高中数学常见题型解法归纳-函数的定义域常见求法
【数学】高中数学求函数值域的7类题型
求函数值域题型和方法一、函数值域基本知识1.定义:在函数()y f x =中,与自变量的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。
2.确定函数的值域的原则①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合;②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。
二、常见函数的值域,这是求其他复杂函数值域的基础。
函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。
一般地,常见函数的值域:1.一次函数()0y kx b k =+≠的值域为R.2.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦.,3.反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 4.指数函数()01xy aa a =>≠且的值域为{}0y y >.5.对数函数()log 01a y x a a =>≠且的值域为R.6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型题型一:一次函数()0y ax b a =+≠的值域(最值)1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ;2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。
若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像确定函数的值域。
题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)1、二次函数)0()(2≠++=a c bx ax x f , 当其 定义域为R 时,其值域为()()224 044 04ac b y a aac b y a a ⎧-≥>⎪⎪⎨-⎪≤<⎪⎩2、二次函数)0()(2≠++=a c bx ax x f 在区间[],m n 上的值域(最值)首先判定其对称轴2bx a=-与区间[],m n 的位置关系 (1)若[],2b m n a -∈,则当0a >时,()2bf a-是函数的最小值,最大值为(),()f m f n 中较大者;当0a <时,()2bf a-是函数的最大值,最大值为(),()f m f n 中较小者。
高考代数常见题型
高考代数常见题型代数是高中数学的重要组成部分,也是高考数学考试中的重点内容。
代数考察的是数的运算和关系,其中包括方程与不等式、函数与方程组、数列与数学归纳法等。
本文将介绍高考代数常见题型,帮助同学们全面理解和掌握代数的考点。
一、一元一次方程与一元一次不等式一元一次方程是指只含有一个未知数的一次方程,常用的解法有等式两边加减相同的数或者两边乘除相同的非零数。
如:1. 解方程3x+2=8x-10。
解:将未知数x的项集中,得3x-8x=-10-2,化简得-5x=-12,再除以-5,得x=12/5。
2. 解方程2x-3(2-x)=7。
解:将方程中的括号展开,得2x-6+3x=7,合并同类项得5x=13,再除以5,得x=13/5。
一元一次不等式是指包含一个未知数的一次不等式,比较常见的解法有绘制数轴和运算性质法。
如:1. 解不等式2x-1<5。
解:首先将不等式转化为等价不等式2x-1-1<5-1,即2x<4。
再除以2,得x<2。
2. 解不等式x-3>-7。
解:首先将不等式转化为等价不等式x-3+3>-7+3,即x>-4。
二、一元二次方程与一元二次不等式一元二次方程是指含有一个未知数的二次方程,常见的解法有因式分解、配方法、求根公式等。
如:1. 解方程x²-5x+6=0。
解:首先尝试因式分解,得(x-2)(x-3)=0,根据乘积为零的性质可知x-2=0或者x-3=0。
解得x=2或者x=3。
2. 解方程2x²-3x-2=0。
解:使用求根公式x=(-b±√(b²-4ac))/2a,其中a=2,b=-3,c=-2。
代入公式得x=(3±√(9+16))/4,化简得x=(3±√25)/4,即x=(3±5)/4。
解得x=2或者x=-1/2。
一元二次不等是指包含一个未知数的二次不等式,求解方法和一元一次不等式类似。
重难点2-1 函数值域的常见求法8大题型(解析版)
重难2-1 函数值域的求法8大题型函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
一、求函数值域的常见方法1、直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2、逐层法:求12(())n f f f x 型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3、配方法:配方法是二次型函数值域的基本方法,即形如“(0)x y ax bx c a =++≠”或“2[()]()(0)y a f x bf x c a =++≠”的函数均可用配方法求值域;4、换元法:利用换元法将函数转化为易求值域的函数,常用的换元有 (1)y cx d=+或cx d y ax b +=+的结构,可用cx d t +=”换元;(2)y ax b cx d =+±+,,,a b c d 均为常数,0,0a c ≠≠),可用“cx d t +=”换元;(3)22y bx a x =-型的函数,可用“cos ([0,])x a θθπ=∈”或“sin ([,])22x a ππθθ=∈-”换元;5、分离常数法:形如(0)ax by ac cx d+=≠+的函数,应用分离常数法求值域,即2()ax b a bc ady d cx d c c x c+-==+++,然后求值域;6、基本不等式法:形如(0)by ax ab x =+>的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a b +≥求函数的值域(或最值)时,应满足三个条件:①0,0a b >>;②a b+(或ab )为定值;③取等号的条件为a b =,三个条件缺一不可;7、函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如0)y ax b ac =+<的函数可用函数单调性求值域;(2)形如by ax x=+的函数,当0ab >时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解; 当0ab <时,by ax x=+在(,0)-∞和(0,)+∞上为单调函数,可直接利用单调性求解。
高中数学常见题型解法归纳 函数的零点个数问题的求解方法
高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
高中函数题型及解题方法
高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型在高考中占据了相当大的比重,因此掌握函数的相关知识和解题方法对于学生来说是非常重要的。
本文将针对高中函数题型及解题方法进行详细介绍,希望能够帮助学生们更好地理解和掌握函数的相关知识。
一、基本概念。
在学习函数的题型和解题方法之前,首先需要对函数的基本概念有一个清晰的认识。
函数是一个特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常用f(x)来表示,其中x是自变量,f(x)是因变量。
函数的定义域、值域、奇偶性、单调性等概念也是学习函数题型的重点内容。
二、常见题型及解题方法。
1. 函数的性质题。
这类题型主要考察对函数的性质的理解和掌握程度,包括奇偶性、单调性、最值等。
解题方法主要是通过对函数图像的分析和导数的运算来确定函数的性质。
2. 函数的运算题。
函数的运算题主要考察对函数的基本运算和复合函数的理解,包括函数的加减乘除、复合函数等。
解题方法主要是根据函数的定义进行运算,注意化简和合并同类项。
3. 函数方程题。
函数方程题主要考察对函数方程的解法和函数图像的性质分析。
解题方法主要是根据方程的特点进行分类讨论,通过代数和图像的方法解题。
4. 函数的应用题。
函数的应用题是高中数学中比较常见的题型,主要考察对函数的应用和解决实际问题的能力。
解题方法主要是通过建立函数模型,利用函数的性质解决实际问题。
三、解题技巧。
1. 熟练掌握函数的基本性质和运算法则,对于函数的定义域、值域、奇偶性、单调性等要有清晰的认识。
2. 多画函数的图像,通过观察函数的图像来理解函数的性质和解题方法。
3. 多做函数题的练习,掌握不同类型函数题的解题技巧和方法。
4. 注意函数题与实际问题的结合,理解函数在实际问题中的应用。
总结。
通过对高中函数题型及解题方法的介绍,希望能够帮助学生们更好地掌握函数的相关知识和解题方法。
函数的定义域常见的三种类型
函数的定义域常见的三种类型ywq334452010级分类:理工学科被浏览105次2013.06.28jmmn9938668采纳率:59% 10级 2013.06.29函数定义域的三类求法一、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。
二. 给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得。
三. 给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围。
求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f〔g(x)〕的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;求定义域的规则及类型的演讲稿leya027 10级分类:其他被浏览63次 2014.01.20检举高中课题研究:定义域的规则及类型。
第一次演讲,我急需一篇关于“定义域的规则及类型”的演讲稿。
希望大家给我找一篇……一般来讲,只要给一个自变量的值,能求出因变量,那么该自变量的值就属于定义域。
定义域与非定义域的主要区别是,在非定义域内的值,无法求出函数值。
常见的就是,求值过程中遇到一元二次方程无解,或分母为零。
高一数学函数的定义域与值域的常用方法
高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
例1. 已知2211()x x x f x x +++=,试求()f x 。
解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。
故得:2()1,1f x x x x =-+≠。
说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。
例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫ ⎪⎝⎭,则得:()222845333x f x x x x =+--+。
(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例4. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。
【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。
高一数学函数题型及解题技巧总结
高一数学函数题型及解题技巧总结一、基本概念函数是数学中非常重要的概念,它描述了输入和输出之间的关系。
在高中数学课程中,函数是一个重要的内容,学生需要掌握函数的基本概念以及相关的解题技巧。
1.1函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到一个输出值。
数学上通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数可以用一个公式、一个图象、一个表格或者一段描述来表示。
1.2函数的分类函数可以根据其性质进行分类,常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
每种函数都有其特定的表达式和性质。
1.3函数的性质函数有很多性质,例如定义域、值域、奇偶性、单调性、周期性等。
学生需要了解这些性质,以便在解题中灵活运用。
二、题型及解题技巧在高一数学中,关于函数的题型多种多样,接下来我们将针对常见的函数题型及解题技巧进行总结。
2.1函数的图象和性质这种题型要求学生根据函数的表达式画出函数的图象,并分析其性质。
解题时,学生需要掌握函数的图象特征,如开口方向、交点、极值点等,可以通过计算一阶导数和二阶导数来判断函数的单调性和凹凸性。
2.2函数的定义域和值域在这类题型中,学生需要根据函数的表达式确定其定义域和值域。
解题时,可以通过分析函数的分式和根式部分来确定函数的定义域和值域,需要注意的是,对于分式函数,分母不能为0。
2.3函数的性质和变化这类题型要求学生根据函数的表达式和图象,分析其性质和变化规律。
解题时,学生可以通过变换函数的参数来研究函数的性质和图象的变化。
2.4函数的应用函数在实际问题中有着广泛的应用,如匀速运动、生长模型、利润最大化等。
在解决这类问题时,学生需要将实际问题转化为数学模型,并根据函数的性质来解决问题。
2.5函数的求值与方程这类题型包括函数值的计算和方程的解法。
解题时,学生需要根据函数的表达式和条件,求出函数的值或解出方程。
在解决方程时,可以通过化简、配方、倒代入等方法来得到解。
函数的定义域与值域求法典型例题(解析版)
专题13:函数的定义域与值域求法典型例题(解析版)函数定义域的常见其一、已知函数解析式型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例1、求函数yx 2 2x 15的定义域。
x 3 82 x 5或x3 x 2x 15 0解:要使函数有意义,则必须满足即 x 5且x 11 x 3 8 0解得x 5或x 3且x 11即函数的定义域为x x 5或x 3且x 11 。
二、抽象函数型抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。
(一)已知f (x )的定义域,求f g (x ) 的定义域。
其解法是:已知f (x )的定义域是[a ,b ]求f g (x ) 的定义域是解a g (x ) b ,即为所求的定义域。
例2、已知f (x )的定义域为[ 2,2],求f (x 1)的定义域。
2解: 2 x 2, 2 x 1 2,解得 3 x 23即函数f (x 1)的定义域为x 3 x 3(二)已知fg (x ) 的定义域,求f (x )的定义域。
2其解法是:已知f g (x ) 的定义域是[a ,b ]求f (x )的定义域的方法是:a x b ,求g (x )的值域,即所求f (x )的定义域。
例3、已知f (2x 1)的定义域为[1,2],求f (x )的定义域。
解: 1 x 2, 2 2x 4, 3 2x 1 5。
即函数f (x )的定义域是x |3 x 5 。
三、逆向思维型即已知所给函数的定义域求解析式中参数的取值范围。
特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。
例4、已知函数ymx 2 6mx m 8的定义域为R 求实数m 的取值范围。
22分析:函数的定义域为R ,表明mx 6mx m 8 0,使一切x R 都成立,由x 项的系数是m ,所以应分m 0或m 0进行讨论。
高中数学专题:抽象函数常见题型解法
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。
例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。
二、求值问题例 3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。
三、值域问题例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。
解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。
若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。
由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有)]2([)2()2()22()(2≥==+=xf x f x f x x f x f下面来证明,对任意0)(≠∈x f R x ,设存在Rx ∈0,使得)(0=x f ,则)()()()0(0000=-=-=x f x f x x f f这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。
四、解析式问题例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1()(,求f (x )的解析式。
高一数学函数题型及解题技巧总结
高一数学函数题型及解题技巧总结在高一数学中,函数是一个非常重要的概念,它在数学中的地位非常重要。
函数不仅在数学理论中占有重要地位,而且在实际生活中也有很多应用。
因此,学好函数对于高一学生来说至关重要。
下面我们将从函数的基本概念入手,逐步介绍高一数学中常见的函数题型及解题技巧。
一、函数的基本概念首先,我们来了解一下函数的基本概念。
在数学中,函数是一种对应关系,它可以将某一个集合中的每个元素映射到另一个集合中的一个元素上。
通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。
在函数中,自变量的取值范围叫做定义域,因变量的取值范围叫做值域。
函数又可以分为初等函数和非初等函数两大类。
初等函数包括多项式函数、指数函数、对数函数、三角函数和反三角函数等;非初等函数包括幂函数、指数对数函数、三角反三角函数等。
二、高一数学中常见的函数题型1.多项式函数的性质题多项式函数是高中数学中的一个重要内容。
多项式函数的性质题一般包括函数的奇偶性、增减性、最值等。
解这类题目首先要对函数的解析式进行化简,然后根据化简后的函数性质进行分析,找出相应的结论。
解题技巧:1)对于奇偶性的判断,可以利用f(-x)和f(x)来进行判断。
如果f(-x)=f(x),则是偶函数,如果f(-x)=-f(x),则是奇函数。
2)对于增减性的判断,可以通过求导或者利用一阶导数的符号进行判断。
3)对于最值的求解,可以通过求导或者利用函数的性质进行判断。
2.指数函数与对数函数的相关题型指数函数与对数函数是初等函数中的重要内容。
它们在数学中有着重要的应用,如在增长与衰减、复利等方面。
指数函数与对数函数的相关题型主要包括函数的性质、指数方程与对数方程的解法、幂函数与对数函数的互化等。
这类题目的解题关键在于熟练掌握指数对数函数的性质以及运用性质解题。
解题技巧:1)对于指数函数与对数函数的性质题,可以利用函数的定义以及性质进行分析求解。
2)对于指数方程与对数方程的解法,可以利用换底公式、对数的性质等进行求解。
高中三角函数常见题型与解法
三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。
( 1)常值代换:特别是用“ 1”的代换,如 1=cos 2θ +sin 2 θ=tanx · cotx=tan45 °等。
( 2)项的分拆与角的配凑。
如分拆项: sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α =(α + β)-β,β =-等。
2 2( 3)降次与升次。
即倍角公式降次与半角公式升次。
( 4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
( 5)引入协助角。
asin θ +bcos θ = a 2 b 2 sin(θ + ),这里协助角 所在象限由 a 、b 的符号确立,角的值由 tan = b确立。
a( 6)全能代换法。
巧用全能公式可将三角函数化成 tan的有理式。
22、证明三角等式的思路和方法。
( 1)思路:利用三角公式进行假名,化角,改变运算结构,使等式两边化为同一形式。
( 2)证明方法:综合法、剖析法、比较法、代换法、相消法、数学概括法。
3、证明三角不等式的方法:比较法、配方法、反证法、剖析法,利用函数的单一性,利用正、余弦函数的有界性,利用单位圆三角函数线及鉴别法等。
4、解答三角高考题的策略。
( 1)发现差别:察看角、函数运算间的差别,即进行所谓的“差别剖析”。
( 2)找寻联系:运用有关公式,找出差别之间的内在联系。
( 3)合理转变:选择适合的公式,促进差别的转变。
二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目种类多样,变化仿佛复杂,办理这种问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思想与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如1() ( ) 22 .也要注意题目中所给的各角之间的关系。
(完整版)高中数学知识点笔记
基本函数 --- 高中数学知识点笔记1. 函数解析式:)()(x f y b kx f y =⇔+=2. 函数的定义域:指x ,图像在x 轴上的影子有3种情况:分母≠0,平方根内≥0,对数真数>0解法:先列不等式组,解交集3. 函数的值域:指y ,图像在y 轴上的影子解法:利用函数单调性;图像法;均值不等式法4. 函数单调性单调递增:函数在区间上,图像由左向右上升,x 变大,y 变大;x 变小,y 变小;即同向变化 单调递减:函数在区间上,图像由左向右下降,x 变大,y 变小;x 变小,y 变大;即反向变化 会由图像求单调区间;单调区间有多个时,用逗号分隔5. 比较大小的方法利用函数的单调性6. 函数求值;分段函数问题注意x 的取值范围;不同题型的解法7. 函数图像:会画图像利用函数图像,求定义域、值域、单调区间8. 二次函数:0,2≠++=a c bx ax y图像:开口方向,对称轴,顶点坐标,韦达定理,单调区间,值域9. 一次函数:b kx y +=会画图像:会求单调区间、定义域、值域10. 反比例函数:xk y = 会画图像:会求单调区间、定义域、值域 11. 对勾函数:0,>+=k x k x y 会画图像,会求单调区间、定义域、值域12. 函数零点方程0)(==x f y 的根;图像与x 轴的交点;求法:正负值之间必有零点13. 指数指数与根式的互化,指数为负数时的含义,指数运算公式14. 指数函数时,单调递减;时,单调递增;当;当1010,,1,0,)(<<>>∈≠>=a a y R x a a a x f x 会画图像,会判断单调性、定义域、值域15. 对数对数和指数的互化,对数的求值 运算公式:,log log log ,log log log yx y x xy y x aa a a a a =-=+x a x m x x a m a a ==log ,log log 16. 对数函数时,单调递减;时,单调递增;当;当101,0,1,0,log )(<<>∈>≠>=a a R y x a a x x f a 会画图像,会判断单调性、定义域、值域集合 --- 高中数学知识点笔记1. 集合和元素用描述法表示集合,集合表示的含义,元素的分类,元素的特征表示常用集合的符号,集合与元素的关系,符号表示2. 集合之间的关系包含和包含于,子集和真子集,子集的个数,符号表示3. 集合的3种运算集合的交集、并集、补集运算,符号表示命题、充要条件、逻辑 --- 高中数学知识点笔记1. 命题4种命题形式:原命题、逆命题、否命题、逆否命题;判断命题的真假命题的否定,全称量词,特称量词, 符号表示;4种命题形式之间的真假关系2. 充分、必要条件若Q P ⇒,则P 是Q 的充分条件;若Q P ⇐,则P 是Q 的必要条件;3. 逻辑连接词:且、或、非命题的且、或、非运算。
新教材 人教A版高中数学必修第一册 第三章 函数概念与性质 知识点考点汇总及解题方法规律提炼
第三章函数概念与性质3.1.1.1函数的概念 (1)3.1.1.2函数概念的应用 (6)3.1.2.1函数的表示法 (10)3.1.2.2分段函数 (14)3.2.1.1函数的单调性 (21)3.2.1.2函数的最大(小)值 (25)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (35)3.3幂函数 (37)3.4函数的应用(一) (41)3.1.1.1函数的概念要点整理1.函数的概念(1)函数的定义设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)对应关系f:除解析式、图象表格外,还有其他表示对应关系的方法,引进符号f统一表示对应关系.温馨提示:(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)3.其他区间的表示题型一函数关系的判断【典例1】(1)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(2)设M={x|-2≤x≤2},N={y|0≤y≤2},函数y=f(x)的定义域为M,值域为N,对于下列四个图象,不可作为函数y=f(x)的图象的是( )[思路导引] 在“非空数集”A中“任取x”,在对应关系“f”作用下,B中“有唯一”的“数f(x)”与之“对应”,称f:A→B为集合A到集合B的一个函数.[解析](1)①对于A中的元素0,在f的作用下得0,但0不属于B,即A 中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.(2)由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,结合选项可知C中图象不表示y是x的函数.[答案](1)见解析(2)C(1)判断对应关系是否为函数的2个条件①A、B必须是非空数集.②A中任意一元素在B中有且只有一个元素与之对应.(2)根据图形判断对应是否为函数的方法①任取一条垂直于x轴的直线l.②在定义域内平行移动直线l.③若l与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.题型二用区间表示数集【典例2】把下列数集用区间表示,并在数轴上表示出来.(1){x|x≥3};(2){x|x<-5};(3){x|-4≤x<2或3<x≤5}.[思路导引] 用区间表示数集的关键是确定开、闭区间,含“或”的数集用符号“∪”连接区间.[解](1){x|x≥3}用区间表示为[3,+∞),用数轴表示如图.(2){x|x<-5}用区间表示为(-∞,-5),用数轴表示如图.(3){x|-4≤x<2或3<x≤5}用区间表示为[-4,2)∪(3,5],用数轴表示如图.应用区间时的3个注意点(1)区间是数集,区间的左端点小于右端点.(2)在用区间表示集合时,开和闭不能混淆.(3)用数轴表示区间时,用实心点表示包括在区间内的端点,用空心圈表示不包括在区间内的端点.[针对训练]3.已知全集U=R,A={x|-1<x≤5},则∁U A用区间表示为__________________.[解析]∁U A={x|x≤-1或x>5}=(-∞,-1]∪(5,+∞).[答案](-∞,-1]∪(5,+∞)4.用区间表示不等式{x|x2-x-6≥0}的解集为______________________.[解析]不等式x2-x-6=(x-3)(x+2)≥0,解得x≥3或x≤-2,所以不等式的解集为{x|x≤-2或x≥3}=(-∞,-2]∪[3,+∞).[答案](-∞,-2]∪[3,+∞)题型三求函数的定义域【典例3】求下列函数的定义域.(1)y=2+3x-2;(2)y=(x-1)0+2x+1;(3)y =3-x ·x -1; (4)y =(x +1)2x +1--x 2-x +6.[思路导引] 函数定义域即是使自变量x 有意义的取值范围.[解] (1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎨⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎨⎧x +1≠0,-x 2-x +6≥0,即⎩⎨⎧x ≠-1,x 2+x -6≤0,即⎩⎨⎧x ≠-1,(x +3)(x -2)≤0,解得-3≤x ≤2且x ≠-1,即函数定义域为{x |-3≤x ≤2且x ≠-1}.[变式] (1)将本例(3)中“y =3-x ·x -1”改为“y =(3-x )(x -1)”,则其定义域是什么?(2)将本例(3)中“y =3-x ·x -1”改为“y =3-xx -1”,则其定义域是什么?[解] (1)要使函数有意义,只需(3-x )(x -1)≥0,解得1≤x ≤3,即定义域为{x |1≤x ≤3}.(2)要使函数有意义,则⎩⎨⎧3-x ≥0,x -1>0,解得1<x ≤3,即定义域为{x |1<x ≤3}.求函数定义域的几种类型(1)若f(x)是整式,则函数的定义域是R.(2)若f(x)是分式,则应考虑使分母不为零.(3)若f(x)是偶次根式,则被开方数大于或等于零.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.3.1.1.2函数概念的应用要点整理1.常见函数的定义域和值域2.函数的三要素由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域.3.相同函数值域是由定义域和对应关系决定的,如果两个函数的定义域和对应关系相同,我们就称这两个函数是同一函数.两个函数如果仅对应关系相同,但定义域不同,则它们不是相同的函数.题型一同一函数的判断【典例1】下列各组式子是否表示同一函数?为什么?(1)f(x)=|x|,φ(t)=t2;(2)y=x2,y=(x)2;(3)y=1+x·1-x,u=1-v2;(4)y=(3-x)2,y=x-3.[思路导引] 两个函数表示同一函数的关键条件是定义域相同,对应关系一致.[解](1)f(x)与φ(t)的定义域相同,又φ(t)=t2=|t|,即f(x)与φ(t)的对应关系也相同,∴f(x)与φ(t)是同一函数.(2)y=x2的定义域为R,y=(x)2的定义域为{x|x≥0},两者定义域不同,故y=x2与y=(x)2不是同一函数.(3)y=1+x·1-x的定义域为{x|-1≤x≤1},u=1-v2的定义域为{v|-1≤v≤1},即两者定义域相同.又∵y=1+x·1-x=1-x2,∴两函数的对应关系也相同.故y=1+x·1-x与u=1-v2是同一函数.(4)∵y=(3-x)2=|x-3|与y=x-3的定义域相同,但对应关系不同,∴y=(3-x)2与y=x-3不是同一函数.判断两个函数为同一函数的方法判断两个函数是否为同一函数,要先求定义域,若定义域不同,则不是同一函数;若定义域相同,再化简函数的解析式,看对应关系是否相同.题型二求函数值和值域【典例2】(1)已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).①求f(2)、g(2)的值;②求f[g(3)]的值.(2)求下列函数的值域:①y=x+1,x∈{1,2,3,4,5};②y=x2-2x+3,x∈[0,3);③y =2x +1x -3; ④y =2x -x -1.[思路导引] (1)代入法求值;(2)结合解析式的特征选择适当的方法求值域. [解] (1)①∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. ②g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112. (2)①(观察法)∵x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.②(配方法)y =x 2-2x +3=(x -1)2+2, 由x ∈[0,3),可得函数的值域为[2,6). ③(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3, 显然7x -3≠0,∴y ≠2. 故函数的值域为(-∞,2)∪(2,+∞). ④(换元法)设x -1=t , 则t ≥0,且x =t 2+1.∴y =2(t 2+1)-t =2t 2-t +2=2⎝ ⎛⎭⎪⎫t -142+158.∵t ≥0,∴y ≥158. 故函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.(1)函数求值的方法①已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. ②求f [g (a )]的值应遵循由里往外的原则. (2)求函数值域常用的4种方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.题型三求抽象函数的定义域【典例3】 已知函数f (x )的定义域为[1,3],求函数f (2x +1)的定义域. [思路导引] 定义域是x 的取值范围,f (x )中的x 与f (2x +1)中的2x +1是相对应的.[解] 因为函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,所以2x +1∈[1,3],所以x ∈[0,1],即函数f (2x +1)的定义域是[0,1].[变式] (1)若将本例条件改为“函数f (2x +1)的定义域为[1,3]”,求函数f (x )的定义域.(2)若将本例条件改为“函数f (1-x )的定义域为[1,3]”,其他不变,如何求解?[解] (1)因为x ∈[1,3],所以2x +1∈[3,7],即函数f (x )的定义域是[3,7]. (2)因为函数f (1-x )的定义域为[1,3], 所以x ∈[1,3],所以1-x ∈[-2,0], 所以函数f (x )的定义域为[-2,0]. 由2x +1∈[-2,0],得x ∈⎣⎢⎡⎦⎥⎤-32,-12,所以f (2x +1)的定义域为⎣⎢⎡⎦⎥⎤-32,-12.两类抽象函数的定义域的求法(1)已知f(x)的定义域,求f[g(x)]的定义域:若f(x)的定义域为[a,b],则f[g(x)]中a≤g(x)≤b,从中解得x的取值集合即为f[g(x)]的定义域.(2)已知f[g(x)]的定义域,求f(x)的定义域:若f[g(x)]的定义域为[a,b],即a≤x≤b,求得g(x)的取值范围,g(x)的值域即为f(x)的定义域.3.1.2.1函数的表示法要点整理温馨提示:列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.题型一函数的表示法【典例1】某商场新进了10台彩电,每台售价3000元,试求售出台数x 与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.[思路导引] 把自变量与函数值的对应关系分别用表格、图象和数学表达式加以刻画.[解]①列表法③解析法:y=3000x,x∈{1,2,3,…,10}.理解函数的表示法的3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.题型二函数的图象【典例2】作出下列函数的图象并求出其值域.(1)y=2x,x∈[2,+∞);(2)y=x2+2x,x∈[-2,2].[思路导引] 通过“列表→描点→连线”作出函数图象,借助图象求出函数值域.[解](1)列表:画图象,当x∈[2,+∞)时,图象是反比例函数y=2x的一部分(图1),观察图象可知其值域为(0,1].(2)列表:(图2).由图可得函数的值域是[-1,8].描点法作函数图象的3个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图. (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象. (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心点.题型三函数解析式的求法【典例3】 (1)已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x )的解析式;(2)已知函数f (x +1)=x +2x +1,求f (x )的解析式; (3)已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,求f (x )的解析式.[思路导引] 求函数解析式,就是寻找函数三要素中的对应关系,即在已知自变量和函数值的条件下求对应关系的表达式.[解] (1)设f (x )=ax 2+bx +c (a ≠0), ∵f (0)=1,∴c =1.∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2ax +a +b . 又f (x +1)-f (x )=2x ,∴⎩⎨⎧2a =2,a +b =0.∴⎩⎨⎧a =1,b =-1.∴f (x )=x 2-x +1.(2)解法一:∵f (x +1)=x +2x +1=(x +1)2, ∴f (x )=x 2.又x +1≥1,∴f (x )=x 2(x ≥1). 解法二:令t =x +1,则x =(t -1)2. 由于x ≥0,所以t ≥1.代入原式有f (t )=(t -1)2+2(t -1)+1=t 2, 所以f (x )=x 2(x ≥1). (3)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,①∴将x 用1x替换,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,②联立①②得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解得f (x )=2x -1x(x ≠0),即f (x )的解析式是f (x )=2x -1x(x ≠0).[变式] (1)若将本例(2)中条件“f (x +1)=x +2x +1”变为“f ⎝ ⎛⎭⎪⎫1x +1=1x2-1”,则f (x )的解析式是什么?(2)若将本例(3)中条件“2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ”变为“f (x )-2f (-x )=9x +2”,则f (x )的解析式是什么?[解] (1)f ⎝ ⎛⎭⎪⎫1x +1=⎝ ⎛⎭⎪⎫1x +12-2⎝ ⎛⎭⎪⎫1x +1,所以f (x )=x 2-2x .因为1x ≠0,所以1x+1≠1,所以f (x )=x 2-2x (x ≠1).(2)由条件知,f (-x )-2f (x )=-9x +2, 则⎩⎨⎧f (x )-2f (-x )=9x +2,f (-x )-2f (x )=-9x +2,解得f (x )=3x -2.求函数解析式的3种常用方法(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式.如典例3(1).(2)换元法(有时可用“配凑法”):已知函数f [g (x )]的解析式求f (x )的解析式,可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f [g (x )]中求出f (t ),从而求出f (x ).如典例3(2).(3)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).如典例3(3).3.1.2.2分段函数要点整理1.分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.温馨提示:(1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎨⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.(3)分段函数的图象要分段来画. 题型一分段函数求值【典例1】已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (f (-2)))的值; (2)若f (a )=32,求a .[思路导引] 根据自变量取值范围代入对应解析式求值. [解] (1)∵-2<-1,∴f (-2)=2×(-2)+3=-1, ∴f [f (-2)]=f (-1)=2, ∴f (f (f (-2)))=f (2)=1+12=32.(2)当a >1时,f (a )=1+1a =32,∴a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,∴a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,∴a =-34>-1(舍去).综上,a =2或a =±22.(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求解.对于含有多层“f ”的问题,要按照“由内到外”的顺序,逐层处理.(2)已知函数值,求自变量的值时,要先将“f ”脱掉,转化为关于自变量的方程求解.题型二分段函数的图象【典例2】 (1)作出下列分段函数的图象:①y =⎩⎨⎧1x ,0<x <1,x ,x ≥1;②y =|x +1|.(2)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由B (起点)向点A (终点)运动.设点P 运动路程为x ,△ABP 的面积为y ,求:①y 与x 之间的函数关系式; ②画出y =f (x )的图象.[思路导引] (1)利用描点法分段作图;(2)先依据x 的变化范围求出关系式. [解] (1)①函数图象如图1所示.②y =|x +1|=⎩⎨⎧-x -1,x <-1,x +1,x ≥-1,其图象如图2所示.(2)①y =⎩⎨⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.②分段函数图象的画法(1)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.题型三分段函数的综合问题【典例3】 已知函数f (x )=|x -3|-|x +1|. (1)求f (x )的值域; (2)解不等式:f (x )>0;(3)若直线y =a 与f (x )的图象无交点,求实数a 的取值范围. [思路导引] 去掉绝对值符号,化简f (x ),再分段求解. [解] 若x ≤-1,则x -3<0,x +1≤0,f (x )=-(x -3)+(x +1)=4; 若-1<x ≤3,则x -3≤0,x +1>0,f (x )=-(x -3)-(x +1)=-2x +2; 若x >3,则x -3>0,x +1>0,f (x )=(x -3)-(x +1)=-4.∴f (x )=⎩⎨⎧4,x ≤-1,-2x +2,-1<x ≤3,-4,x >3.(1)-1<x ≤3时,-4≤-2x +2<4.∴f (x )的值域为[-4,4)∪{4}∪{-4}=[-4,4]. (2)f (x )>0,即⎩⎨⎧x ≤-1,4>0,①或⎩⎨⎧-1<x ≤3,-2x +2>0,②或⎩⎨⎧x >3,-4>0,③解①得x ≤-1,解②得-1<x <1,解③得x ∈∅.所以f (x )>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1). (3)f (x )的图象如图:由图可知,当a ∈(-∞,-4)∪(4,+∞)时,直线y =a 与f (x )的图象无交点.[变式] 若a ∈R ,试探究方程f (x )=a 解的个数.[解] 由例3(3)知y =f (x )的图象,作出直线y =a ,可以看出:当a =±4时,y =a 与y =f (x )有无数个交点;当-4<a <4时,y =a 与y =f (x )有且仅有一个交点;当a <-4或a >4时,y =a 与y =f (x )没有交点.综上可知:当a =±4时,方程f (x )=a 有无数个解. 当-4<a <4时,方程f (x )=a 有一个解. 当a <-4或a >4时,方程f (x )=a 无解.研究分段函数要牢牢抓住的2个要点(1)分段研究.在每一段上研究函数.(2)合并表达.因为分段函数无论分成多少段,仍是一个函数,对外是一个整体.题型四分段函数在实际问题中的应用【典例4】 某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y (℃)随时间x (h)变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =k x的一部分,请根据图中信息解答下列问题:(1)求y 与x 的函数关系式;(2)大棚内的温度为18℃时是否适宜该品种蔬菜的生长?(3)恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有多少小时?[思路导引] 利用待定系数法求出x 在每一段上的解析式,再分段研究. [解] (1)设线段AD 的解析式为y =mx +n (m ≠0), 将点A (2,20),D (0,10)代入, 得⎩⎨⎧2m +n =20n =10,解得⎩⎨⎧m =5n =10,∴线段AD 的解析式为y =5x +10(0≤x ≤2). ∵双曲线y =k x经过B (12,20), ∴20=k 12,解得k =240,∴BC 段的解析式为y =240x(12≤x ≤24).综上所述,y 与x 的函数解析式为: y =⎩⎪⎨⎪⎧5x +10(0≤x ≤2)20(2<x <12)240x (12≤x ≤24).(2)当x =18时,y =24018=403,由于403<15,∴大棚内的温度为18℃时不适宜该品种蔬菜的生长. (3)令y =15,当0≤x ≤2时,解5x +10=15,得x =1, 当12≤x ≤24时,解240x=15,得x =16.由于16-1=15(小时),∴恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有15小时.对于应用题,要在分析题意基础上,弄清变量之间的关系,然后选择适当形式加以表示;若根据图象求解析式,则要分段用待定系数法求出,最后用分段函数表示,分段函数要特别地把握准定义域的各个“分点”.3.2.1.1函数的单调性要点整理1.函数的单调性温馨提示:定义中的x1,x2有以下3个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.温馨提示:(1)函数的单调性是对定义域内某个区间而言的,它是函数的一个局部性质.(2)函数f(x)在定义域的某个区间D上单调,不一定在定义域上单调.如f(x)=x2等.(3)并非所有的函数都具有单调性,如f (x )= ⎩⎨⎧1,x 是偶数0,x 是奇数,它的定义域是N ,但不具有单调性.题型一函数单调性的判断与证明【典例1】 证明函数f (x )=x +4x在(-∞,-2)上是增函数.[思路导引] 设出∀x 1<x 2<-2,判定f (x 1)与f (x 2)的大小关系. [证明] ∀x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-4)x 1x 2.∵x 1<x 2<-2,∴x 1-x 2<0,x 1x 2>4,x 1x 2-4>0.∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).∴函数f (x )=x +4x在(-∞,-2)上是增函数.证明或判断函数单调性的方法步骤题型二求函数的单调区间【典例2】 求下列函数的单调区间: (1)f (x )=1x -1; (2)f (x )=|x 2-3x +2|.[思路导引] (1)先求出函数的定义域,再利用定义求解;(2)作出函数y =x 2-3x +2的图象,再将x 轴下方的图象翻折到x 轴上方,结合图象写出f (x )的单调区间.[解] (1)函数f (x )=1x -1的定义域为(-∞,1)∪(1,+∞), ∀x 1,x 2∈(-∞,1),且x 1<x 2,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1). 因为x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以函数f (x )在(-∞,1)上单调递减,同理函数f (x )在(1,+∞)上单调递减.综上,函数f (x )的单调递减区间是(-∞,1),(1,+∞). (2)f (x )=|x 2-3x +2|=⎩⎨⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2.作出函数的图象,如图所示. 根据图象,可知,单调递增区间是⎣⎢⎡⎦⎥⎤1,32和[2,+∞);单调递减区间是(-∞,1]和⎣⎢⎡⎦⎥⎤32,2.(1)求函数单调区间的2种方法①定义法:即先求出定义域,再利用定义法进行判断求解. ②图象法:即先画出图象,根据图象求单调区间. (2)求函数单调区间的注意点一个函数出现两个或两个以上的单调区间时,不能用“∪”连接两个单调区间,而要用“和”或“,”连接.题型三函数单调性的应用【典例3】 (1)已知函数f (x )=x 2-2(1-a )x +2在[4,+∞)上是增函数,求实数a 的取值范围.(2)已知y =f (x )在定义域(-∞,+∞)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.[思路导引] 二次函数的单调性由开口方向及对称轴确定,与函数值有关的不等式问题依据单调性转化为自变量的不等关系.[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的增区间是[1-a ,+∞). 又∵已知f (x )在[4,+∞)上是增函数, ∴1-a ≤4,即a ≥-3.∴所求实数a 的取值范围是[-3,+∞).(2)∵f (x )在R 上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,得a <23,∴a 的取值范围是⎝⎛⎭⎪⎫-∞,23.[变式] (1)若本例(1)条件改为“函数f (x )=x 2-2(1-a )x +2的单调递增区间为[4,+∞)”,其他条件不变,如何求解?(2)若本例(2)中“定义域(-∞,+∞)”改为“定义域(-1,1)”,其他条件不变,如何求解?[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的递增区间为[1-a ,+∞). ∴1-a =4,得a =-3. (2)由题意可知⎩⎨⎧-1<1-a <1,-1<2a -1<1.解得0<a <1.①又f (x )在(-1,1)上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,即a <23.②由①②可知,0<a <23,即所求a 的取值范围是⎝ ⎛⎭⎪⎫0,23.函数单调性的3个应用要点(1)二次函数的单调性由于只与对称轴及开口方向有关,因此处理起来较容易,只需结合图象即可获解.(2)已知函数的单调性求参数的取值范围的方法是:视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,通过与已知单调区间比较,求参数的取值范围.(3)需注意若一函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.3.2.1.2函数的最大(小)值要点整理 1.最大值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≤M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最大值.(2)几何意义:函数y =f (x )的最大值是图象最高点的纵坐标. 2.最小值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≥M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最小值.(2)几何意义:函数y =f (x )的最小值是图象最低点的纵坐标.温馨提示:(1)最大(小)值必须是一个函数值,是值域中的一个元素. (2)并不是每一个函数都有最值,如函数y =1x,既没有最大值,也没有最小值.(3)最值是函数的整体性质,即在函数的整个定义域内研究其最值. 题型一图象法求函数的最大(小)值【典例1】(1)已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.求f (x )的最大值、最小值;(2)画出函数f (x )=⎩⎨⎧-2x,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数的最小值.[思路导引] 作出函数f (x )的图象,结合图象求解. [解] (1)作出函数f (x )的图象(如图1).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1;当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.(2)f(x)的图象如图2所示,f(x)的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f(0)=-1.图象法求最大(小)值的步骤题型二利用单调性求函数的最大(小)值【典例2】已知函数f(x)=x+1 x .(1)证明:f(x)在(1,+∞)内是增函数;(2)求f(x)在[2,4]上的最值.[解](1)证明:设∀x1,x2∈(1,+∞),且x1<x2.则f(x1)-f(x2)=x1+1x1-x 2-1x2=(x1-x2)·⎝⎛⎭⎪⎫1-1x1x2=(x1-x2)(x1x2-1)x1x2.∵x2>x1>1,∴x1-x2<0,又∵x1x2>1,∴x1x2-1>0,故(x1-x2)·(x1x2-1)x1x2<0,即f(x1)<f(x2),所以f(x)在(1,+∞)内是增函数.∴当x∈[2,4]时,f(2)≤f(x)≤f(4).又f(2)=2+12=52,f(4)=4+14=174,∴f(x)在[2,4]上的最大值为174,最小值为52.函数的最值与单调性的关系(1)如果函数y=f(x)在区间(a,b]上是增函数,在区间[b,c)上是减函数,则函数y=f(x),x∈(a,c)在x=b处有最大值f(b).(2)如果函数y=f(x)在区间(a,b]上是减函数,在区间[b,c)上是增函数,则函数y=f(x),x∈(a,c)在x=b处有最小值f(b).(3)如果函数y=f(x)在区间[a,b]上是增(减)函数,则在区间[a,b]的左、右端点处分别取得最小(大)值、最大(小)值.题型三求二次函数的最大(小)值【典例3】(1)已知函数f(x)=3x2-12x+5,x∈[0,3],求函数的最大值和最小值.(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值.[思路导引] 找出f(x)的对称轴,分析对称轴与给定区间的关系,结合单调性求最值.[解] (1)函数f(x)=3x2-12x+5=3(x-2)2-7,函数f(x)=3(x-2)2-7的图象如图所示,由图可知,函数f(x)在[0,2)上递减,在[2,3]上递增,并且f(0)=5,f(2)=-7,f(3)=-4,所以在[0,3]上,f(x)max=f(0)=5,f(x)min =f(2)=-7.(2)∵函数图象的对称轴是x=a,∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min=⎩⎨⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.[变式] 本例(2)条件变为,若f (x )=x 2-2ax +2,当x ∈[2,4]时,f (x )≤a 恒成立,求实数a 的取值范围.[解] 在[2,4]内,f (x )≤a 恒成立, 即a ≥x 2-2ax +2在[2,4]内恒成立, 即a ≥f (x )max ,x ∈[2,4]. 又f (x )max =⎩⎨⎧18-8a ,a ≤3,6-4a ,a >3.①当a ≤3时,a ≥18-8a ,解得a ≥2,此时有2≤a ≤3. ②当a >3时,a ≥6-4a ,解得a ≥65,此时有a >3.综上有实数a 的取值范围是[2,+∞).求解二次函数最值问题的顺序(1)确定对称轴与抛物线的开口方向、作图. (2)在图象上标出定义域的位置. (3)观察单调性写出最值.题型四实际应用中的最值【典例4】 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎨⎧400x -12x 2,0≤x ≤400,80000,x >400.其中x 是仪器的月产量.(1)将利润表示为关于月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)[思路导引] 先将利润表示成关于x 的函数,再利用函数的单调性求最值. [解] (1)月产量为x 台,则总成本为(20000+100x )元,从而f (x )=⎩⎨⎧-12x 2+300x -20000,0≤x ≤400,60000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12(x -300)2+25000,当x =300时,f (x )max =25000;当x >400时,f (x )=60000-100x 是减函数,f (x )<60000-100×400=20000<25000.∴当x =300时,f (x )max =25000.即每月生产300台仪器时公司所获利润最大,最大利润为25000元.求解函数最大(小)值的实际问题应注意的2点(1)解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.(2)实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决.3.2.2.1函数奇偶性的概念要点整理 函数的奇偶性温馨提示:(1)奇偶性是函数的整体性质,所以判断函数的奇偶性应先明确它的定义域(对照函数的单调性是函数的局部性质,以加深理解).(2)奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.题型一函数奇偶性的判断【典例1】 判断下列函数的奇偶性: (1)f (x )=2-|x |;(2)f (x )=x 2-1+1-x 2; (3)f (x )=x x -1;(4)f (x )=⎩⎨⎧2x +1,x >0,-2x +1,x <0.[思路导引] 借助奇函数、偶函数的定义判断. [解] (1)∵函数f (x )的定义域为R ,关于原点对称, 又f (-x )=2-|-x |=2-|x |=f (x ), ∴f (x )为偶函数.(2)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,又∵f (-x )=-f (x ),f (-x )=f (x ),∴f (x )既是奇函数又是偶函数.(3)∵函数f (x )的定义域为{x |x ≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-2x)=1+2x=f(x);当x<0时,-x>0,f(-x)=1+(-2x)=1-2x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.判断函数奇偶性的2种方法(1)定义法(2)图象法题型二奇函数、偶函数的图象【典例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象.(2)写出使f(x)<0的x的取值集合.[思路导引] 根据奇函数图象特征作出函数图象,再求解.[解] (1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使f(x)<0的x的取值集合为(-2,0)∪(2,5).[变式] 若将本例中的“奇函数”改为“偶函数”,试画出在区间[-5,0]上的图象.[解] 因为函数f(x)是偶函数,所以y=f(x)在[-5,5]上的图象关于y轴对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.题型三利用函数的奇偶性求值【典例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;。
高中数学函数题的解题技巧
高中数学函数题的解题技巧高中数学函数题的解题技巧高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技巧是什么?下面是为大家整理的关于高中数学函数题的解题技巧,希望对您有所帮助!高中数学函数解题思路方法一观察法1.观察函数中的特殊函数;2.利用这些特殊函数的有界性,结合不等式推导出函数的值域方法二分离常数法1.观察函数类型,型如;2.对函数变形成形式;3.求出函数在定义域范围内的值域,进而求函数的值域方法三配方法1.将二次函数配方成;2.根据二次函数的图像和性质即可求出函数的值域方法四反函数法1.求已知函数的反函数;2.求反函数的定义域;3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域方法五换元法1.第一步观察函数解析式的形式,函数变量较多且相互关联;2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域数学函数题解题技巧1.函数值域常见求法和解题技巧函数的值域与最值是两个不同的概念,一般说来,求出了一个函数的最值,未必能确定该函数的值域,反之,一个函数的值域被确定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来常用的方法有:观察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在选择方法时,要注意所给函数表达式的结构,不同的结构选择不同的解法。
2.函数奇偶性的判断方法及解题策略确定函数的奇偶性,一般先考查函数的定义域是否关于原点对称,然后判断与的关系,常用方法有:①利用奇偶性定义判断;②利用图象进行判断,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以避免对自变量的繁琐的分类讨论。
高中数学中抽象函数的解法及练习
抽象函数问题有关解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学常见题型解法归纳-函数的定义域常见求法
【知识要点】
一、函数的定义域的定义
函数的定义域是指使函数有意义的自变量的取值范围.
二、求函数的定义域的主要依据
1、分式的分母不能为零.
2、偶次方根的被开方数的被开方数必须大于等于零,即中奇次方根的被开方数取全体实数,即中,.
3、指数函数的底数必须满足.
4、对数函数的真数必须大于零,底数必须满足.
5、零次幂的底数不能为零,即中.
6、正切函数的定义域是.
7、复合函数的定义域的求法
(1)已知原函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.
(2)已知复合函数的定义域为,求原函数的定义域:只需根据求出函数的值域,即得原函数的定义域.
8、求函数的定义域
一般先分别求函数和函数的定义域和,再求,则就是所求函数的定义域.
9、求实际问题中函数的定义域
不仅要考虑解析式有意义,还要保证满足实际意义.
三、函数的定义域的表示
函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上是集合的一种特殊表示形式.
四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法.
五、函数的问题,必须遵循“定义域优先”的原则.
研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】
【例1】求函数的定义域.
【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域.
【反馈检测1】求函数的定义域.
函数是由一些函数四则运算得到的,即函数的形式为型.
一般先分别求函数和的定义域和,再求,就是函数的定义
域.
【例2】求函数+的定义域.
【解析】由题得
所以函数的定义域为
【点评】(1)求函数的定义域,一般先求和函数的定义域和,再求,则就是所求函数的定义域.(2)该题中要考虑偶次方根的被开方数是非负数,对数函数的真数大于零,列不等式求函数的定义域时,必须考虑全面,不能漏掉限制条件.(3)解不等式
时,主要是利用余弦函数的图像解答.(4)求的解集时,只需给参数赋几个整数值,再通过数轴求交集.(5)注意等号的问题,其中只要有一个错误,整个解集就是错误的,所以要仔细认真.
【例3】求函数的定义域.
【点评】(1)该题中要考虑真数大于零,分式的分母不能为零,零次幂的底数不能为零,考虑要全面,不要遗漏.(2)求不等式的交集一般通过数轴完成.
【例4】求函数的定义域.
【解析】由题得
【点评】(1)求含有参数的函数的定义域时,注意在适当的地方分类讨论.(2)对于指数函数和对数函数,如果已知条件中,没有给定底数的取值范围,一般要分类讨论.
【反馈检测2】求函数的定义域.
利用抽象复合函数的性质解答:(1)已知原函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.(2)
已知复合函数的定义域为,求原函数的定义域:
只需根据求
出函数的值域,即得原函数的定义域.
【例5】求下列函数的定义域:
(1)已知函数的定义域为,求函数的定义域;
(2)已知函数的定义域为,求函数的定义域;
(3)已知函数的定义域为,求函数的定义域.
【点评】(1)已知原函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.第1小题就是典型的例子.(2)已知复合函数
的定义域为,求原函数的定义域:只需根据求出函数的值域,即得原函数
的定义域.第2小题就是典型的例子.(3)求函数的定义域,一般先分别求函数
和函数的定义域和,再求,则就是所求函数的定义域.
【反馈检测3】已知函数的定义域为,求函数的定义域.
【反馈检测4】若函数的定义域为,求函数的定义域.
【例6】用长为的铁丝编成下部为矩形,上部为半圆形的框架(如图所示).若矩形底边长为,求此框架围成的面积与关于的函数解析式,并求出它的定义域.
【解析】如图,
【点评】(1)求实际问题中函数的定义域,不仅要考虑解析式本身有意义,还要保证满足实际意义.(2)
该题中在考虑实际意义时,必须保证解答过程中的每一个变量都有意义,即,不能遗漏.
【反馈检测5】一个圆柱形容器的底部直径是,高是.现在以的速度向容器内注入某种溶液.求容器内溶液的高度关于注入溶液的时间的函数解析式,并写出函数的定义域和值域.
函数定义域的常见求法参考答案
【反馈检测1答案】
【反馈检测1详细解析】由题得
所以.
【反馈检测2答案】当时,函数的定义域为;当时,函数的定义域为.
【反馈检测3答案】
【反馈检测3详细解析】由题得,所以函数的定义域为. 【反馈检测4答案】
【反馈检测4详细解析】依题意知:解之得∴的定义域为
【反馈检测5答案】函数解析式为,函数的定义域为{|0≤≤},值域为{|0≤≤}. 【反馈检测5详细解析】向容器内注入溶液经历时间为秒后,容器中溶液的高度为.故秒后溶液的体
积为=底面积×高=π2=解之得:=又因为0≤x≤h 即0≤≤h 0≤t≤
,故函数的定义域为{|0≤≤},值域为{|0≤≤}.。