第2章_1 8086CPU的功能结构

合集下载

第2章-8086微处理器part2

第2章-8086微处理器part2

8086 CPU在最小模式中引脚定义
M/#IO:Memory/Input & Output,三态输出
存储器或I/O端口访问信号 。指示8086的访问对象,发 给MEM或I/O接口。 M/# IO为高电平时,表示 当前CPU正在访问存储器;
M/# IO 为低电平时,表 示当前CPU正在访问I/O端 口
数据驱动器数据流向控制信 号,输出,三态。
在8086系统中,通常采用 74LS245、8286或8287作 为数据总线的驱动器,用 DT/#R信号来控制数据驱动 器的数据传送方向。 当DT/#R=1时,进行数据 发送; 当DT/#R=0时,进行数据 接收。
8086 CPU在最小模式中引脚定义
READY:准备就绪信号 由外部输入,高电平有效 ,表示CPU访问的存储器 或I/O端口己准备好传送 数据。 当READY无效时,要求 CPU插入一个或多个等待 周期Tw,直到READY信 号有效为止。
S3 0 1 0 1
当前正在使用的段寄存器 ES SS CS或未使用任何段寄存器 DS
8086 CPU在最小模式中引脚定义
#BHE/S7:高8位总线允许(Bus High Enable)
T1:指示高8位数据总线上的数据 是否有效 (#BHE:AD0)配合:00时读写字 ,01时读写奇地址字节,10时读写 偶地址字节 其他T周期:输出状态信号S7(S7 始终为逻辑1,未定义) DMA方式下,该引脚为高阻态。
最大模式引脚信号(续)
LOCK# :总线封锁(优先权锁定) 三态输出,低电平有效。 LOCK有效时表示CPU不允许其它总线主控者占用 总线。 ห้องสมุดไป่ตู้ 这个信号由软件设置。 • 当在指令前加上LOCK前缀时,则在执行这条 指令期间LOCK保持有效,即在此指令执行期 间,CPU封锁其它主控者使用总线。 在保持响应期间,LOCK#为高阻态。

8086 CPU内部结构

8086 CPU内部结构

课题:8086微处理结构一、8086 CPU的内部结构:图解分析:1、8086 CPU从功能上可分为:总线接口部件BIU(Bus Interface Unit)执行部件EU(Execution Unit)2、BIU:负责与存储器、外部设备之间进行信息交换。

功能:①负责从内存指定单元取出指令,并送到6字节的指令队列中排列;②同时负责从内存指定单元取出指令所需的操作数并送EU;③EU运算结果也由BIU负责写入内存指定单元。

组成:20位的地址加法器段寄存器(CS、DS、ES、SS)指令指针(IP)指令队列缓存器总线控制电路各组件功能:①地址加法器:计算并形成CPU要访问的内存单元的20位物理地址;②段寄存器:用于存放对应段的段基址;③指令指针寄存器:用于存放下一条要执行的指令的偏移地址;④指令队列:是6字节的“先进先出”的RAM存储器,用于顺序存放CPU要执行的指令,并送EU去执行;⑤总线控制电路:产生总线控制信号,如存储器读/写、I/O读写控制信号。

3、EU:负责指令的执行。

功能:①负责从BIU的指令队列中取得指令、分析指令、执行指令,并将结果存入通用寄存器或由BIU写入内存单元;②同时负责计算操作数所在内存单元的偏移地址。

组成:算术逻辑单元(ALU)标志寄存器通用寄存器:数据寄存器:AX、BX、CX、DX指针和变址寄存器:SP、BP、SI、DIEU控制电路各组件的功能:①算术逻辑单元(ALU):对操作数进行算术和逻辑运算,也可按指令的寻址方式计算出CPU要访问的内存单元的16位偏移地址;②标志寄存器:用于反映算术和逻辑运算结果的状态;③数据寄存器:用于保存操作数或运算结果等信息;④指针和变址寄存器:用于存放操作数所处存储单元的偏移地址;⑤EU控制电路:接收从BIU指令队列中取得的指令,分析、译码,以便形成各种实时控制信号,对各个部件实现特定的控制操作。

【教学课件】第2章 8086微处理器

【教学课件】第2章  8086微处理器

控制 电路
局部总线 接口
SYSB/RESB
1
20
2
19
3
18
4
17
5
8289 16
6
15
7
14
8
13
9
12
10
11
INIT
BCLK BREQ BPRN BPRO BUSY CBRQ
总线仲裁 信号
AEN
V CC S1 S0 CLK
LOCK
CRQLCK ANYRQST
AEN CBRQ BUSY
2021/8/17
DEN CEN
INTA IORC AIOWC IOWC
2021/8/17
23
2.总线仲裁控制器8289
仲裁电路
状态
S2
信号
S1
S0
状态 译码器
多路总线 接口
控制 输入
LOCK CLK
CRQLCK
RESB ANYRQST
IOB
S2 IOB
RESB BCLK INIT BREQ BPRO BPRN
GND
数据总线
2021/8/17
S0
S1
S2
INTR R Q / G T0
R Q / G T1
8288 总线控制器
IN T A
8259A 及有关电路
控制总线 中 断 请 求
22
1.总线控制器8288
状态
S2
信号
S1
S0
状态 译码器
控制 输入
CLK
AEN CEN IOB
控制 电路
命令 信号 发生器
控制信号 发生器
2.3.1 最小模式和最大模式的概念

微机原理课件第二章 8086系统结构

微机原理课件第二章 8086系统结构

但指令周期不一定都大于总线周期,如MOV AX,BX
操作都在CPU内部的寄存器,只要内部总线即可完成,不 需要通过系统总线访问存储器和I/O接口。
2021/8/17
17
• 8086CPU的典型总线时序,充分体现了总 线是严格地按分时复用的原则进行工作的。 即:在一个总线周期内,首先利用总线传 送地址信息,然后再利用同一总线传送数 据信息。这样减少了CPU芯片的引脚和外 部总线的数目。
• 执行部件(EU)
• 功能:负责译码和执行指令。
2021/8/17
5
• 联系BIU和EU的纽带为流水指令队列
• 队列是一种数据结构,工作方式为先进先出。写入的指令 只能存放在队列尾,读出的指令是队列头存放的指令。
2021/8/17
6
•BIU和EU的动作协调原则 BIU和EU按以下流水线技术原则协调工作,共同完成所 要求的任务: ①每当8086的指令队列中有空字节,BIU就会自动把下 一条指令取到指令队列中。 ②每当EU准备执行一条指令时,它会从BIU部件的指令 队列前部取出指令的代码,然后译码、执行指令。在执 行指令的过程中,如果必须访问存储器或者I/O端口, 那么EU就会请求BIU,完成访问内存或者I/O端口的操 作; ③当指令队列已满,且EU又没有总线访问请求时,BIU 便进入空闲状态。(BIU等待,总线空操作) ④开机或重启时,指令队列被清空;或在执行转移指令、 调用指令和返回指令时,由于待执行指令的顺序发生了 变化,则指令队列中已经装入的字节被自动消除,BIU会 接着往指令队列装入转向的另一程序段中的指令代码。 (EU等待)
•CF(Carry Flag)—进位标志位,做加法时最高位出现进位或 做减法时最高位出现借位,该位置1,反之为0。

第二章 8086微处理器

第二章 8086微处理器

第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。

2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。

3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。

难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。

学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。

2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。

第二章-8086微处理器

第二章-8086微处理器

答案:A
思考题
8086/8088的状态标志有 A)3 B)4 C)5 答案:D 个。 D)6
思考题
8086/8088的控制标志有 A)3 B)4 C)5 答案:A 个。 D)6
三、引脚信号和功能(图2-5 )
8086总线周期的概念: 为了取得指令或传送数据,就需要CPU的总线接 口单元(BIU)执行一个总线周期。 一个最基本的总线周期由4个时钟周期组成。 习惯上将4个时钟周期分别称为4个状态,即T1状 态、T2状态、T3状态和T4状态。 图2-17
2.方向标志DF(Direction Flag) 用于串操作指令中的地址增量修改(DF =0)还是减量修改(DF=1)。 STD使DF=1 CLD使DF=0
(三)标志寄存器-控制标志(续)
3.跟踪标志TF(Trap Flag) 若TF=1,则CPU按跟踪方式(单步方式) 执行程序,否则将正常执行程序。
思考题
指令队列的作用是 A)暂存操作数地址 。 B)暂存操作数
C)暂存指令地址
D)暂存预取指令 答案:D
思考题
8086的指令队列的长度是 A)4个 B)5个 C)6个 D)8个 字节。
答案: C
思考题
8088的指令队列的长度是 A)4个 B)5个 C)6个 D)8个 字节。
答案:A
思考题
第二章 8086/8088微处理器
8086/8088微处理器的结构 8086/8088典型时序分析

简 介
8086:16位微处理器 数据总线宽度16位:可以处理8位或16位数据 地址总线宽度20位:可直接寻址1MB存储单元和 64KB的I/O端口 8088:准16位处理器 内部寄存器及内部操作均为16位,外部数据总线8位 8088与8086指令系统完全相同,芯片内部逻辑结构、芯片引 脚有个别差异。 设计8088的目的主要是为了与Intel原有的8位外围接口芯片 直接兼容

8086微处理器的功能与结构

8086微处理器的功能与结构

8086微处理器的功能与结构四、80x86微处理器的结构和功能(一)80x86微处理器1.8086/8088主要特征(1)16位数据总线(8088外部数据总线为8位)。

(2)20位地址总线,其中低16位与数据总线复用。

可直接寻址1MB存储器空间。

(3)24位操作数寻址方式。

(4)16位端口地址线可寻址64K个I/O端口。

(5)7种基本寻址方式。

有99条基本指令。

具有对字节、字和字块进行操作的能力。

(6)可处理内部软件和外部硬件中断。

中断源多达256个。

(7)支持单处理器、多处理器系统工作。

2.8086微处理器内部结构8086微处理器的内部结构由两大部分组成,即执行部件EU(Execution Unit)和总线接口部件BIU(Bus Interface Unit)。

和一般的计算机中央处理器相比较,8086的EU相当于运算器,而BIU则类拟于控制器。

3.8086最小模式与最大模式及其系统配置最小模式在结构上的特点表现为:系统中的全部控制信号直接来自8086CPU。

与最小模式相比,最明显的不同是系统中的全部控制信息号不再由8086直接提供,而是由一个专用的总线控制器8288输出的。

4.8087与8089处理机简述(1)8087协处理机8087协处理机与8086组合在一起工作,以弥补8086在数值运算能力方面的不足,所以它又称为协处理机。

(2)8089I/O处理机8089是一个带智能的I/O接口电路,相当于大型机中的通道,它将CPU的处理能力与DMA控制器结合在一起。

它具有52条基本指令,1MB的寻址能力,包含两个DMA通道。

8089也可以与8086联合在一起工作,执行自己的指令,进行I/O 操作,只在必需时才与8086进行联系。

在8089的控制下,可以进行外设与存储器之间、存储器与存储器之间以及外设与外设之间的数据传输。

同时,8089还可以设定多种终止数据传输的方式。

5.总线时序一个基本的总线周期包括4个时钟周期,即4个时钟状态T 1 、T2 、T3 和T4 。

第2章 16位微处理器

第2章 16位微处理器

表2.2 段寄存器使用时的一些基本约定
思考题
下列CPU中属于准16位的是 A.8080 B.8086 C.8088 。 D.80386SX A.ALU,EU,BIU C.寄存器组,ALU 答案: C
思考题
8086CPU的内部结构由 组成。 B.ALU,BIU,地址加法器 D.EU,BIU
答案:D
思考题

例题
设(CS)=4232H ,(IP)=0066H,试计算物理地址。
思考题
已知物理地址为FFFF0H,且段内偏移量为 A000H,若对应的段基址放在DS中,则DS 应为 。 A.5FFFH B.F5FFH C.5FFF0H D.F5FF0H 答案:B
注意
一个存储单元的物理地址是唯一的,而逻辑 地址是可以不唯一的。 例如: 1200H:0345H12345H 1100H:1345H12345H
第2章 16位微处理器8086/8088
2.1.0 简介 2.1.1 8086/8088CPU的内部结构 2.1.2 8086/8088CPU的总线周期 2.1.3 8086/8088系统的工作模式 2.1.4 8086/8088的操作和时序 作业

2.1.0 简介
1978年,Intel推出了8086微处理器,一年多以后推出了 8088,这两种都是16位微处理器。 时钟频率为5MHz~10MHz,最快的指令执行时间为400ns。 8086有16根数据线:可以处理8位或16位数据。 有20根地址线:可寻址即1MB(220)的存储单元和 64KB(216)的I/O端口。 8088:准16位微处理器 8088的内部寄存器、运算器以及内部数据总线都是按16位设 计的,但外部数据总线只有8条,因此执行相同的程序, 8088要比8086有较多的外部存取操作而执行得较慢。 设计的主要目的:为了与Intel原有的8位外围接口芯片直接 兼容。

8086cpu的组成

8086cpu的组成

8086CPU的组成8086CPU是一种早期的微处理器,用于计算机的中央处理单元(CPU)。

它由多个组件组成,包括逻辑单元、寄存器、内存控制器、输入/输出单元等。

以下是对8086CPU组成的详细描述:1. 逻辑单元:8086CPU的逻辑单元包括各种控制单元和调度单元,用于处理指令、数据和内存访问请求。

这些逻辑单元负责协调各个组件之间的操作,确保CPU能够高效地执行任务。

2. 寄存器:8086CPU使用多个寄存器来存储数据和处理指令。

这些寄存器用于临时存储数据、操作数和结果,并支持CPU执行各种操作。

3. 内存控制器:8086CPU的内存控制器负责与主存储器(如RAM)进行通信,以快速访问数据和指令。

内存控制器通过内部总线与逻辑单元和其他组件进行交互,确保数据传输的效率和准确性。

4. 输入/输出单元:8086CPU的输入/输出单元负责与外部设备进行通信。

这些设备包括显示器、键盘、鼠标、硬盘驱动器等。

输入/输出单元通过接口与外部设备连接,并处理与它们的通信和数据传输。

5. 时钟和电源管理:8086CPU需要一个时钟信号来控制其操作速度。

时钟信号的频率决定了CPU的执行速度。

此外,8086CPU还具有电源管理功能,以确保各个组件在需要时获得适当的电源,并在不需要时关闭以节省能源。

总的来说,8086CPU由多个组件组成,这些组件协同工作以实现高效的计算任务。

它具有强大的逻辑单元、寄存器、内存控制器和输入/输出单元,以及时钟和电源管理功能,使其成为早期计算机系统的重要组成部分。

这些组件的组合和协同工作,使得8086CPU能够处理复杂的指令和数据,并支持计算机系统的正常运行。

8086CPU的结构与功能

8086CPU的结构与功能

8086CPU 的结构与功能CPU 结构与功能不管什么型号的CPU ,其内部均有这四⼤部件1. ALU :算术逻辑单元2. ⼯作寄存器:分为数据寄存器和地址寄存器⼯作寄存器的⽬的是为了提⾼运算速度,希望参与运算的数据不从外部存储器去取数据,⽽是在CPU 内部取,所以要有能暂存少量数据的寄存器。

数据寄存器是专门存放数据的,地址寄存器是专门存放地址,进⾏间接寻址⽅式,但当地址寄存器不提供地址时,也可以⽤来暂存数据。

3. 控制器:中央指挥机关4. I/O 控制逻辑电路⼀般CPU 执⾏存储器(按字节组织)⾥⾯指令过程如下:1. CPU 通过控制器部件⾥⾯的程序计数器(PC )给外部存储器的地址引脚输出地址(通过地址总线AB ),同时CPU 给存储器发送读操作命令;2. 在读操作下,就把这个地址单元的指令代码通过数据总线(DB ),取回来放在指令寄存器⾥⾯(IR ),注意此时因为指令没有执⾏完,所以PC 还不能去往下⼀条指令,IR 没有地⽅放数据。

3. 指令译码器(ID )不断检测指令寄存器有没有数据,有的话就把指令取⾛放在ID ⾥⾯,取来的指令就被ID 译码分析,就知道这个指令希望CPU 做什么,怎么做;4. ID 通知控制逻辑部件,在相应的控制引脚发出相应的有效命令(读,写等);5. 此条指令执⾏完,IR 为空,PC ⾃动增加到下⼀条指令的地址,执⾏下⼀条指令流程。

如果指令为n 字节,PC ⾃动增n 。

因为在取指令时候,不能执⾏指令,在执⾏指令时候,不能取指令,因此这种架构CPU 是取指令->执⾏指令->取指令...这样循环下去。

CPU 执⾏效率不⾼。

堆栈由先进后出原则组织的存储器区域,称为堆栈。

单⽚机应⽤中,堆栈是个特殊存储区,堆栈属于RAM 空间的⼀部分,堆栈⽤于函数调⽤、中断切换时保存和恢复现场数据(临时数据)。

对于8006 CPU ⽽⾔,堆栈操作是按字操作。

堆栈单元的地址指针由堆栈指针寄存器SP 的内容提供。

8086cpu的结构和功能

8086cpu的结构和功能

8086cpu的结构和功能8086CPU是由英特尔公司开发的一款经典的16位微处理器。

它是在20世纪80年代初面世的,也是当时最新一代的微处理器。

8086CPU具有复杂的结构和强大的功能,为计算机技术的发展做出了重要贡献。

本文将从多个方面介绍8086CPU的结构和功能。

首先,我们来了解8086CPU的整体结构。

8086CPU包括两个主要部件:执行部件和总线控制部件。

执行部件由数据总线单元(DBU)、算术逻辑单元(ALU)和寄存器组成,负责实际进行数据的处理和运算。

总线控制部件包括指令队列、指令译码器和时序控制器,负责控制数据和指令的传输以及处理器的时序控制。

这种分离的结构使得8086CPU 具有高效的指令执行能力。

其次,我们来探讨8086CPU的功能特点。

8086CPU具有许多强大的功能,包括多种数据类型支持、分段式寻址、以及可扩展的指令集等。

首先是多种数据类型支持。

8086CPU支持多种数据类型,包括字节、字和双字等。

这使得它能够处理各种不同类型的数据,适应了不同应用场景的需求。

其次是分段式寻址。

8086CPU采用分段式寻址的方式,将内存划分为多个段,每个段具有独立的段地址。

这种寻址方式可以灵活地管理内存,提高内存的利用率,并且方便编程。

最后是可扩展的指令集。

8086CPU的指令集非常丰富,包括各种数据处理、逻辑控制、输入输出、以及字符串操作等指令。

同时,8086CPU还支持通过软件扩展指令集,满足用户的个性化需求。

总之,8086CPU作为一款经典的微处理器,具有复杂的结构和强大的功能。

它为计算机技术的发展做出了重要贡献,为后续的微处理器设计奠定了基础。

通过多种数据类型支持、分段式寻址和可扩展的指令集等特点,8086CPU实现了高效的数据处理和灵活的内存管理,为用户的应用提供了广泛的功能支持。

参考文献:1. Patterson, D.A., & Hennessy, J.L. (2017). Computer Organization and Design: The Hardware/Software Interface. Morgan Kaufmann.2. Kip Irvine. (2016). Assembly Language for x86 Processors. Pearson.。

第2章8086微处理器1-2

第2章8086微处理器1-2
来自忙碌忙碌忙碌
忙碌
1)CPU执行指令时总线处于空闲状态 ) 执行指令时总线处于空闲状态 2)CPU访问存储器 存取数据或指令 时要等待总线操作的完成 访问存储器(存取数据或指令 ) 访问存储器 存取数据或指令)时要等待总线操作的完成 缺点: 缺点:CPU无法全速运行 无法全速运行 解决:总线空闲时预取指令, 解决:总线空闲时预取指令,使CPU需要指令时能立刻得到 需要指令时能立刻得到
6
结论
指令预取队列的存在使EU和 指令预取队列的存在使 和BIU两个部 两个部 分可同时进行工作, 分可同时进行工作,从而 提高了CPU的效率; 降低了对存储器存取速度的要求
7
8088/8086 CPU的特点
采用并行流水线工作方式 对内存空间实行分段管理: 对内存空间实行分段管理:
每段大小为16B~ 每段大小为16B~64KB 16B 用段地址和段内偏移实现对1MB空间的寻址 用段地址和段内偏移实现对1MB空间的寻址 设置地址段寄存器指示段的首地址
支持多处理器系统; 支持多处理器系统; 片内没有浮点运算部件, 片内没有浮点运算部件,浮点运算由数学协处 理器8087支持(也可用软件模拟) 理器 支持(也可用软件模拟) 支持 注:80486DX以后的CPU均将数学协处理 器作为标准部件集成到CPU内部
8
二、8086CPU的内部结构
8086内部由两部分组成: 内部由两部分组成: 内部由两部分组成 执行单元(EU) 执行单元( ) 总线接口单元(BIU) 总线接口单元( )
2
指令预取队列(IPQ)
指令的一般执行过程: 指令的一般执行过程: 取指令 指令译码 读取操作数 执行指令 存放结果
3
串行工作方式:
8086以前的CPU采用串行工作方式: 8086以前的CPU采用串行工作方式: 以前的CPU采用串行工作方式

第2章8086CPU的原理

第2章8086CPU的原理

(2)DS:数据段段寄存器,在数据段寻址时,与BX、SI、DI 合用。 (3)SS:堆栈段段寄存器,在栈操作时,与SP合用对栈顶数据进 行存取。在对栈中数据存取时与BP合用。 (4)ES:附加数据段段寄存器,在串操作时,存放目标串,与DI 合用。也可以用来存放数据。 2 标志寄存器FLAGS FLAGS是16位寄存器,包含9个标志,标示CPU的状态和某些操 作特性。
其中:AH、AL寄存分别表示AX寄存器的高8位和低8位,如下图: 1Fh AH 50h AL AX
AH=1Fh AL=50h AX=1F50h
但AH和AL都可以作为8位的寄存器独立使用, 如 MOV BL,AH 指令执行后, BL=1Fh
其余的8位寄存器如上所述。 8086的4个数据寄存器,通常都是用来存储供CPU处理的数据或 保存结果的,但在特定的场合里,它们又有自己的特殊用途。 (1)AX、AL---累加器:在乘法、除法和符号扩展指令中,有一 个操作数预先放在累加器中;在I/O操作时,通过它CPU与接口交 换数据。累加器也是所有寄存器中执行速度最快的。
IF 中断允许标志: IF 的值决定CPU是否响应外部的可屏蔽中断。 当 IF=1 时,CPU可以响应外部的可屏蔽中断,否则相反。IF 的值 由专门的指令控制,即:STI 指令置 IF=1 CLI 指令置 IF=0 当 IF=0 时,CPU不能屏蔽非屏蔽中断和CPU内部中断。 TF 跟踪标志: TF=1 时,CPU进入单步程序执行方式,TF的控 制没有专用的指令,要通过其它方式设置。
图(3.5)8086/8088的引脚信号
最小方式 用于单个微处理器组成的系统,由8086产生系 统所需的全部控制信号。 最大方式 用于多处理器系统中,8086不直接提供控制信 号 。

2.第二章 8086系统结构

2.第二章 8086系统结构

总线接口部件BIU SI:(Source Index):SI含有源地址意思,产 生有效地址或实际地址的偏移量。 总线接口部件BIU内部设 有四个16位段地址寄存器: DI:(Destination Index):DI含有目的意思, 代码段寄存器CS、数据段寄 产生有效地址或实际地址的偏移量。 存器DS、堆栈段寄存器SS和 播 音 附加段寄存器ES,一个16位 : 指令指针寄存器IP,一个6字 16位字利用了9位。 标志分两类: 节指令队列缓冲器,20位地 状态标志(6位):反映刚刚完成的操作结果情况。 址加法器和总线控制电路。
志(结果低8 CLC(复位), 位1的个数 CMC(求反)。 为偶数 PF=1) 。
15
14
13
12
11
10
9
8
3
2
1
0
OF DF IF TF
SF ZF
AF
PF
CF
DF:方向标志 .DF=1使串 操作按减地址进行,DF=0按 增地址进行。指令: CLD(复位), STD(置位).
TF:陷阱标志或单步操作标志 IF:中断允许 标志 图 2-6 8086CPU标志寄存器 目录
通用寄存器(数据寄存器) : AX 累加器 BX 基址寄存器 CX 计数寄存器 DX 数据寄存器
SP BP SI DI
IP
地址指针和变址寄存器: SP 堆栈指针寄存器 BP 基址指针寄存器 SI 源变址寄存器 控制寄存器: DI 目的变址寄存器 IP 指令指针寄存器
FLAGS
CS DS SS ES
段寄存器: CS 代码段寄存器 DS 数据段寄存器 SS 堆栈段寄存器 ES 附加段寄存器
EU 总线 忙
执行1 忙
执行2 忙

第2章 80888086系统硬件结构

第2章   80888086系统硬件结构

OF DF IF TF SF ZF
AF
PF
CF
条件码标志:
OF SF ZF CF AF PF

控制标志:
方向标志
系统标志位:
IF 中断标志 TF 陷阱标志
溢出标志 DF 符号标志 零标志 进位标志 辅助进位标志 奇偶标志
第2章 8088/8086系统硬件结构
程 序 状 态 字 ( ) PSW
第2章 8088/8086系统硬件结构
第2章 8088/8086系统硬件结构
1、存储器地址的分段
•每个段的最大长度可达
64KB,段内地址是连续的、 线性增长的,允许单个逻辑 段在整个1MB存储空间内浮 动。
•可以有相连的段(如:C和D
段)、不相连的段(如:A和B 段)以及相互重叠的段(如:B 和C段)
第2章 8088/8086系统硬件结构
第2章 8088/8086系统硬件结构
2、段寄存器(CS、 DS、 SS、 ES、 FS、GS)
存放段地址,确定一个段的的起始地址. 用途各不相同:
代码段(CS):存放当前正在运行的程序 数据段(DS):存放当前运行程序所用的数据 ,或串处理指令
中的源操作数
堆栈段(SS):定义堆栈(后进先出)的所在区域 附加段(ES):附加的数据区,或串处理指令中的目的操作数
-)
79000H
2450H
即SP值为2450H.
第2章 8088/8086系统硬件结构
2.1.2 8088CPU的两大功能结构
8088CPU的两大功能结构为总线接口单元 BIU(BusInterfaceUnit)和指令执行单元 EU(ExecutionUnit),如图2.4所示。 U单元负责指令的执行,由算术逻辑单元ALU、标 志寄存器F、通用寄存器及EU控制器等组成,主要进 行16位的各种运算及有效地址的计算。EU不与计算机 系统总线(外部总线)相关,而从BIU中的指令队列取得

第2章 8086微处理器1

第2章  8086微处理器1

例3 已知逻辑地址,指出下列存储器地址的段内偏 移量、段基址、物理地址。 1)1123H:0015H 2)1124H:0005H
一个物理地址可以对应多个逻辑地址
例如:设当前有效的代码段、数据段、堆栈段、附加段的段基址分别 为1066H、251BH、900CH、F001H,则各段在内存中的分配情况如 图2-5所示。
VCC AD15 A16/S3 A17 /S4 A18 /S5 A19 /S6 (HIGH) (SSO) MN/MX RD RQ/GT0 (HOLD) RQ/GT1 (HLDA) LOCK (WR) S2 (IO/M) S1 (DT/R) S0 (DEN) QS0 (ALE) QS1 (INTA) TEST READY RESET
六个状态标志含义如下: 1.进位标志CF或C 运算结果的最高位产生进位或借位时,则 CF=1,否则CF=0(字节操作D7、字操作D15、 双字D31) 2.奇偶标志PF 运算结果中1的个数为偶数,则PF=1,否 则PF=0 3.辅助进位标志AF 运算时当 D3 向D4 有进位或有借位时 ,则 AF=1,否则AF=0
DS:数据段寄存器 ES:附加段寄存器
数据段和附加段用来存放操作数
SS:堆栈段寄存器
堆栈段用于存放返回地址,保存寄存器内容, 传递参数
3、控制寄存器

IP:指令指针寄存器,其内容为下一条 要执行的指令的偏移地址 FLAGS:标志寄存器
状态标志:存放运算结果的特征
控制标志:控制某些特殊操作
四、存储器寻址

物理地址
8086:20根地址线,可寻址220(1MB)
个存储单元,1M字节的存储器单元编 址为00000H~FFFFFH(16进制) CPU送到AB上的20位的地址称为物理 地址

微机原理与接口技术第2章8086系统结构

微机原理与接口技术第2章8086系统结构

第二章8086体系结构与80x86CPU1.8086CPU由哪两部分构成?它们的主要功能是什么?答:8086CPU由两部分组成:指令执行部件(EU,Execution Unit)和总线接口部件(BIU,Bus Interface Unit)。

指令执行部件(EU)主要由算术逻辑运算单元(ALU)、标志寄存器FR、通用寄存器组和EU控制器等4个部件组成,其主要功能是执行指令。

总线接口部件(BIU)主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或I/O端口读取操作数参加EU运算或存放运算结果等。

2.8086CPU预取指令队列有什么好处?8086CPU内部的并行操作体现在哪里?答:8086CPU的预取指令队列由6个字节组成,按照8086CPU的设计要求,指令执行部件(EU)在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。

从速度上看,该指令队列是在CPU 内部,EU从指令队列中获得指令的速度会远远超过直接从内存中读取指令。

8086CPU内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。

3.8086CPU中有哪些寄存器?各有什么用途?答:指令执行部件(EU)设有8个16位通用寄存器AX、BX、CX、DX、SP、BP、SI、DI,主要用途是保存数据和地址(包括内存地址和I/O端口地址)。

其中AX、BX、CX、DX主要用于保存数据,BX可用于保存地址,DX还用于保存I/O端口地址;BP、SI、DI主要用于保存地址;SP用于保存堆栈指针。

标志寄存器FR用于存放运算结果特征和控制CPU操作。

BIU中的段寄存器包括CS、DS、ES、SS,主要用途是保存段地址,其中CS代码段寄存器中存放程序代码段起始地址的高16位,DS数据段寄存器中存放数据段起始地址的高16位,SS堆栈段寄存器中存放堆栈段起始地址的高16位,ES扩展段寄存器中存放扩展数据段起始地址的高16位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 微处理器系统结构
2.1 微处理器基本功能和结构 2.2 微处理器主要性能指标 2.3 INTEL8086/8088微处理器 2.4 8086/8088微处理器基本时序
2.1 微处理器基本功能和结构
微处理器是微型计算机的核心部件,也称为中央 处理单元,简称CPU(Central Processing Unit)。 它负责微型计算机中各部件的协调,完成指令的执行 和数据处理工作。其主要功能包括:
EU和BIU独立并行流水线工作,比8085串行操作提 高了运行速度。
取指令 取指令 取数据 取数据 取指令 存
3
结果
4
译码 1


1
译码 2


2
一、8086/8088 CPU的功能结构
2、8086/8088 CPU内部寄存器结构
8086内部寄存器有: 8个通用寄存器 4个段寄存器 1个指令指针寄存器 1个标志寄存器
两个独立的功能部件:执行部件EU、总线接口部件 BIU。
EU单元
AH AL AX BH BL BX CH CL CX DH DL DX
SP BP SI DI
EU
ALU


标志寄存器
地∑ 址
BIU单元

法 器
CS DS
SS
ES
总线 控制 逻辑
内存 接口
IP
指令队列
123456
一、8086/8088 CPU的功能结构
数据总线宽度:描述微处理器与外界交换数据能力的一个重 要指标。微处理器每一根数据线表示一个比特数据,数据线 越多则表示每一次与外界交换的数据位数就越多,相对交换 速度就越快。
微处理器的主要性能指标
高速缓冲容量和级数:高速缓存(Cache)是设置在微处理 器内部的一种存储器。由于其存取速度要比内存高一个数量 级,可以达到与微处理器部件同频的工作速度,因此利用高 速缓存可以提高处理器的工作效率。Cache根据速度和位置 不同可分两级或三级。
生产工艺:不同的生产工艺对CPU的功耗和工作频率有较 大影响,生产工艺越先进CPU功耗越低,工作频率越高
其它性能指标:包括特殊指令扩展、超线程、流水线、乱序 执行、动态执行,以及新一代CPU的双核、多核技术等体系 结构方面的技术。而且体系结构对现代微处理器性能的影响 已经超过制造工艺对计算机性能的影响,成为现代微处理器 设计的重要技术指标。
一、8086/8088 CPU的功能结构
通用寄存器
8086的16位通用寄存器是:
AX
BX CX DX
SI
DI BP SP
其中前4个数据寄存器都还可以分成高8位和低8位两 个独立的寄存器
8086的8位通用寄存器是:
AH
BH CH DH
总线接口部件BIU(Bus Interface Unit)
组成:
① 段寄存器(CS、DS、ES、SS)
地 址

② 指令指针(IP)
加 法
③ 地址加法器、总线控制 ④ 指令队列 功能:
器 CS DS SS ES
总线 控制 逻辑
① 外部总线连接,完成EU所需的总线 操作,计算形成20位的物理地址。
IP
寄存器组RS(Register Set):是CPU中暂存数据和指令的 逻辑部件,用于临时存放数据或地址。
除此以外,微处理器常常还包括一定的高速缓存部件。
2.2 微处理器的主要性能指标
微处理器的性能对微型计算机系统起着举足轻 重的影响,微型计算机的很多性能指标都与微处理 器性能直接相关。
微处理器的主要性能指标包括:工作频率、处 理器字长、前端总线速度、地址总线宽度、数据总 线宽度、高速缓冲容量和级数、生产工艺等。
指令队列
② 从内存储器中取出指令送指令队列 1 2 3 4 5 6 排队。
③ 按EU的要求读写内存、I/O中的操 作数。
一、8086/8088 CPU的功能结构
执行部件EU(Execution Unit) 组成:
① 通用寄存器 ② 标志寄存器
AH AL AX BH BL BX CH CL CX DH DL DX
SP BP SI DI
③ ALU
EU
④ EU控制 功能:
ALU
标志寄存器
控 制
指令队列
① 从指令队列获得指令,译码、执行指令操作。 1 2 3 4 5 6
② 译码指令、执行算术运算、逻辑运算。
③ 向BIU提供操作数的内存或I/O端口的地址。
④ 管理标志寄存器和指令操作数。
一、8086/8088 CPU的功能结构
指令控制:指令执行顺序 操作控制:各部件功能协调 时间控制:各信号时序 数据加工:算术/逻辑运算
微处理器基本结构
微处理器基本结构包括控制器、运算器、寄存器组等部件。
运算器ALU(Arithmetic Logic Unit):计算机的核心功能 部件,主要负责算术、逻辑运算等数据加工功能。
控制器CU(Control Unit):计算机的指挥控制中心,负责 按照一定顺序自动读取程序中的指令,将指令译码后产生相 应控制信号,控制各部件协同工作。
前端总线速度:前端总线指主板芯片组中的北桥芯片与CPU 之间传输数据的通道,因此也称为CPU的外部总线。 它反映 CPU与内存和显示部件之间交换数据的能力,前端总线速度 越快,CPU与外界交换信息的能力越好,有利于提高整体处 理速度。
微处理器的主要性能指标
地址总线宽度:描述微处理器可以访问物理存储空间的重要 指标。微处理器通过地址总线表达其访问数据所在的地址, 地址总线越多则表示该微处理器可以给出的物理地址数越多, 可以连接的物理内存就越大。
2.3 8086/8088 微处理器
一、8086/8088 CPU的功能结构
16位处理器、40脚的DIP(双列直插)封装。 时钟频率:5MHz、8MHz和10MHz。 20条地址线,有220=1024KB=1MB 寻址能力。
缺口
40脚
1脚
20脚
一、8086/8088 CPU的功能结构
1、 8086/8088 CPU的功能结构
微处理器的主要性能指标
工作频率:包括主频、外频、倍频。主频是微处理器的工作 频率,反映微处理器工作节奏的快慢;外频是指系统总线的 工作频率,它反映外部设备的工作速度;倍频是指微处理器 工作频率对系统总线工作频率的倍数。三者之间的关系可以 用下式表示:
主频=外频×倍频 处理器字长:反映微处理器单次数据处理能力,字长越长表示 单次处理数据能力越强。
相关文档
最新文档