读取指令。

8086CPU 内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。

5.简述8086 系统中物理地址的形成过程。

8086 系统中的物理地址最多有多少个?逻辑地址呢?答: 8086 系统中的物理地址是由20 根地址总线形成的。

8086 系统采用分段并附以地址偏移量办法形成20 位的物理地址。

采用分段结构的存储器中,任何一个逻辑地址都由段基址和偏移地址两部份构成,都是16 位二进制数。

通过一个20 位的地址加法器将这两个地址相加形成物理地址。

具体做法是16 位的段基址左移4位<相当于在段基址最低位后添4个"0">,然后与偏移地址相加获得物理地址。

微机原理课件第二章 8086系统结构

微机原理课件第二章 8086系统结构

但指令周期不一定都大于总线周期,如MOV AX,BX
操作都在CPU内部的寄存器,只要内部总线即可完成,不 需要通过系统总线访问存储器和I/O接口。
2021/8/17
17
• 8086CPU的典型总线时序,充分体现了总 线是严格地按分时复用的原则进行工作的。 即:在一个总线周期内,首先利用总线传 送地址信息,然后再利用同一总线传送数 据信息。这样减少了CPU芯片的引脚和外 部总线的数目。
• 执行部件(EU)
• 功能:负责译码和执行指令。
2021/8/17
5
• 联系BIU和EU的纽带为流水指令队列
• 队列是一种数据结构,工作方式为先进先出。写入的指令 只能存放在队列尾,读出的指令是队列头存放的指令。
2021/8/17
6
•BIU和EU的动作协调原则 BIU和EU按以下流水线技术原则协调工作,共同完成所 要求的任务: ①每当8086的指令队列中有空字节,BIU就会自动把下 一条指令取到指令队列中。 ②每当EU准备执行一条指令时,它会从BIU部件的指令 队列前部取出指令的代码,然后译码、执行指令。在执 行指令的过程中,如果必须访问存储器或者I/O端口, 那么EU就会请求BIU,完成访问内存或者I/O端口的操 作; ③当指令队列已满,且EU又没有总线访问请求时,BIU 便进入空闲状态。(BIU等待,总线空操作) ④开机或重启时,指令队列被清空;或在执行转移指令、 调用指令和返回指令时,由于待执行指令的顺序发生了 变化,则指令队列中已经装入的字节被自动消除,BIU会 接着往指令队列装入转向的另一程序段中的指令代码。 (EU等待)
•CF(Carry Flag)—进位标志位,做加法时最高位出现进位或 做减法时最高位出现借位,该位置1,反之为0。

第二章 8086微处理器

第二章 8086微处理器

第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。

2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。

3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。

难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。

学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。

2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。

第二章 8086系统结构

第二章 8086系统结构

执行下面两个数相加:
1010 0011 0100 1101
+ 0011 0010 0001 1001
1101 0101 0110 0110 分析其结果对下列标志位有何影响: (SF)= 1 1 (ZF)=
(PF)=
(CF)=
0 (AF)= 0 (OF)=
1 0
11
习题 CH2 8086系统结构
数据线和地址线是以 分时复用 方式轮流使用的。
1
习题 CH2 8086系统结构
8086的ALE引脚的作用是
锁存地址

8086/8088CPU构成的微机中,每个主存单元对应
两种地址: 逻辑地址 和 物理地址 。 CPU访问存储器时,在地址总线上送出的地址我们 物理 地址。 8086CPU的最小工作模式是 称为
7
习题 CH2 8086系统结构
当M/IO#=0,RD#=0,WR#=1时,CPU完成的
B 。 A. 存储器读 C.存储器写
操作是
B. I/O读
D.I/O写
8088/8086CPU的复位信号至少维持 D 个时钟
周期的高电平有效。 A.1 B.2 C.3 D.4
8
习题 CH2 8086系统结构
3
习题 CH2 8086系统结构
8086系统中,存储器分为奇、偶两个存储体,
其中,奇地址存储体的数据信号线固定与数据总 线的 相连,偶地址存储体数据 高八位 总线的 低八位 相连。 8086CPU从偶地址读出两个字节时,需要 1 个 总线周期;从奇地址读两个字节时,需要 2 个 总线周期。 8086/8088CPU上电复位后,执行第一条指令的 地址是 FFFF0 H。
8086对存储器的管理为什么采用分段的办法?

第二章-8086微处理器

第二章-8086微处理器

答案:A
思考题
8086/8088的状态标志有 A)3 B)4 C)5 答案:D 个。 D)6
思考题
8086/8088的控制标志有 A)3 B)4 C)5 答案:A 个。 D)6
三、引脚信号和功能(图2-5 )
8086总线周期的概念: 为了取得指令或传送数据,就需要CPU的总线接 口单元(BIU)执行一个总线周期。 一个最基本的总线周期由4个时钟周期组成。 习惯上将4个时钟周期分别称为4个状态,即T1状 态、T2状态、T3状态和T4状态。 图2-17
2.方向标志DF(Direction Flag) 用于串操作指令中的地址增量修改(DF =0)还是减量修改(DF=1)。 STD使DF=1 CLD使DF=0
(三)标志寄存器-控制标志(续)
3.跟踪标志TF(Trap Flag) 若TF=1,则CPU按跟踪方式(单步方式) 执行程序,否则将正常执行程序。
思考题
指令队列的作用是 A)暂存操作数地址 。 B)暂存操作数
C)暂存指令地址
D)暂存预取指令 答案:D
思考题
8086的指令队列的长度是 A)4个 B)5个 C)6个 D)8个 字节。
答案: C
思考题
8088的指令队列的长度是 A)4个 B)5个 C)6个 D)8个 字节。
答案:A
思考题
第二章 8086/8088微处理器
8086/8088微处理器的结构 8086/8088典型时序分析

简 介
8086:16位微处理器 数据总线宽度16位:可以处理8位或16位数据 地址总线宽度20位:可直接寻址1MB存储单元和 64KB的I/O端口 8088:准16位处理器 内部寄存器及内部操作均为16位,外部数据总线8位 8088与8086指令系统完全相同,芯片内部逻辑结构、芯片引 脚有个别差异。 设计8088的目的主要是为了与Intel原有的8位外围接口芯片 直接兼容

第二章 8086系统

第二章  8086系统
通过本章的学习,应该掌握以下内容:
8086/8088微处理器的结构及指令执行的操作 过程 8086/8088微处理器的寄存器组织、存储器组 织、I/O组织、堆栈 8086/8088在最小模式下引脚功能 8086/8088微处理器在最小模式下的典型配置 8086的操作时序
第二章
8086/8088系统结构
2、物理地址和逻辑地址 8086系统中的每个存储单元在1M内存空间中的位 置可以用2个形式的地址来表示。 物理地址(实际地址、绝对地址)和逻辑地址。
物理地址:是用唯一的20位二进制数所表示的地 址,规定了1M字节存储体中某个具体单元的地址 。 CPU与存储器之间进行信息交换都需要提供的地 址,范围00000H—FFFFFH。
BP作基址寻址 SS 一般数据存取 源字符串 目的字符串 DS DS ES
5、8086存储器的分体结构 由于访问存储器的操作类型不同,BIU所使用的逻辑 地址来源也不同。 (1)存储体
15 00001 00003 00005 512KB× 8(位) 奇地址存储体 (A0=1) 512KB× 8(位) 偶地址存储体 (A0=0) 8 7 0 00000 00002 00004
数据DS、ES:存放数据和运算结果; 堆栈段SS:用来传递参数,保存数据和状态信息。
CS IP
0000
代码段
DS或ES
0000
数据段
SI、DI或BX
SS
0000 SP或BP
堆栈段 存储器
段寄存器和偏移地址寄存器组合关系
存储器分段的好处 (1)使指令系统中的大部分指令仅涉及16位偏移 地址,减少了指令长度,提高了程序的执行速度。 (2)为程序在内存中的浮动分配创造了条件。由 于程序可以浮动地装配在内存任何一个区域。这 使得多道程序和多任务程序能充分使用现有的存 储器容量。

8086系统结构与8086CPU详解

8086系统结构与8086CPU详解

8086系统结构与8086CPU详解8086是Intel公司于1978年推出的16位微处理器,是第一个被广泛应用于个人电脑的微处理器。

指令执行单元是8086的核心部分,它包括指令队列和执行单元。

指令队列用于存储将要执行的指令,执行单元根据指令队列中的指令来执行相应的操作。

8086采用流水线执行模式,使指令的执行更高效。

8086有14个寄存器,其中有4个通用寄存器AX、BX、CX和DX,其分别可以作为数据寄存器、地址寄存器、指针寄存器和变址寄存器使用。

AX寄存器可以拆分为两个独立的8位寄存器AH和AL,分别用于存储高8位和低8位数据。

除了通用寄存器外,8086还有4个段寄存器CS、DS、ES和SS,用于存储程序的代码段、数据段和堆栈段的物理地址。

内存管理单元用于实现8086的内存管理功能。

8086采用分段分页的内存管理模式,通过段寄存器和偏移地址来访问内存。

段寄存器存储段的起始地址,偏移地址表示从段起始地址开始的偏移量。

通过这种方式,8086可以寻址1MB的内存空间。

8086使用外部总线与其他设备进行通信。

它包括地址总线、数据总线和控制总线。

地址总线用于传输地址信息,数据总线用于传输数据,控制总线用于传输控制信号。

8086的地址总线宽度为20位,可以寻址1MB的内存空间。

除了系统结构,了解8086的CPU结构也是很重要的。

8086包括指令流水线、ALU、寄存器组、时钟和控制单元等部分。

指令流水线用于提高指令执行的效率,将指令的执行过程分为取指令、译码、执行和写回四个阶段,并行地执行不同的指令。

ALU(算术逻辑单元)用于进行算术和逻辑运算。

寄存器组包括通用寄存器和段寄存器,用于存储数据和地址信息。

8086的时钟是由外部提供的,它通过时钟和控制单元来对指令的执行进行控制。

总的来说,8086的系统结构和CPU结构共同组成了一个完整的微处理器系统。

通过了解其结构,可以更好地理解8086的工作原理和性能特点,为编程和系统设计提供指导。

微机原理和接口技术[第三版]课本习题答案解析

微机原理和接口技术[第三版]课本习题答案解析

第二章 8086体系结构与80x86CPU1.8086CPU由哪两部分构成?它们的主要功能是什么?答:8086CPU由两部分组成:指令执行部件(EU,Execution Unit)和总线接口部件(BIU,Bus Interface Unit)。

指令执行部件(EU)主要由算术逻辑运算单元(ALU)、标志寄存器FR、通用寄存器组和EU控制器等4个部件组成,其主要功能是执行指令。

总线接口部件(BIU)主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或I/O端口读取操作数参加EU运算或存放运算结果等。

2.8086CPU预取指令队列有什么好处?8086CPU内部的并行操作体现在哪里?答:8086CPU的预取指令队列由6个字节组成,按照8086CPU的设计要求,指令执行部件(EU)在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。

从速度上看,该指令队列是在CPU内部,EU从指令队列中获得指令的速度会远远超过直接从内存中读取指令。

8086CPU内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。

5.简述8086系统中物理地址的形成过程。

8086系统中的物理地址最多有多少个?逻辑地址呢?答:8086系统中的物理地址是由20根地址总线形成的。

8086系统采用分段并附以地址偏移量办法形成20位的物理地址。

采用分段结构的存储器中,任何一个逻辑地址都由段基址和偏移地址两部分构成,都是16位二进制数。

通过一个20位的地址加法器将这两个地址相加形成物理地址。

具体做法是16位的段基址左移4位(相当于在段基址最低位后添4个“0”),然后与偏移地址相加获得物理地址。

由于8086CPU的地址线是20根,所以可寻址的存储空间为1M字节,即8086系统的物理地址空间是1MB。

第2章 16位微处理器8086

第2章 16位微处理器8086

计算机原理讲义
执行单元EU
4) 标志寄存器 FLAG
6位状态标志,3位控制标志IF、DF、TF,剩下7位保留 位状态标志, 位控制标志IF、DF、TF,剩下7 IF 15 14 13 12 11 10 9 IF 8 7 6 5 4 AF 3 2 PF 1 0 CF
OF DF
TF SF ZF
Flag) 位标志, CF(Carry Flag)进(借)位标志,加法运算最高位产生进位或减法运算 最高位产生借位, 否则置0 最高位产生借位,则CF置1,否则置0 Flag)辅助进位标志,加法运算时第3位往第4 AF(Auxiliary Carry Flag)辅助进位标志,加法运算时第3位往第4位 有进位,或减法运算时第3位往第4位有借位, AF置 否则置0 有进位,或减法运算时第3位往第4位有借位,则AF置1,否则置0 Flag)零标志, 若当前运算结果为零, ZF置1,否则置 否则置0 ZF(Zero Flag)零标志, 若当前运算结果为零, 则ZF置1,否则置0 SF( Flag)符号标志,与运算结果最高位相同,若为负数, SF(Sign Flag)符号标志,与运算结果最高位相同,若为负数,则SF 否则置0 SF指示了当前运算结果是正还是负 置1,否则置0,SF指示了当前运算结果是正还是负 Flag)溢出标志,有符号数算术运算结果溢出, OF置 OF(Overflow Flag)溢出标志,有符号数算术运算结果溢出,则OF置1, 否则置 否则置0 PF(Parity Flag)奇偶标志,运算结果低8位所含1的个数为偶数则PF Flag)奇偶标志,运算结果低8位所含1的个数为偶数则PF 置1,否则置0 否则置 计算机原理讲义
总线接口单元(BIU) 一. 总线接口单元(BIU) 1. 具体功能

第2章8086微处理器1-2

第2章8086微处理器1-2
来自忙碌忙碌忙碌
忙碌
1)CPU执行指令时总线处于空闲状态 ) 执行指令时总线处于空闲状态 2)CPU访问存储器 存取数据或指令 时要等待总线操作的完成 访问存储器(存取数据或指令 ) 访问存储器 存取数据或指令)时要等待总线操作的完成 缺点: 缺点:CPU无法全速运行 无法全速运行 解决:总线空闲时预取指令, 解决:总线空闲时预取指令,使CPU需要指令时能立刻得到 需要指令时能立刻得到
6
结论
指令预取队列的存在使EU和 指令预取队列的存在使 和BIU两个部 两个部 分可同时进行工作, 分可同时进行工作,从而 提高了CPU的效率; 降低了对存储器存取速度的要求
7
8088/8086 CPU的特点
采用并行流水线工作方式 对内存空间实行分段管理: 对内存空间实行分段管理:
每段大小为16B~ 每段大小为16B~64KB 16B 用段地址和段内偏移实现对1MB空间的寻址 用段地址和段内偏移实现对1MB空间的寻址 设置地址段寄存器指示段的首地址
支持多处理器系统; 支持多处理器系统; 片内没有浮点运算部件, 片内没有浮点运算部件,浮点运算由数学协处 理器8087支持(也可用软件模拟) 理器 支持(也可用软件模拟) 支持 注:80486DX以后的CPU均将数学协处理 器作为标准部件集成到CPU内部
8
二、8086CPU的内部结构
8086内部由两部分组成: 内部由两部分组成: 内部由两部分组成 执行单元(EU) 执行单元( ) 总线接口单元(BIU) 总线接口单元( )
2
指令预取队列(IPQ)
指令的一般执行过程: 指令的一般执行过程: 取指令 指令译码 读取操作数 执行指令 存放结果
3
串行工作方式:
8086以前的CPU采用串行工作方式: 8086以前的CPU采用串行工作方式: 以前的CPU采用串行工作方式

第2章8086CPU的原理

第2章8086CPU的原理

(2)DS:数据段段寄存器,在数据段寻址时,与BX、SI、DI 合用。 (3)SS:堆栈段段寄存器,在栈操作时,与SP合用对栈顶数据进 行存取。在对栈中数据存取时与BP合用。 (4)ES:附加数据段段寄存器,在串操作时,存放目标串,与DI 合用。也可以用来存放数据。 2 标志寄存器FLAGS FLAGS是16位寄存器,包含9个标志,标示CPU的状态和某些操 作特性。
其中:AH、AL寄存分别表示AX寄存器的高8位和低8位,如下图: 1Fh AH 50h AL AX
AH=1Fh AL=50h AX=1F50h
但AH和AL都可以作为8位的寄存器独立使用, 如 MOV BL,AH 指令执行后, BL=1Fh
其余的8位寄存器如上所述。 8086的4个数据寄存器,通常都是用来存储供CPU处理的数据或 保存结果的,但在特定的场合里,它们又有自己的特殊用途。 (1)AX、AL---累加器:在乘法、除法和符号扩展指令中,有一 个操作数预先放在累加器中;在I/O操作时,通过它CPU与接口交 换数据。累加器也是所有寄存器中执行速度最快的。
IF 中断允许标志: IF 的值决定CPU是否响应外部的可屏蔽中断。 当 IF=1 时,CPU可以响应外部的可屏蔽中断,否则相反。IF 的值 由专门的指令控制,即:STI 指令置 IF=1 CLI 指令置 IF=0 当 IF=0 时,CPU不能屏蔽非屏蔽中断和CPU内部中断。 TF 跟踪标志: TF=1 时,CPU进入单步程序执行方式,TF的控 制没有专用的指令,要通过其它方式设置。
图(3.5)8086/8088的引脚信号
最小方式 用于单个微处理器组成的系统,由8086产生系 统所需的全部控制信号。 最大方式 用于多处理器系统中,8086不直接提供控制信 号 。

微机原理 第2章_8086系统结构

微机原理 第2章_8086系统结构

8086 CPU的引脚及其功能

8086 CPU的两种工作模式


最小模式:用于单机系统,系统所需要的控 制信号由8086直接提供,MN/MX=1,CPU 工作于最小模式 最大模式:用于多处理机系统,系统所需的 控制信号由总线控制器8288提供, MN/MX=0,CPU工作于最大模式

8086 CPU在最小模式下的引脚定义 8088与8086的区别
通 用 寄 存 器
AX BX CX DX SP BP SI DI
8086 CPU结构框图
20位地址总线
Σ
数据 总线 16位
ALU数据总线 (16位) 暂存器
队列 总线 (8位)
CS DS SS ES IP 内部寄存器 指令队列
总线 控制 电路 8086 总线
ALU
标志寄存器
EU 控制器
1 3 4 5 6
PSW
存放状态标志、控制标志和系统标 志
PSW格式:
15 11 10
OF DF
9 IF
8
7
6
4 AF
2 PF
0 CF
TF SF ZF
状态标志




状态标志用来记录程序中运行结果的状态信息,它们根据有关指 令的运行结果由CPU自动设置,这些状态信息往往作为后续条件 转移指令的转移控制条件,包括6位: OF:溢出标志,在运算过程中,如操作数超出了机器数的表示范 围,称为溢出,OF=1,否则OF=0 SF:符号标志,记录结果的符号,结果为负SF=1,否则SF=0 ZF:零标志,运算结果为0,ZF=1,否则ZF=0 CF:进位标志,进行加法运算时从最高位产生进位,或减法运算 从最高位产生借位CF=1,否则CF=0 AF:辅助进位标志:本次运算结果,低4位向高4位产生进位或借 位,AF=1,否则AF=0 PF:奇偶标志,用来为机器中传送信息时可能产生的代码出错情 况提供检验条件,当结果操作数中低8位中1的个数为偶数时PF=1, 否则PF=0

2.第二章 8086系统结构

2.第二章 8086系统结构

总线接口部件BIU SI:(Source Index):SI含有源地址意思,产 生有效地址或实际地址的偏移量。 总线接口部件BIU内部设 有四个16位段地址寄存器: DI:(Destination Index):DI含有目的意思, 代码段寄存器CS、数据段寄 产生有效地址或实际地址的偏移量。 存器DS、堆栈段寄存器SS和 播 音 附加段寄存器ES,一个16位 : 指令指针寄存器IP,一个6字 16位字利用了9位。 标志分两类: 节指令队列缓冲器,20位地 状态标志(6位):反映刚刚完成的操作结果情况。 址加法器和总线控制电路。
志(结果低8 CLC(复位), 位1的个数 CMC(求反)。 为偶数 PF=1) 。
15
14
13
12
11
10
9
8
3
2
1
0
OF DF IF TF
SF ZF
AF
PF
CF
DF:方向标志 .DF=1使串 操作按减地址进行,DF=0按 增地址进行。指令: CLD(复位), STD(置位).
TF:陷阱标志或单步操作标志 IF:中断允许 标志 图 2-6 8086CPU标志寄存器 目录
通用寄存器(数据寄存器) : AX 累加器 BX 基址寄存器 CX 计数寄存器 DX 数据寄存器
SP BP SI DI
IP
地址指针和变址寄存器: SP 堆栈指针寄存器 BP 基址指针寄存器 SI 源变址寄存器 控制寄存器: DI 目的变址寄存器 IP 指令指针寄存器
FLAGS
CS DS SS ES
段寄存器: CS 代码段寄存器 DS 数据段寄存器 SS 堆栈段寄存器 ES 附加段寄存器
EU 总线 忙
执行1 忙
执行2 忙

第2章 8086微处理器1

第2章  8086微处理器1

例3 已知逻辑地址,指出下列存储器地址的段内偏 移量、段基址、物理地址。 1)1123H:0015H 2)1124H:0005H
一个物理地址可以对应多个逻辑地址
例如:设当前有效的代码段、数据段、堆栈段、附加段的段基址分别 为1066H、251BH、900CH、F001H,则各段在内存中的分配情况如 图2-5所示。
VCC AD15 A16/S3 A17 /S4 A18 /S5 A19 /S6 (HIGH) (SSO) MN/MX RD RQ/GT0 (HOLD) RQ/GT1 (HLDA) LOCK (WR) S2 (IO/M) S1 (DT/R) S0 (DEN) QS0 (ALE) QS1 (INTA) TEST READY RESET
六个状态标志含义如下: 1.进位标志CF或C 运算结果的最高位产生进位或借位时,则 CF=1,否则CF=0(字节操作D7、字操作D15、 双字D31) 2.奇偶标志PF 运算结果中1的个数为偶数,则PF=1,否 则PF=0 3.辅助进位标志AF 运算时当 D3 向D4 有进位或有借位时 ,则 AF=1,否则AF=0
DS:数据段寄存器 ES:附加段寄存器
数据段和附加段用来存放操作数
SS:堆栈段寄存器
堆栈段用于存放返回地址,保存寄存器内容, 传递参数
3、控制寄存器

IP:指令指针寄存器,其内容为下一条 要执行的指令的偏移地址 FLAGS:标志寄存器
状态标志:存放运算结果的特征
控制标志:控制某些特殊操作
四、存储器寻址

物理地址
8086:20根地址线,可寻址220(1MB)
个存储单元,1M字节的存储器单元编 址为00000H~FFFFFH(16进制) CPU送到AB上的20位的地址称为物理 地址

微机原理与接口技术(第三版)&电子工业出版社&课本习题答案

微机原理与接口技术(第三版)&电子工业出版社&课本习题答案

&电子工业出版社&第二章 8086体系结构与80x86CPU1.8086CPU由哪两部分构成?它们的主要功能是什么?答:8086CPU由两部分组成:指令执行部件(EU,Execution Unit)和总线接口部件(BIU,Bus Interface Unit)。

指令执行部件(EU)主要由算术逻辑运算单元(ALU)、标志寄存器FR、通用寄存器组和EU控制器等4个部件组成,其主要功能是执行指令。

总线接口部件(BIU)主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或I/O端口读取操作数参加EU运算或存放运算结果等。

2.8086CPU预取指令队列有什么好处?8086CPU内部的并行操作体现在哪里?答:8086CPU的预取指令队列由6个字节组成,按照8086CPU的设计要求,指令执行部件(EU)在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。

从速度上看,该指令队列是在CPU内部,EU从指令队列中获得指令的速度会远远超过直接从内存中读取指令。

8086CPU内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。

5.简述8086系统中物理地址的形成过程。

8086系统中的物理地址最多有多少个?逻辑地址呢?答:8086系统中的物理地址是由20根地址总线形成的。

8086系统采用分段并附以地址偏移量办法形成20位的物理地址。

采用分段结构的存储器中,任何一个逻辑地址都由段基址和偏移地址两部分构成,都是16位二进制数。

通过一个20位的地址加法器将这两个地址相加形成物理地址。

具体做法是16位的段基址左移4位(相当于在段基址最低位后添4个“0”),然后与偏移地址相加获得物理地址。

由于8086CPU的地址线是20根,所以可寻址的存储空间为1M字节,即8086系统的物理地址空间是1MB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章8086体系结构与8086CPU1.8086CPU由哪两部分构成?它们的主要功能是什么?答:8086CPU由两部分组成:指令执行部件(EU)和总线接口部件(BIU)指令执行部件(EU)主要由算术逻辑运算单元(ALU)、标志寄存器FR、通用寄存器组和EU 控制器等4个部件组成,其主要功能是执行指令。

总线接口部件(BIU)主要由地址加法器、寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或I/O端口读取操作数参加EU运算或存放运算结果等。

2.8086CPU预取指令队列有什么好处?8086CPU内部的并行操作体现在哪里?答:8086CPU的预取指令队列由6个字节组成,按照8086CPU的设计要求,指令执行部件(EU)在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。

从速度上看,该指令队列是在CPU内部,EU从指令队列中获得指令的速度会远远超过直接从内存中读取指令。

8086CPU内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。

3.8086CPU中有哪些寄存器?各有什么用途?答:指令执行部件(EU)设有8个16位通用寄存器AX、BX、CX、DX、SP、BP、SI、DI,主要用途是保存数据和地址(包括内存地址和I/O端口地址)。

其中AX、BX、CX、DX主要用于保存数据,BX可用于保存地址,DX还用于保存I/O端口地址;BP、SI、DI主要用于保存地址;SP用于保存堆栈指针。

标志寄存器FR用于存放运算结果特征和控制CPU操作。

BIU中的段寄存器包括CS、DS、ES、SS,主要用途是保存段地址,其中CS代码段寄存器中存放程序代码段起始地址的高16位,DS数据段寄存器中存放数据段起始地址的高16位,SS堆栈段寄存器中存放堆栈段起始地址的高16位,ES扩展段寄存器中存放扩展数据段起始地址的高16位。

指令指针寄存器IP始终存有相对于当前指令段起点偏移量的下一条指令,即IP总是指向下一条待执行的指令。

5.简述8086系统中物理地址的形成过程。

8086系统中的物理地址最多有多少个?逻辑地址呢?答:8086系统中的物理地址是由20根地址总线形成的。

8086系统采用分段并附以地址偏移量办法形成20位的物理地址。

采用分段结构的存储器中,任何一个逻辑地址都由段基址和偏移地址两部分构成,都是16位二进制数。

通过一个20位的地址加法器将这两个地址相加形成物理地址。

具体做法是16位的段基址左移4位(相当于在段基址最低位后添4个“0”),然后与偏移地址相加获得物理地址。

由于8086CPU的地址线是20根,所以可寻址的存储空间为1M字节,即8086系统的物理地址空间是1MB。

逻辑地址由段基址和偏移地址两部分构成,都是无符号的16位二进制数,程序设计时采用逻辑地址,也是1MB。

6.8086系统中的存储器为什么要采用分段结构?有什么好处?答:8086CPU中的寄存器都是16位的,16位的地址只能访问64KB的内存。

086系统中的物理地址是由20根地址总线形成的,要做到对20位地址空间进行访问,就需要两部分地址,在8086系统中,就是由段基址和偏移地址两部分构成。

这两个地址都是16位的,将这两个地址采用相加的方式组成20位地址去访问存储器。

在8086系统的地址形成中,当段地址确定后,该段的寻址范围就已经确定,其容量不大于64KB。

同时,通过修改段寄存器内容,可达到逻辑段在整个1MB存储空间中浮动。

各个逻辑段之间可以紧密相连,可以中间有间隔,也可以相互重叠(部分重叠,甚至完全重叠)。

采用段基址和偏移地址方式组成物理地址的优点是:满足对8086系统的1MB存储空间的访问,同时在大部分指令中只要提供16位的偏移地址即可。

7.8086存储器中存放数据字时有“对准字”和“非对准字”之分,请说明它们的差别。

答:一个16位的数据字是按照低地址存放低位数据、高地址存放高位数据来存放的。

若16位数据的低8位存放在偶地址,则该数据字就是“对准字”,否则就是“非对准字”。

主要差别是CPU读取和存储数据字时,如果是对准字,只需要一次读写操作即可,而非对准字就需要两次读写操作才能实现一个数据字的存取。

9.在某系统中,已知当前(SS)=2360H,(SP)=0800H,那么该堆栈段在存储器中的物理地址范围是什么?若往堆栈中存入20个字节数据,那么SP的内容为什么值?答:(SS)×10H+(SP)=23600H+0800H=23E00H,堆栈段在存储器中的物理地址范围是23600H~23E00H。

若往堆栈中存入20个字节数据,那么SP的内容为0800H-14H =07ECH。

(20的十六进制为14H)。

10.已知当前数据段位于存储器的B4000H到C3FFFH范围内,则段寄存器DS的内容为多少?答:段寄存器DS的内容为B4000H。

11.8086系统中为什么一定要有地址锁存器?需要锁存哪些信息?答:由于8086CPU受芯片封装的限制,只有40个管脚,所以地址线和数据线只能采用复用的方式共同使用某些管脚。

对存储器进行访问时,在读取数据或写入数据时,存储器芯片要求在这个过程中地址信息必须稳定提供给存储器,而由于8086CPU地址线和数据线是复用的,就不可能在同一时刻具有地址和数据的两种功能。

这就需要在CPU提供地址信息时,将地址锁存起来,以保证下一个时刻当这些复用的管脚起着数据线的功能时,存储器有正确的地址信息。

要锁存的信息包括这些复用管脚的地址和BHE等信号。

12.8086读/写总线周期各包括最少几个时钟周期?什么情况下需要插入等待周期TW?插入多少个TW取决于什么因素?答:8086读/写总线周期各包括最少四个时钟周期。

在系统中增加等待周期TW的一般情况是:当CPU提供了地址后,由于外设或存储器的读出或写入时间较慢,不能与CPU的速度匹配,就需要插入等待周期TW,等待CPU能从外设或存储器将数据正确地读出或写入为止。

显然,插入的等待周期TW的个数取决于外设或存储器的取出或写入时间。

第4章8086汇编语言程序设计1.编写8086汇编语言程序,将寄存器AX的高8位传送到寄存器BL,低8位传送到寄存器DL。

答:CODE SEGMENTASSUME CS:CODESTART: MOV BL,AHMOV DL,ALMOV AX,4C00HINT 21HCODE ENDSEND STAR2.将寄存器DX的内容按从低位到高位的顺序分成4组,并将各组数分别送到寄存器AL,BL,CL和DL中。

(例如:(DX)=0ABCDH,分成四组(DL)=0AH,(CL)=0BH,(BL)=0CH,(AL)=0DH)答:CODE SEGMENTASSUME CS:CODESTART: MOV AX,DXAND AL,0FHMOV BL,DLMOV CL,4SHR BL,CLAND AH,0FHMOV CL,4SHR DH,CLMOV CL,AHMOV AH,4CHINT 21HCODE ENDSEND START4.试统计9个数中偶数的个数,并将结果在屏幕上显示。

答:DATA SEGMENTBUFF DB 3BH,47H,8DH,-75,0AH,69,-2EH,0CCH,200CODE SEGMENTASSUME CS:CODE,DS:DATASTART:MOV AX,DATAMOV DS,AXMOV SI,OFFSET BUFFMOV CX,9XOR DL,DLA1: SHR BYTE PTR [SI],1JC NEXTINC DLNEXT: INC SILOOP A1ADD DL,30HMOV AH,2MOV AX,4C00HINT 21HCODE ENDSEND START5.试将一串16位无符号数加密,加密方法是每个数乘以2。

(不考虑进位)答:DATA SEGMENTMEM DW 20 DUP(?)DATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART:MOV AX,DATAMOV DS,AXMOV CX,LENGTH MEMLEA BX,MEMAA1: MOV AX,[BX]ADD AX,AX ;或MUL AX,2 或SHL AX,1或SAL AX,1MOV [BX],AXADD BX,2LOOP AA1MOV AX,4C00HINT 21HCODE ENDSEND START第五章存储器原理与接口2.什么是RAM和ROM?RAM和ROM各有什么特点?答:RAM是随机存储器,指计算机可以随机地、个别地对各个存储单元进行访问,访问所需时间基本固定,与存储单元的地址无关。

ROM是只读存储器,对其内容只能读,不能写入。

与RAM相比,其信息具有非易失性,即掉电后,ROM中的信息仍会保留。

3.什么是多层次存储结构?它有什么作用?答:存储器的性能是计算机性能的最主要指标之一,其目标是大容量、高速度和低成本,因此应该在系统结构的设计上扬长避短,采用多层存储结构构成一个较为合理的存储系统。

多层存储结构是一个金字塔的结构,距塔尖(即CPU)越近速度越快,容量越小,单位价格也较贵;反之速度较慢,容量较大,单位价格也较便宜。

其作用是获得最佳性价比。

5.主存储器的主要技术指标有哪些?答:主存储器的主要技术指标有主存容量、存储器存取时间、存储周期和可靠性。

7.若用1K×1位的RAM芯片组成16K×8位的存储器,需要多少片芯片?在CPU的地址线中有多少位参与片内寻址?多少位用做芯片组选择信号?答:要128片。

A1~A9共10位参与片内寻址,其余可用于片选信号。

第七章5.在某应用系统中,计数器/定时器8253地址为310H~316H,定时器0作为分频器(N为分频系数),定时器2作为外部事件计数器,编写初始化程序框架。

答:MOV DX,316HMOV AL,控制字OUT DX,ALMOV DX,310HMOV AL,分频系数低8位OUT DX,ALMOV AL,分频系数高8位OUT DX,ALMOV DX,316HMOV AL,控制字OUT DX,ALMOV DX,314HMOV AL,计数常数低8位OUT DX,ALMOV AL,计数常数高8位OUT DX,AL。

相关文档
最新文档