铁电陶瓷材料及应用

合集下载

铁电陶瓷材料的应用以及生产工艺之四

铁电陶瓷材料的应用以及生产工艺之四

铁电陶瓷材料的应用以及生产工艺之四铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。

可用于大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。

利用其热释电性,可制作红外探测器等。

也用于制造光阀、光调制器、激光防护镜和热电探测器等。

广泛应用于航天、军工、新能源产品。

这里介绍,主要是参考它的加工工艺,比如为固体电解质的加工提供一定的参考。

另一方面是顺便了解一下这特种陶瓷的用途。

室温研磨法固相反应制备铁电陶瓷粉末铁电陶瓷(Ferroelectric ceramics)是主晶相为铁电体的陶瓷材料,具有高的直流电阻率、相对低的电介质损耗角正切(0.1%~7%)、中等介电击穿强度(100~120kV/cm)以及非线性的电、机电、电光学特性,与普通绝缘材料(5~100)相比具有高的介电常数(200—10000)。

铁电陶瓷的优良性能使其广泛应用于工业和商业中,如高介电常数电容器、压电声纳和超声传感器、无线电和信息过滤器、热释电装置、医疗诊断传感器、正温度系数(PTC)传感器、超声马达和电光光阀等。

铁电陶瓷中存在孔隙时会使损耗角正切增大,且一些特殊应用如压电传感器和致动器的机械强度直接与材料的密度有关,因此很多应用中都需要全致密的铁电陶瓷(理论密度>95%)以获得最佳的性能。

铁电陶瓷的密度通常随烧结温度的升高而增大。

然而,含铅、铋铁电材料的烧结温度不宜过高,因为铅、铋易挥发,而且高温也会导致晶粒反常长大,损害铁电陶瓷的性能。

而目前主要使用细或超细粉末及辅助烧结来降低铁电陶瓷的烧结温度。

因此,制备致密且晶粒大小适当的铁电陶瓷尤其重要,探讨新的铁电陶瓷粉末的制备方法具有重要意义。

铁电陶瓷粉末的制备方法A:常规制备方法材料的性能与其加工方法密切相关,故铁电陶瓷粉末的合成方法对铁电陶瓷的显微结构、电学和光学性能有很大影响。

对氧化物原料进行固态反应可合成铁电陶瓷粉末,但由于晶粒相对粗大,因而需要较高的烧结温度来获得目标成分和预期性能的铁电陶瓷。

铁电材料的特性及应用综述

铁电材料的特性及应用综述

铁电材料的特性及应用综述孙敬芝(河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。

关键词:铁电材料;铁电性;应用前景C haracteristics and Application of FerroelectricmaterialSun Jingzhi( Materials Science and Engineering college, Hebei United University Tangshan 063009,China )Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market.Keywords: ferroelect ric materials Iron electrical development trend0前言晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。

2024年钛酸钡铁电陶瓷市场发展现状

2024年钛酸钡铁电陶瓷市场发展现状

钛酸钡铁电陶瓷市场发展现状引言钛酸钡铁电陶瓷是一种重要的电子陶瓷材料,具有优异的电学性能和优越的热稳定性,广泛应用于电子器件和无线通信领域。

本文将对钛酸钡铁电陶瓷市场的发展现状进行综述,并分析其市场前景。

钛酸钡铁电陶瓷的特点钛酸钡铁电陶瓷具有以下几个重要的特点: - 高介电常数和低介电损耗,使其在高频率电子器件中具有应用潜力; - 温度稳定性好,能够适应复杂的工作环境; - 高压驱动性能,适用于电荷存储器和压电传感器等领域; - 高饱和极化电压,使其在无线通信设备中具备优势。

钛酸钡铁电陶瓷市场规模及发展趋势根据市场研究报告,钛酸钡铁电陶瓷市场规模逐年扩大,并呈现出以下几个发展趋势:1. 电子器件领域的应用增加随着电子器件市场的不断扩大,对高性能电子陶瓷材料的需求逐渐增加。

钛酸钡铁电陶瓷以其出色的电学性能和稳定性,被广泛应用于电容器、滤波器、谐振器等电子器件中。

2. 无线通信设备市场的快速发展无线通信设备市场的快速发展带动了对钛酸钡铁电陶瓷的需求增长。

钛酸钡铁电陶瓷在射频滤波器、天线、谐振器等无线通信设备中具有重要的应用,如5G技术的普及将进一步推动钛酸钡铁电陶瓷市场的增长。

3. 新兴应用领域的开拓随着科技的进步和新兴应用的不断涌现,钛酸钡铁电陶瓷在医疗设备、汽车电子、航空航天等领域也开始得到关注和应用。

这些新兴应用领域的开拓将进一步推动钛酸钡铁电陶瓷市场的发展。

钛酸钡铁电陶瓷市场面临的挑战虽然钛酸钡铁电陶瓷市场发展势头良好,但仍面临一些挑战:1. 生产成本高钛酸钡铁电陶瓷的生产工艺复杂,所需原材料价格昂贵,导致生产成本较高。

这给陶瓷生产企业带来一定的压力,并限制了市场的进一步扩大。

2. 技术创新与研发投入不足目前,一些先进的钛酸钡铁电陶瓷材料制备技术尚未得到广泛采用,存在一定的技术创新和研发投入不足的问题。

这限制了钛酸钡铁电陶瓷市场的进一步发展。

3. 市场竞争激烈随着钛酸钡铁电陶瓷市场的规模不断扩大,竞争也越来越激烈。

电容器陶瓷-低频(铁电)

电容器陶瓷-低频(铁电)

长,a,b轴略有缩短,c/a ≈1.01。该温度
范围沿c轴出现自发极化呈现铁电性。
钛酸钡晶胞与自发极化图
四方相BaTiO3
四方相十分重要,因为它存在的温度区 间(0~120℃)正是材料的使用温度。
铁 电 陶 瓷
立方相转变为四方相 时,a、b轴收缩,c轴 伸长,使c轴的O2-和 Ti4+发生位移,产生 极化,形成偶极子。
基本概念1. 铁电体
介电晶体在某温度范围内可以自发极化(介电常数很
高),而且极化强度可以随外电场反向而反向。同铁磁体具有
磁滞回线一样,把具有电滞回线的晶体称为铁电体。 虽然叫铁电体,但这些晶体并不含有铁。 铁电性(ferroelectricity)是指在一定温度范围内具有
自发极化,在外电场作用下,自发极化能重新取向,而且电位移
铁电陶瓷的特性决定了它的用途:
• 利用其高介电常数,可以制作大容量的电容器、高 频用微型电容器、高压电容器、叠层电容器和半导 体陶瓷电容器等,电容量可高达0.45µF/cm2。 • 利用其介电常数随外电场呈非线性变化的特性,可 以制作介质放大器和相移器等。 • 利用其热释电性,可以制作红外探测器等。 • 利用其压电性可制作各种压电器件。 • 此外,还有一种透明铁电陶瓷,其光学效应可用于 制造光阀、光调制器、激光防护镜和热电探测器等。
钛离子处于氧八面体中,
两个氧离子间的空隙为:4.01-2× 1.32= 1.37
钛离子的直径:2× 0.64= 1.28
结果分析:
氧八面体空腔体积大于钛离子体积,给钛离子位 移的余地。
较高温度时,热振动能比较大,钛离子难于在偏 离中心的某一个位臵上固定下来,接近六个氧离子的 几率相等,晶体保持高的对称性,自发极化为零。

铁电陶瓷的应用

铁电陶瓷的应用

铁电陶瓷的应用铁电陶瓷是一种特殊的陶瓷材料,具有铁电性质,能够在电场的作用下产生电极化,因此在许多领域都有广泛的应用。

下面将就铁电陶瓷在电子产品、医疗领域、能源行业和航空航天领域的应用进行详细介绍。

一、电子产品领域铁电陶瓷可用于电子产品中的压电元件、传感器和微机电系统等方面。

在压电元件中,铁电陶瓷能够在电场的作用下产生变形,因此可用于制造压电换能器,如压电陶瓷谐振器、压电陶瓷声波传感器等,广泛应用于手机、电脑、无线通信设备等电子产品中。

铁电陶瓷的压电性质也使其成为一种优秀的传感器材料,可用于制造加速度传感器、压力传感器等,应用于汽车、航空航天等领域。

在微机电系统中,铁电陶瓷可以作为微型压电马达、微型压电致动器等微型机电设备的材料,有望在微机电系统领域发挥重要作用。

二、医疗领域铁电陶瓷在医疗领域的应用主要体现在超声诊断设备和超声治疗设备中。

铁电陶瓷通过其压电效应可以将电能转化为机械能,被应用于超声探头中,用于超声成像、超声检查等医学诊断手段。

在超声治疗设备中,铁电陶瓷也可用于制造超声振荡器、超声换能器等设备,用于进行超声治疗、超声碎石等医学治疗手段。

三、能源行业在能源行业中,铁电陶瓷可以用于制造压电发电装置、压电储能装置等设备。

通过铁电陶瓷的压电效应,可以将机械能转化为电能,因此可以应用于压电发电装置中,例如压电陶瓷发电装置、压电陶瓷振动发电装置等,用于收集环境中的振动能量、压力能量、声波能量等,实现能源的收集和转化。

铁电陶瓷也可以作为储能装置的材料,用于制造高效的压电式储能装置,可以在电能较少的地方储存能量,为一些特殊场合提供电能支持。

四、航空航天领域在航空航天领域,铁电陶瓷的应用主要体现在航空航天制导系统、主动噪音控制系统等方面。

通过铁电陶瓷的压电效应,可以实现超高精度的航空制导系统,例如利用压电陶瓷制造的压电陶瓷马达、压电陶瓷致动器等机电装置,可以实现航空器舵面的微小调整和控制。

铁电陶瓷也可以用于制造主动噪音控制系统中的压电换能器、压电陶瓷传感器等,通过其压电特性调整和控制飞机、航天器的噪音和振动,提高航空航天器的舒适性和性能稳定性。

铁电陶瓷材料的应用

铁电陶瓷材料的应用
3 梁立梅 谭咏梅,浅谈现代功能陶瓷的发展,Vol.27,2001,142-143 摘 要 现代功能陶瓷的特点是品种多、价格低、应用广、功能全、技术高、 更新快。功能陶瓷在现代陶瓷中占据主导地位。功能陶瓷今后在性能方面会 向着高效能、高可靠性、低损耗、多功能、超高功能以及智能化方向发展。
4 欧阳伟 黄尚宇 ,电磁成形技术及其在功能陶瓷行业,Vol,NO.27,2006,237242
2铁电陶瓷及薄膜的制备
3 铁电陶瓷平板显示技术的特点
2 铁电陶瓷及铁电发射
用于铁电发射的铁电陶瓷材料主要是一些锆 钛酸铅透明陶瓷(PZT)和掺镧的锆钛酸铅透明陶瓷 (PLZT)等,这类陶瓷内部的电畴(即极性分子)经极 化后趋向一致,表现出铁电性能。
铁电发射平板显示器由铁电陶瓷板(膜)、背 电极、栅电极、荧光粉层和电路控制系统等组成 (图1)。铁电陶瓷(膜)可以是经预先极化的铁电陶 瓷,也可以是未经极化的PZT、PLZT陶瓷[2]。
电磁成形技术作为高能、高效率技术用在粉末近终成形方面有着传统成形方法 不能比拟的优越性,在功能陶瓷行业有巨大的
应用价值。本文阐述了电磁成形的基本原理和电磁粉末压制,介绍了电磁成形 技术在功能陶瓷行业的应用及前景。
近年来, 欧美及日本等国科学界都在日益关注和 研究一种新型的平板显示技术——铁电陶瓷平板显示 器。它较好地解决了(FED)技术中的阴极制作工艺复 杂的问题, 同时, 在许多性能上也有所改善。
摘要
1 铁电陶瓷平板显示技术就是利用一些铁电陶 瓷材料所拥有的铁电发射性能制成电子发射 阴极, 代替场致发射平板显示器中的微尖端 场发射阵列, 较好地解决了(FED)技术中的阴 极制作工艺复杂的问题.
摘 要 本文评述了各类显示器件的现的发展作了预测。

压电效应原理及在陶瓷方面的应用

压电效应原理及在陶瓷方面的应用

压电效应原理及在陶瓷方面的应用粉体一班郭开旋1103011026内容摘要:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。

当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。

当作用力的方向改变时,电荷的极性也随之改变。

相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。

压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷,是信息时代的新型材料压电陶瓷是功能陶瓷中的一种。

关键词:压电效应、正压电效应、逆压电效应、原理、应用、陶瓷材料、压电陶瓷、铁电陶瓷、功能陶瓷、新型材料、电极化一、压电效应的原理:压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。

如果压力是一种高频震动,则产生的就是高频电流。

而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。

也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。

压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。

例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。

1.压电效应的发现1880年皮埃尔·居里和雅克·居里兄弟发现电气石具有压电效应。

1881年,他们通过实验验证了逆压电效应,并得出了正逆压电常数。

1984年,德国物理学家沃德马·沃伊特(德语:Woldemar V oigt),推论出只有无对称中心的20中点群的晶体才可能具有压电效应。

2.压电材料压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。

可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。

利用其热释电性,可以制作红外探测器等。

也可用于制造光阀、光调制器、激光防护镜和热电探测器等。

广泛应用于航天、军工、新能源产品。

这里介绍的目的,主要是参考它的加工工艺,比如为固体电解质的加工提供参考。

另一方面是顺便了解一下这特种陶瓷的用途。

一般性描述:铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。

铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。

其电性能:高的抗电压强度和介电常数。

在一定温度范围内(-55~+85℃)介电常数变化率较小。

介电常数或介质的电容量随交流电场或直流电场的变化率小。

铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外加电场呈非线性变化。

利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性,其具有很高的应用前景。

铁电陶瓷的特性决定了它的用途。

利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。

钛酸钡铁电陶瓷的导热系数

钛酸钡铁电陶瓷的导热系数

钛酸钡铁电陶瓷的导热系数
钛酸钡(Barium Titanate,通常缩写为BaTiO3)是一种铁电陶瓷材料,具有铁电性质,可用于电子器件和压电应用。

钛酸钡的导热系数通常取决于温度和晶体结构,以下是其导热系数的一般性质:
1.导热系数:钛酸钡的导热系数通常在室温下约为4-5 W/(m·K)。

这意味着钛酸钡对热的传导能力相对较低,使其在高温下或需
要高导热性能的应用中可能不够理想。

2.温度依赖性:钛酸钡的导热系数通常会随温度的变化而有所不
同。

一般来说,温度升高可能会导致导热系数略微增加。

需要注意的是,钛酸钡的导热性能通常不是其主要特点。

相反,它的主要用途是作为铁电材料,具有良好的电学性质,例如压电性和介电性能。

在电子器件中,钛酸钡通常用于压电传感器、电容器和陶瓷电容器等应用。

在这些应用中,电学性能是首要考虑因素,而导热性能通常处于次要地位。

如果您需要更详细的导热性能数据,特别是在特定温度范围内的数值,请参考相关的材料性能数据库或与制造商联系,以获取更准确的信息。

不同厂家的材料性能可能有所不同。

pzt和pt陶瓷的热释电效应与晶格参数的关系

pzt和pt陶瓷的热释电效应与晶格参数的关系

pzt和pt陶瓷的热释电效应与晶格参数的关系
热释电效应是指在温度变化下,物体表面电荷分布的改变,从而产生电势差的现象。

铁电陶瓷材料在热释电效应方面具有很好的应用前景,可以用于传感器、电源和设备控制等领域。

PZT和PT陶瓷是铁电陶瓷中应用广泛的两种材料。

它们的铁电性质与晶格参数密切相关。

本文将介绍PZT和PT陶瓷的热释电效应与晶格参数的关系。

PZT陶瓷的晶格参数是指晶体的晶格常数,通常用来描述物质的结构和性质。

PZT陶瓷是一种四方相铁电陶瓷,其晶格参数与热释电效应密切相关。

在PZT陶瓷中,热释电系数与电介质常数、铁电极化强度和温度有关。

晶格参数对这些参数的影响是很深远的。

与PZT陶瓷相比,PT陶瓷的晶格结构更为简单,其晶格参数也更易于确定。

PT陶瓷是一种钙钛矿型铁电陶瓷,其晶格参数与热释电效应的关系也已经得到了广泛的研究。

研究表明,PT陶瓷的热释电系数随着晶格常数a、b、c的增大而增大,与PZT陶瓷的情况类似。

但与PZT陶瓷不同的是,PT陶瓷的铁电极化强度随着晶格常数的增大呈现先增大后降低的趋势,也就是存在一个临界晶格常数,超过这个值以后铁电极化强度会逐渐降低。

铁电材料的应用

铁电材料的应用

铁电材料的应用一、什么是铁电材料铁电材料是一类具有铁电性质的材料,其特点是在外加电场下会出现极化现象,即正负电荷分离并形成极。

铁电材料广泛应用于传感器、存储器、压电元件等领域。

二、铁电材料的种类1. 铁酸钛(PZT):是最常用的铁电材料之一,具有良好的压电效应和介电常数,在声学和振动传感器等领域得到广泛应用。

2. 铌酸锂(LiNbO3):具有高的光学非线性系数和优异的光学性能,在光通信和激光技术中被广泛应用。

3. 铅镁钽酸锆(PMN-PT):具有极高的压电系数和介电常数,在超声成像等领域有着广泛的应用前景。

4. 氧化锶钡(BSO):具有光学非线性效应,在激光技术中被广泛应用。

三、铁电材料的应用1. 传感器:由于铁电材料具有良好的压电效应和介电常数,因此可以制成各种传感器,如声学传感器、压力传感器、温度传感器等。

铁电材料的高灵敏度和高稳定性使其在工业自动化和医疗设备等领域得到广泛应用。

2. 存储器:铁电材料具有非挥发性存储性能,可以制成非易失性存储器。

相比于闪存和DRAM等存储器,铁电存储器具有更高的速度、更低的功耗和更长的寿命。

3. 压电元件:铁电材料具有良好的压电效应,在机械振动控制、超声波发生和检测等领域得到广泛应用。

例如,铁电陶瓷可以制成超声换能器,在医疗诊断和治疗中发挥重要作用。

4. 光学元件:铁电材料具有光学非线性效应,在激光技术中得到广泛应用。

例如,铌酸锂可以制成调制器、频率倍增器等元件,在光通信中起着重要作用。

四、铁电材料的未来发展随着科技的不断进步,人们对材料性能的要求也越来越高。

铁电材料具有良好的电学、光学、机械和热学性能,因此在各个领域都有着广泛的应用前景。

未来,随着新型铁电材料的不断涌现,铁电材料必将在更多领域得到应用,为人类社会的发展做出更大贡献。

铁电陶瓷材料的介电特性分析

铁电陶瓷材料的介电特性分析

铁电陶瓷材料的介电特性分析引言铁电陶瓷材料在现代科技领域发挥着重要作用。

它们具有独特的电学性质,被广泛应用于电子、通信、传感和储能等领域。

本文将对铁电陶瓷材料的介电特性进行深入分析,探讨其原理、性能以及应用前景。

第一部分:介电特性的原理铁电陶瓷材料的特殊性质来自于其中的铁电相。

铁电相是一种具有非线性介电特性的晶体结构,它能在外电场的作用下发生极化反转。

这种极化反转产生了瞬时的电输运,使得铁电材料具有介电性能。

第二部分:介电特性的性能1. 饱和极化:铁电陶瓷材料的饱和极化是指在极化电场达到一定程度后,材料的极化保持不变。

这是材料极化反转所能达到的最大程度。

饱和极化与材料的晶体结构有关,不同的晶体结构会影响饱和极化的大小和稳定性。

2. 介电常数:介电常数是表示材料对电场响应的能力的物理量。

铁电陶瓷材料的介电常数较高,可达到几百或几千,远大于一般材料的介电常数。

这使得铁电陶瓷材料在电容器、传感器等电子器件中有着广泛的应用。

3. 介电损耗:介电损耗是材料在外电场作用下发生能量损耗的程度。

铁电陶瓷材料的介电损耗较低,这使得它们在高频电子元器件中具有更好的性能,能够减少能量转化的损失。

第三部分:应用前景铁电陶瓷材料的介电特性使得它们在多个领域有着广泛应用的潜力。

1. 电子器件:铁电陶瓷材料可以用于制造电容器、电感器、传感器等电子器件。

这些器件在电子设备中发挥着重要作用,如存储器、振荡器、滤波器等。

2. 通信技术:铁电陶瓷材料的高介电常数和低介电损耗使其在无线通信领域有着广泛应用的前景。

它们可以用来制造各种储备器件,以提高通信系统的性能和稳定性。

3. 能量储存:铁电陶瓷材料的介电特性为能量储存提供了更好的选择。

它们可以应用于超级电容器、储能电池等领域,以提供高效、可靠的能量储存解决方案。

结论铁电陶瓷材料的介电特性是其在科技领域中得以广泛应用的重要基础。

通过对铁电陶瓷材料的介电特性进行深入分析,我们可以更好地理解其原理、性能和应用前景。

铁电材料的功能及应用前景

铁电材料的功能及应用前景

铁电材料的功能及应用前景随着科技的迅猛发展,新型材料的研究成为当前热点领域。

铁电材料是其中之一,它具有独特的电学、光学、磁学等性质,并且具有广泛的应用前景。

本文旨在探讨铁电材料的功能及应用前景。

一、铁电材料的基本性质铁电材料是指在无外界电场作用下具有极化性的材料。

它们具有如下特性:1. 巨电介电常数:铁电材料在外电场作用下能产生极化,极化电荷密度可高达$10^{12}$C/m²,极化状态下介电常数会增加几百倍。

2. 非线性光学效应:铁电材料呈现非线性光学效应,如二倍频、三倍频、四倍频等。

3. 逆铁电效应:铁电材料在电场作用下能发生极性倒转,这一性质称为逆铁电效应。

4. 压电效应:铁电材料在外力作用下会发生形变,并产生极化,这一性质称为压电效应。

铁电材料具有这些独特的性质,因此被广泛地研究和应用。

二、铁电材料的应用前景1. 铁电存储器铁电存储器是一种新型非挥发性存储器,它可以在断电的情况下保持存储信息。

铁电存储器具有速度快、容量大、数据稳定等优点,可以替代掉传统的闪存存储器。

目前,铁电存储器已经在智能手机、平板电脑等消费电子产品上得到了广泛的应用。

2. 铁电陶瓷铁电陶瓷具有良好的压电性能和介电性能,可以广泛应用于传感器、滤波器、调谐器等电子领域。

此外,铁电陶瓷的压电效应还可以应用于医疗领域,如超声波治疗、成像等。

3. 铁电液晶铁电液晶具有特殊的光学性能,它可以将光线分成两个波,这一特性被广泛应用于显示器、多媒体终端等领域。

4. 铁电玻璃铁电玻璃具有独特的光学、磁学性能,可以应用于光学信息存储、电磁屏蔽、光纤通信等领域。

5. 铁电探测器铁电探测器由于其灵敏度高、稳定性好等优点,可以广泛应用于安全监控、卫星通信等领域。

三、铁电材料的研究进展目前,铁电材料的研究已经进入到了新时代。

一方面,这一领域的学术研究十分活跃,研究人员们致力于发现新型铁电材料,探索铁电材料的新性质;另一方面,铁电材料的工业生产也在逐步扩大。

铁电材料的原理与应用

铁电材料的原理与应用

铁电材料的原理与应用1. 什么是铁电材料铁电材料是一种具有特殊电非线性特性的材料。

它们可以在外电场的作用下产生自发的电极化,即具有永久电偶极矩的能力。

铁电材料的电极化可以通过改变外电场的极性来反转,这意味着它们可以用来存储信息。

铁电材料的特殊性质使其在电子学、光学、磁学、声学等领域具有广泛的应用。

2. 铁电材料的结构铁电材料通常具有特殊的晶体结构,称为铁电相。

这些相具有不对称的晶格结构,使得材料具有永久的电偶极矩。

铁电材料的典型晶体结构包括钙钛矿结构、层状结构和柱状结构等。

3. 铁电材料的原理铁电材料的主要原理是由于其晶体结构不对称。

当外电场作用于铁电材料时,材料内部的正负电荷会被拉伸和挤压,从而产生极化。

这种极化可以通过改变外电场的方向来反转,从而实现信息存储和控制。

4. 铁电材料的应用铁电材料由于其独特的电非线性特性和可逆极化,广泛应用于各个领域。

以下是几个主要的应用领域:•电子存储器:铁电材料可以用来制造非挥发性存储器,如铁电随机存取存储器(FeRAM)和铁电闪存。

相比传统的存储器,铁电存储器具有更快的写入速度、较低的功耗、较长的数据保持时间等优势。

•传感器:由于铁电材料的电极化可以通过外电场控制,因此可以用作传感器。

铁电传感器常用于压力传感器、加速度传感器、温度传感器等领域。

•电子器件:铁电材料的极化可以通过改变外电场的方向来实现电学调控,因此可以用于制造电子器件,如可变电容器(varactor)和压电陶瓷传动器(piezoelectric ceramic transducer)。

•光学器件:铁电材料在光学领域也有广泛的应用。

铁电材料可以用于制造电光调制器、光开关和偏振器等光学器件。

•声学器件:铁电材料具有良好的压电性能,可以将机械能转化为电能,因此常用于制造声波传感器、声纳和换能器等声学器件。

•生物医学领域:铁电材料在生物医学领域的应用也在不断拓展。

铁电材料可用于制造生物传感器、药物输送器和组织工程等方面。

铁电陶瓷

铁电陶瓷

(3) 薄膜材料制备工艺。
(三)透明铁电陶瓷
一、透明铁电陶瓷的组成和相图
由于气孔相、晶界和杂质相的散射,一般多晶体陶瓷是不透 明的,通过适当的工艺,可以控制其显微结构和晶界性质,使
之成为透明陶瓷,一般 Al2O3 、 Y2O3 、 MgO、 BeO、 ThO等都
可制成透明陶瓷。 PLZT 既有透明性,又有铁电和压电性,其光学性质与铁电
•压电陶瓷超声波焊接
压电超声马达

世界上最小的马达(电机):重36mg,长5mm,直径 1mm,可作为人造心脏的驱动器。
压电喇叭应用实例
N506i V501T
•压电陶瓷超声清洗
•压电陶瓷探伤仪
•压电陶瓷测厚仪
•压电陶瓷加湿器
压电陶瓷变压器雷 达显示器高压电源
压电变压器电警棍
•压电陶瓷喷墨打印
的电场时,那些取向和电场方向一致的畴生长变大,而
其它方向的畴收缩变小,随后产生净极化强度。
铁电陶瓷与其它的电介质陶瓷不同,它的极化强度 不与施加电场成线性关系,并具有明显的滞后效应。
饱和极化强度Ps
剩余极化强度Pr 矫顽电场强度Ec
饱和电场强度Esat
铁电体的电滞回线
主要内容
一、 压电陶瓷
二、 热释电陶瓷
•压电陶瓷内部结构(电畴形成)
由于压电陶瓷极化后具有压电性,因此,构成陶瓷
的晶体必须是铁电体。铁电体从顺电相转变为铁电 相时具有自发极化,自发极化方向一致的区域成为 电畤。铁电畴之间的界面称为电畤壁。两电畤平行 排列的边界称为180°畴壁,两电畤互相垂直的边界
称为90°畴壁。
相邻两个畴中自发极化方向只能成90°角或180°角, 相应电畴交界面就分别称为90°畴壁和180°畴壁。

铁电陶瓷材料介绍及其应用

铁电陶瓷材料介绍及其应用


Interrelationship of piezoelectric and subgroups on the basis of symmetry
书山有路勤为径, 学海无涯苦作舟

2 铁电体的分类
• 按结晶学分类
(a) 氢键晶体,如 KDP, RS 结构特征:[PO4],软铁电体 (b) 双氧化物晶体,如 BT, PT, 结构特点:[TiO6], 硬铁电体
• 按极性轴数目分类
(a) 单轴铁电体, 如 RS, KDP, LN, 自发极化强度平行或反平行于极化轴 (b) 多轴铁电体, 如 BT, Cd2Nb2O7
• 按铁电相变时原子的运动特点分类:
(a) 有序-无序型 (b) 位移型
• 按Curie-Weiss常数C的大小分类:
第一类铁电体,C ~105 K ,大多属位移型 第二类铁电体,C ~ 103 K, 多属有序-无序型 第三类铁电体,C ~ 10K, 或称非本征铁电体,其铁电相起因于压电性与弹性不 稳定性的耦合
书山有路勤为径, 学海无涯苦作舟
•ro+rTi = 1.96Å
•O-Ti = 2.005Å

书山有路勤为径, 学海无涯苦作舟

• 热释电体 (Pyroelectrics): 具有自 发极化的晶体--极性晶 体
• 热释电效应: dPi = pi dT (i = 1,2,3)
• pi ----热释电系数, 单位 : C/m2.K

书山有路勤为径, 学海无涯苦作舟

•电畴运动
•电场/应力--极化反转
•极化(poling)过程:电 场诱导自发极化定向 排列--压电陶瓷的应用 基础
•电场诱导极化反转-铁电存储/电光应用

铁电陶瓷

铁电陶瓷

铁电陶瓷材料的研究现状尤欣欣(渭南师范学院化学与生命科学学院,08级材料化学1班)摘要:本文论述了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。

这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。

最后,对未来的研究与应用前景进行了展望。

关键词:铁电陶瓷;铁电性;钙钛矿;研究0前言铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。

铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。

其电性能:高的抗电压强度和介电常数。

在一定温度范围内(-55~+85℃)介电常数变化率较小。

介电常数或介质的电容量随交流电场或直流电场的变化率小。

铁电陶瓷的特性决定了它的用途。

利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。

利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。

利用其热释电性,可以制作红外探测器等。

利用其压电性可制作各种压电器件。

此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。

目前,全球铁电元件的年产值己达数百亿美元。

铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。

但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。

因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。

铁电材料的特性及应用综述

铁电材料的特性及应用综述

铁电材料的特性及应用综述孙敬芝(河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。

关键词:铁电材料;铁电性;应用前景C haracteristics and Application of FerroelectricmaterialSun Jingzhi( Materials Science and Engineering college, Hebei United University Tangshan 063009,China )Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market.Keywords: ferroelect ric materials Iron electrical development trend0前言晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体 • 热释电效应: dPi = pi dT
(i = 1,2,3)
• pi ----热释电系数, 单位: C/m2.K
• 大多数晶体的Ps随温度
的增加而下降,热释点 系数为负
• 在热释电体中, 高度极化状态, Ps 很高, 外场难以改变Ps方向 • 少数, 在 E 作用下 Ps 可重新定向----铁电体
• 3 铁电体的电畴结构
• Ps 退极化场 体系能量 (静电能+应变能) • 体系能量 电畴/畴壁 (静电能+应变能) 畴壁能
• 自由能极小值 电畴结构
• 畴结构受晶体结构的制约, 如:四方BaTiO3铁电相中存在两
类铁电畴:180o电畴和90o电畴
• 形成180o畴可以降低退极化能,形成非180o畴可以降低应变能
3, 3m, 6, 6mm
• Ps 可用电滞回线仪,或通过热释 电流测得
• 一般, 铁电体, Ps = 0.1-100C/cm2
• BaTiO3 Ps ~ 25 C/cm2
ro+rTi = 1.96Å
O-Ti = 2.005Å
• 热释电体 (Pyroelectrics): 具有自
发极化的晶体--极性晶
• 离子位移极化,
1210-13s,
10-
微波频段,
I = a3
• 偶极子取向极化,
= 02/3KT • 空间电荷极化
• 自发极化:在某些极性晶体中, E = 0 P, • 如: 在钙钛矿结构中,自发极化 起因于[BO6]中中心离子的位移 • 极性点群: 1, 2, m, 2mm, 4, 4mm,
场有关,即
n/t ∞ e-/E
新畴向前生长的速度v近似 为: v = (E-E0)
电畴运动 电场/应力--极化反转 极化(poling)过程:电场 诱导自发极化定向排
列--压电陶瓷的应用基
础 电场诱导极化反转--铁 电存储/电光应用
P o la riz a tio n re ve rs ib le
2 铁电体的分类
• 按结晶学分类
(a) 氢键晶体,如 KDP, RS 结构特征:[PO4],软铁电体 (b) 双氧化物晶体,如 BT, PT, 结构特点:[TiO6], 硬铁电体
• 按极性轴数目分类
(a) 单轴铁电体, 如 RS, KDP, LN, 自发极化强度平行或反平行于极化轴 (b) 多轴铁电体, 如 BT, Cd2Nb2O7
电畴结构
外电场作用下,180o畴的反 转不产生应变,而非180o畴 的反转则由于受到相邻畴的 约束而产生应变。
复杂的电畴结构
BaTiO3中的电畴结构
电畴壁结构
电畴壁两侧极化矢 量不连续
磁畴壁(Blபைடு நூலகம்ch壁)中磁
化矢量连续变化
电畴运动 成核与生长过程
BaTiO3 晶体的新畴 成核速率与外加电
第一章
铁电陶瓷材料及应用
Developmental History of Ferroelectrics
1940s 1950s Birth of ferroelectric ceramics (BaTiO3) PZT piezoelectric ceramics developed PTC effect in BaTiO3 ceramics 1960s Transparent electro-optic PLZT ceramics 1970s The engineered ferroelectric cpmposites 1980s PMN relaxor ceramics Ferroelectric films prepared by sol-gel techniques 1990s Strain-amplified actuators (Moonie devices, RAINBOW actuators) The integrated ferroelectric ilms on silicon Relaxor single-crystal materials Giant electrostrictive relaxor ferroelectric copolymers
Interrelationship of piezoelectric and subgroups on the basis of symmetry
32 S y m m e try Point Groups
21 Noncentrosymmetric
11 Centrosymmetric (non-piezoelectric)
• 铁电体 (Ferroelectrics) : Ps
E Ps 重行定向-----铁电体的最重要判 据------铁电体具有许多独特性质的主要原因 • 铁电体是热释电体的一个亚族 • 压电体 (Piezoelectrics) : 非对称中心
• 极性晶体一定不具对称中心
• Ferroelectrics < Pyroelectrics < Piezoelectrics < Dielectrics
Physical effect Applications
• High permittivity Capacitors (MLCs) • Polarization reversal Ferroelectric film memory • Pyroelectricity Pyroelectric sensors/detectors • Electrooptic effect Electrooptic devices • Piezoelectricity Piezoelectric/electrostrictive
§1.1 铁电体的基本物理特性
1 自发极化与铁电体
• 诱导极化:E≠0 P
基本介电关系
各向同性的线性电介质, P
= 0E, ---电介质的极化 率 D = 0E+P, 适用于各类电 介质 D = E, 适用于各向同性线 性电介质
电极化的微观机制
• 电子位移极化, 响应 时间10-1410-16s 见光频段, e a3 可
• 按铁电相变时原子的运动特点分类:
(a) 有序-无序型 (b) 位移型
• 按Curie-Weiss常数C的大小分类:
第一类铁电体,C ~105 K ,大多属位移型 第二类铁电体,C ~ 103 K, 多属有序-无序型 第三类铁电体,C ~ 10K, 或称非本征铁电体,其铁电相起因于压电性与弹性不 稳定性的耦合
20 P ie z o e le c tric P o la riz e d u n d e r s tre s s
10 P y ro e le c tric
S p o n ta n e o u s ly p o la riz e d
S u b g ro u p F e rro e le c tric S p o n ta n e o u s ly p o la riz e d
transducers
• PTC effect PTC thermistors
Typical ferroelectric ceramics
• • • • • • • • • BT Barium titanate PZT Lead zirconate titanate PLZT Lead lanthanum zirconate titanate PMN Lead magnesium niobate PT Lead titanate PZN Lead zinc niobate PZST Lead stannate zirconate titanate PZ Lead zirconate BST Barium strontium titanate
相关文档
最新文档