北师大版九年级数学上册教案全册

合集下载

北师大新版九年级数学上册教案带教学反思

北师大新版九年级数学上册教案带教学反思

北师大新版九年级数学上册教案带教学反思一、内容概览本章节是北师大新版九年级数学上册的一部分内容,围绕核心数学主题进行展开,涉及重要的数学概念和应用技能的培养。

教学计划结合教学目标以及学生的实际认知发展水平和学习需求精心设计,目的是提高学生解决实际问题的能力。

这一章的主题包括了代数、几何、概率与统计等关键数学领域的内容。

每个小节都将包含新的知识点和关键技能,并围绕这些知识点展开一系列的学习活动。

代数部分将涵盖二次方程、不等式及其求解技巧等。

几何部分将探讨复杂的几何图形及其性质,包括三角形、四边形、圆的性质等。

概率与统计也将是本章节的重要部分,包括数据的收集、整理和分析方法,以及概率的基本概念和计算方法等。

本章节还将注重数学知识的实际应用,通过解决一系列实际问题来加强学生对数学知识的理解和应用能力的提升。

在现实生活中运用数学知识解决实际问题,以及如何利用数学模型预测未来的趋势等。

这种实践导向的教学方式将极大地提高学生解决问题的能力。

每一课都会根据新课标的要求进行设计,保证知识深度、难度的递进关系处理得当,有助于提高学生综合分析问题解决问题的能力。

通过这个过程,学生可以深化对数学的理解和认识,进而对更高层次的数学学习产生积极的影响。

对于这一阶段的教学过程,教师会进行详细的反思和总结,以便更好地调整教学策略和方案。

1. 介绍北师大新版九年级数学上册的教学目标和重要性。

北师大新版九年级数学上册的教学目标是全面提升学生的数学素养和综合能力。

该教材紧扣国家课程标准,遵循学生的认知规律,注重知识与能力、过程与方法、情感态度与价值观的有机结合。

主要教学目标包括:知识与能力:使学生掌握初中数学的基本概念、原理和方法,包括代数、几何、概率统计等领域的基础知识。

注重培养学生的计算能力、推理能力、空间想象能力和数据处理能力等。

过程与方法:引导学生通过探究、合作、实践等多种方式学习,培养学生的自主学习能力、创新意识和实践能力。

九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)

九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)

第一章特殊平行四边形1.2 矩形的性质与判定(一)教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质.过程与方法:经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重难点、关键重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.教学准备教师准备:投影仪,收集有关矩形的图片,制作教具.学生准备:复习平行四边形性质,预习矩形这节内容.学法解析1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.2.知识线索:情境与操作→平行四边形→矩形→矩形性质.3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,•平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)[来源:21世纪教育网学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.[来源:学*科*网Z*X*问题2:既然它具有平行四边形的所有性质,•那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才∠α变为90°,可以得到∠α的补角也是90°,从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等。

北师大新版九年级数学上册教案带教学反思

北师大新版九年级数学上册教案带教学反思

北师大新版九年级数学上册教案带教学反思北师大新版九年级数学上册教案及教学反思第一章代数基础第一节:一元二次方程及其解法教学目标:一、理解一元二次方程的概念及一般形式。

二、掌握一元二次方程的求解方法(直接开平、因式分解、配方法等)。

三、培养学生的运算能力和问题解决能力。

教学过程:一、导入新课:通过复习线性方程,引导学生理解方程的重要性,并提出一元二次方程的概念。

二、新课讲解:讲解一元二次方程的概念、一般形式及解的性质。

通过实例演示各种解法。

三、课堂练习:学生独立解决一元二次方程问题,教师巡视指导。

四、布置作业:给学生布置相关习题,加强一元二次方程的解法练习。

教学反思:学生对一元二次方程概念的理解较为到位,但在应用因式分解法解决方程时存在困难,需要更多的实践训练。

在后续教学中,我将加强对因式分解法的讲解和练习。

第二节:二次函数及其性质教学目标:一、理解二次函数的定义和基本形式。

二、掌握二次函数的性质(开口方向、顶点、对称轴等)。

三、能应用二次函数的性质解决实际问题。

教学过程:一、导入新课:回顾一元二次方程,引出二次函数的概念。

二、新课讲解:讲解二次函数的定义、基本形式及性质。

展示二次函数的应用。

三、课堂互动:让学生观察不同形式的二次函数,总结其性质。

四、布置作业:让学生解决与二次函数相关的实际问题。

教学反思:学生对二次函数的基本概念理解较好,但在应用二次函数性质解决实际问题时存在困难。

在今后的教学中,我将更多地结合生活实际,帮助学生理解并应用二次函数。

第二章几何基础第一节:圆的基本性质教学目标:一、理解圆的概念和性质。

二、掌握圆的周长和面积计算。

三、能应用圆的基本性质解决实际问题。

教学过程:一、导入新课:通过生活中的圆形物体,引出圆的概念。

二、新课讲解:讲解圆的基本性质、周长和面积的计算方法。

展示圆的应用。

三、实践操作:让学生通过实际操作,加深对圆的认识和理解。

四、布置作业:让学生观察生活中的圆形物体,并尝试用所学知识解决实际问题。

北师大版九年级上册数学教案-相似三角形的性质

北师大版九年级上册数学教案-相似三角形的性质

4.7.第1课时相似三角形中的对应线段之比教学目标:(一)知识目标:经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质。

利用相似三角形的性质解决一些实际问题.(二)能力目标:培养学生的探索精神和合作意识;通过运用相似三角形的性质,增强学生的应用意识.在探索过程中发展学生类比的数学思想及全面思考的思维品质.(三)情感与价值观目标:在探索过程中发展学生积极的情感、态度、价值观,体现解决问题策略的多样性.三、教学过程分析本节课设计了五个教学环节:第一环节:探究相似三角形对应高的比.;第二环节:类比探究相似三角形对应中线的比、对应角平分线的比;第三环节:学以致用(相似三角形性质的应用);第四环节:课堂小结(初步升华所学内容);第五环节:布置作业。

第一环节:探究相似三角形对应高的比.引入语:在前面我们学习了相似三角形的定义和判定条件,知道相似三角形的对应角相等,对应边成比例。

那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将研究相似三角形的其他性质.内容:探究活动一:(投影片)在生活中,我们经常利用相似的知识解决建筑类问题.如图,小王依据图纸上的△ABC,以1:2的比例建造了模型房梁△A/B/C/,CD和C/D/分别是它们的立柱。

(1)试写出△ABC与△A/B/C/的对应边之间的关系,对应角之间的关系。

(2)△ACD与△A/C/D/相似吗?为什么?如果相似,指出它们的相似比。

(3)如果CD=1.5cm,那么模型房的房梁立柱有多高?(4)据此,你可以发现相似三角形怎样的性质?[生]解:(1)B A AB ''=C B BC ''=C A AC ''=21 /A A ∠=∠/,B B ∠=∠///,B C A ACB ∠=∠(2)△ACD ∽△A ′C ′D ′∵////,B A D C AB CD ⊥⊥∴0///90,=∠=∠C D A ADC∵/A A ∠=∠∴△ACD ∽△A ′C ′D ′(两个角分别相等的两个三角形相似) ∴//C A AC =//D A AD =//D C CD =21 (3)∵D C CD ''=21,CD=1.5cm ∴C /D /=3cm(4)相似三角形对应高的比等于相似比目的:通过学生熟悉的建筑模型房入手,激发学生学习兴趣,层层设问,引发学生思维层层递进,从相似三角形的最基本性质展开研究.使学生明确相似比与对应高的比的关系.效果:通过层层设问,引导学生剥开问题的表面看到了相似三角形的性质:对应高的比等于相似比.第二环节:类比探究相似三角形对应中线的比、对应角平分线的比过渡语:刚才我们利用相似的判定与基本性质得到了相似三角形中一种特殊线段的关系,即对应高的比等于相似比,相似三角形中除了高是特殊线段,还有哪些特殊线段?它们也具有特殊关系吗?下面让我们一起探究:内容:探究活动二:(投影片)如图:已知△ABC ∽△A ′B ′C ′,相似比为k ,AD 平分∠B AC ,A /D /平分∠B /A /C /;E 、E /分别为BC 、B /C /的中点。

北师大版九年级上册数学教案

北师大版九年级上册数学教案

北师大版九年级上册数学教案北师大版九年级上册数学教案1学习目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题学习过程一、温故知新:(学生活动)同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?二、自主学习:自学教材P90---P93,思考下列问题:1、什么叫圆周角?圆周角的两个特征: 。

2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。

通过圆周角的概念和度量的方法回答下面的问题.(1)一个弧上所对的圆周角的个数有多少个?(2).同弧所对的圆周角的度数是否发生变化?(3).同弧上的圆周角与圆心角有什么关系?3、默写圆周角定理及推论并证明。

4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?三、典型例题:例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC 为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。

例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?四、巩固练习:1、(教材P93练习1)解:2、(教材P93练习2)3、(教材P93练习3)证明:4、(教材P95习题24.1第9题)五、总结反思:达标检测1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于( ).A.140°B.110°C.120°D.130°(1) (2) (3)2.如图2,∠1、∠2、∠3、∠4的大小关系是( )A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠23.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.130°4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.(4) (5)6.(中考题)如图5, 于 ,若 ,则7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.拓展创新1.如图,已知AB=AC,∠APC=60°(1)求证:△ABC是等边三角形.(2)若BC=4cm,求⊙O的面积.3、教材P95习题24.1第12、13题。

2022-2023北师大版九年级数学上册教案:2.1 认识一元二次方程

2022-2023北师大版九年级数学上册教案:2.1 认识一元二次方程

第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.体会方程的模型思想.阅读教材P31~32,完成下列问题:(一)知识探究1.只含有________个未知数,并且都可以化成ax2+bx+c=0(a,b,c为常数,a________)的形式的________方程,这样的方程叫做一元二次方程.2.我们把____________(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中________,________,________分别为二次项、一次项和常数项,________,________分别称为二次项系数和一次项系数.(二)自学反馈1.下列方程中,是一元二次方程的是( )A.x-y2=1 B.x2-1=0C.1x2-1=0 D.x22-x-13=02.将方程(2x+1)x=(3x-2)x+2化简整理写成一般形式后,其中a、b、c分别是( ) A.2-3,1, 2 B.2-3,1,- 2C.3-2,-3, 2D.3-2,1, 2活动1 小组讨论例1判断下列方程是否为一元二次方程:(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.判断一个方程是不是一元二次方程,首先需要将方程化简,使方程的右边为0,然后观察其是否具备以下三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.例2将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:方程(8-2x)(5-2x)=18化成一元二次方程的一般形式是2x2-13x+11=0,其中的二次项系数、一次项系数及常数项分别是2,-13,11.(1)将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项,则c=0.活动2 跟踪训练1.下列方程哪些是一元二次方程?(1)7x 2-6x =0;(2)2x 2-5xy +6y =0; (3)2x 2-13x -1=0;(4)y22=0;(5)x 2+2x -3=1+x 2.2.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x 2-1=4x; (2)4x 2=81;(3)4x(x +2)=25; (4)(3x -2)(x +1)=8x -3.3.已知方程(a -4)x 2-(2a -1)x -a -1=0. (1)a 取何值时,方程为一元二次方程? (2)a 取何值时,方程为一元一次方程?4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x. 活动3 课堂小结1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),特别强调a ≠0.【预习导学】 (一)知识探究1.一 ≠0 整式 2.ax 2+bx +c =0 ax 2bx c a b (二)自学反馈 1.D 2.C 【合作探究】 活动2 跟踪训练1.(1)、(4)是一元二次方程.2.(1)5x 2-4x -1=0,二次项系数、一次项系数及常数项分别是5,-4,-1.(2)4x 2-81=0,二次项系数、一次项系数及常数项分别是4,0,-81.(3)4x 2+8x -25=0,二次项系数、一次项系数及常数项分别是4,8,-25.(4)3x 2-7x +1=0,二次项系数、一次项系数及常数项分别是3,-7,1.3.(1)当a -4≠0即a ≠4时,方程为一元二次方程.(2)a -4=0,且2a -1≠0时,原方程为一元一次方程.即a =4时,原方程为一元一次方程.4.(1)根据题意,得4x 2=25,将其化成一元二次方程的一般形式是4x 2-25=0.(2)根据题意,得x(x -2)=100,将其化成一元二次方程的一般形式是x 2-2x -100=0.(3)根据题意,得x =(1-x)2,将其化成一元二次方程的一般形式是x 2-3x +1=0.第2课时 一元二次方程的解1.经历估计一元二次方程解的过程,增进对方程解的认识.2.能根据实际问题建立一元二次方程的数学模型.(难点)阅读教材P33~34,完成下列问题:(一)知识探究1.能使一元二次方程左、右两边都________的未知数的值,叫做一元二次方程的解.2.估计一元二次方程的解,应先确定方程解的大致范围,然后在这一范围内有规律地取一些未知数的值,如果把一个值代入方程使得左边的计算结果________右边的计算结果,把另一个值代入方程使得左边的计算结果________右边的计算结果,那么方程的解就在这两个值________.(二)自学反馈幼儿园某教室矩形地面的长为8 m,宽为5 m,现准备在地面正中间铺设一块面积为18 m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?活动1 小组讨论例如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?(1)如果设梯子底端滑动x m,那么你能列出怎样的方程?解:根据题意,得72+(x+6)2=102,即x2+12x-15=0.(2)x 0 0.5 1 1.5 2 …x2+12x-15 -15 -8.75 -2 5.25 13 …(3)x … 1.1 1.2 1.3 1.4 …x2+12x-15 …-0.59 0.84 2.29 3.76 …活动2 跟踪训练1.根据下列表格的对应值可知,方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解x的范围是( )x 3.23 3.24 3.25 3.26ax2+bx+c -0.06 -0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.262.根据关于x的一元二次方程x2+px+q=0,可列表如下:x 0 0.5 1 1.1 1.2 1.3x2+px+q -15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的正数解满足( )A.解的整数部分是0,十分位是5B.解的整数部分是0,十分位是8C.解的整数部分是1,十分位是1D.解的整数部分是1,十分位是23.为估算方程x2-2x-8=0的解,填写下表,由此可判断方程x2-2x-8=0的解为________.x -2 -1 0 1 2 3 4x2-2x-8 0 -5 -8 -9 -8 -5 04.某大学为改善校园环境,计划在一块长80 m,宽60 m的长方形场地建一个长方形网球场,网球场占地面积为3 500 m2.四周为宽度相等的人行走道,如图所示,若设人行走道宽为x m.(1)你能列出相应的方程吗?(2)x可能小于0吗?说说你的理由.(3)x可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽是多少吗?说说你的求解过程.活动3 课堂小结1.一元二次方程的解(根)的概念.2.用估算方法求一元二次方程的近似解的步骤:(1)先确定大致范围;(2)再取值计算,逐步逼近.【预习导学】(一)知识探究1.相等 2.小于大于之间(二)自学反馈x 0 0.5 1 1.5 2 2.5(8-2x)(5-2x) 40 28 18 10 4 0故可知所求的宽为1 m.【合作探究】活动2跟踪训练1.C 2.C 3.-2和44.(1)(80-2x)(60-2x)=3 500,即x2-70x+325=0.(2)x的值不可能小于0,因为人行走道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际的,当然x更不可能大于40.(4)人行走道的宽为5 m,求解过程如下:x 2 3 4 5 6 7 …x2-70x+325 189 124 61 0 -59 -116 …显然,当x=5时,x-70x+325=0,∴人行走道的宽为5 m.。

北师大版九年级上册数学教案 1

北师大版九年级上册数学教案 1

第一章特殊平行四边形1.1 菱形的性质与判定1.1.1 菱形的判定1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力;2.经历菱形的判定方法的探索过程,在活动中发展合情推理的意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力.3.通过设置问题情境,丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识.菱形的判定方法.菱形的判定方法的综合运用.复习引入:1.菱形的定义:有一组邻边相等的平行四边形叫作菱形.2.菱形的特殊性质:(1)菱形是轴对称图形;(2)菱形的四条边相等;(3)菱形的对角线互相垂直.今天我们就来研究一下如何判定一个四边形是菱形.思考(1):除了运用菱形的定义,你还能找出判断一个平行四边形是菱形的其他方法吗?猜想1:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形.已知:如图1-1-5,在平行四边形ABCD中,对角线AC,BD互相垂直且交于点O. 求证:四边形ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线相互平分).又∵AC⊥BD,∴BD所在直线是线段AC的垂直平分线,∴AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理1对角线互相垂直的平行四边形是菱形.·议一议已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?小刚做法:如图1-1-7,分别以A,C为圆心,以大于12AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,四边形ABCD看上去是菱形.你认为小刚的做法正确吗?你是怎样做的?图1-1-8学生:小刚的做法正确.还可以作AC的垂直平分线MN,交AC于点O,在MN上取OB=OD,依次连接A,B,C,D,四边形ABCD是菱形,思考(2):除了运用对角线,你还有其他判定菱形的方法吗?猜想2:四边相等的四边形是菱形.已知:如图1-1-9,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).又∵AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理2四边相等的四边形是菱形.思考:这里的条件能否再减少一些呢?能否有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画.学生:动手操作,得到有三条边相等的四边形不一定是菱形.·做一做你能用折纸等办法得到一个菱形吗?动手试一试.你能说说小颖这样做的道理吗?学生:小颖这样做的道理,四边相等的四边形是菱形.例题讲解图1-1-6例2如图1-1-6,已知平行四边形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F,求证:四边形AFCE是菱形.证明:∵四边形ABCD是平行四边形,∴AE∥FC(平行四边形的对边平行),∴∠1=∠2.∵EF垂直平分AC,∴AO=OC,∠AOE=∠COF=90°.∴△AOE≌△COF(ASA),∴EO=FO,∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).又∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).·例题讲解图1-1-10例3已知:如图1-1-10,在ABCD中,对角线AC与BD相交于点O,AB=5,OA=2,OB=1.求证:ABCD是菱形.证明:在△AOB中,∵AB=5,OA=2,OB=1,∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴ABCD是菱形(对角线互相垂直的平行四边形是菱形).图1-1-11例4如图1-1-11,四边形ABCD是边长为13 cm的菱形,其中对角线BD 为10 cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,AC与BD相交于点E,∴∠AED=90°(菱形的对角线互相垂直),DE=12BD=12×10=5(cm)(菱形的对角线互相平分).∴AE=AD2-DE2=132-52=12(cm).∴AC=2AE=2×12=24(cm)(菱形的对角线互相平分).(2)S菱形ABCD=S△ABD+S△CBD=2S△ABD=2×12×BD×AE=2×12×10×12=120(cm2).·做一做图1-1-12如图1-1-12,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?解:重叠部分ABCD是菱形.理由如下:过点A作AH⊥BC交BC于点H,过点C作CQ⊥AB交AB于点Q.∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵S ABCD=BC·AH=AB·CQ,且两张纸条等宽,∴AH=CQ,∴AB=BC.∴四边形ABCD是菱形.【巩固练习】1.用两个边长为a的等边三角形纸片拼成的四边形是 ( ).A.等腰梯形B.正方形C.矩形D.菱形2.下列说法中正确的是( ).A.有两边相等的平行四边形是菱形B.两条对角线互相垂直平分的四边形是菱形C.两条对角线相等且互相平分的四边形是菱形D.四个角相等的四边形是菱形本节课应掌握:菱形的判定方法:(1)对角线互相垂直的平行四边形是菱形;(2)四边相等的四边形是菱形.课本习题1.2,1.3。

北师大版数学九年级上册1.2.1矩形的性质(教案)

北师大版数学九年级上册1.2.1矩形的性质(教案)
五、教学反思
在本次教学过程中,我发现学生们对矩形的性质表现出较高的兴趣。通过日常生活中的实例引入,他们能够更快地理解并接受新知识。但在教学过程中,我也注意到以下几点需要改进和反思:
1.对于矩形性质的理解,部分学生仍然存在困难,特别是在证明矩形对角线平分和相等的过程中。在今后的教学中,我需要更加注重引导学生们通过实际操作和逻辑推理来加深理解。
2.教学难点
-矩形性质的证明:理解并掌握矩形性质证明的过程,特别是对角线相等和平分的证明。
-举例:引导学生通过画图和逻辑推理,证明矩形的对角线互相平分。
-矩形与平行四边形的区别与联系:理解矩形是平行四边形的特殊情况,掌握两者之间的相互关系。
-举例:对比矩形和平行四边形的性质,强调矩形的特殊性。
-解决实际问题时建模能力的培养:将实际问题抽象为矩形模型,运用矩形性质解决。
-举例:给出实际情境,如设计矩形花园或房间,让学生应用矩形性质进行计程中,鼓励学生提出新的解题方法或发现新的性质。
-举例:组织学生进行小组讨论,分享各自发现的不同解题思路或对矩形性质的深入理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状类似长方形或正方形的物体?”(如门、窗户、书本等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形性质的奥秘。
2.在小组讨论环节,我发现有的学生参与度不高,可能是因为他们对主题不够感兴趣或者不知道如何表达自己的观点。为了提高学生的参与度,我可以在选题和引导方式上做出调整,鼓励他们积极发表自己的看法。
3.在实践活动过程中,学生们对矩形性质的应用表现出较高的热情,但部分学生在具体操作中仍然存在一定的困难。这说明我们在实践教学环节还需要进一步加强,让学生们在动手操作中更好地消化和吸收知识。

九年级数学上册教案(北师大版)

九年级数学上册教案(北师大版)

九年级数学上册教案(北师大版)一、教学目标1. 知识与技能:使学生掌握九年级数学上册的基本概念、公式、定理,提高学生的数学运算能力和解决问题的能力。

2. 过程与方法:通过自主学习、合作探究、实践操作等活动,培养学生独立思考、创新能力和团队协作精神。

3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度,提高学生的自主学习能力。

二、教学内容1. 第一章:实数与方程1.1 实数的概念与性质1.2 一元一次方程1.3 不等式与不等式组2. 第二章:多边形的计算2.1 三角形的面积计算2.2 四边形的面积计算2.3 多边形的面积计算3. 第三章:数据的整理与分析3.1 数据的收集与整理3.2 数据的描述与分析3.3 数据的处理与展示4. 第四章:函数的初步认识4.1 函数的概念与性质4.2 一次函数的图象与性质4.3 二次函数的图象与性质5. 第五章:几何图形的证明5.1 平行线的性质与判定5.2 三角形的性质与判定5.3 四边形的性质与判定三、教学方法1. 启发式教学:通过问题引导,激发学生的思考,培养学生的创新能力和解决问题的能力。

2. 合作学习:组织学生进行小组讨论、探究,培养学生的团队协作精神和沟通能力。

3. 实践操作:引导学生动手操作,提高学生的实践能力和数学运算能力。

4. 信息技术辅助教学:利用多媒体课件、网络资源等,丰富教学手段,提高教学效果。

四、教学评价1. 过程性评价:关注学生在学习过程中的表现,如态度、参与度、合作能力等。

2. 终结性评价:通过考试、测验等方式,检测学生对知识与技能的掌握程度。

3. 自我评价:鼓励学生进行自我反思,提高学生的自主学习能力。

五、教学资源1. 教材:九年级数学上册(北师大版)2. 教辅资料:习题集、解析、教学课件等。

3. 网络资源:相关数学教学网站、视频、论坛等。

4. 教学仪器:黑板、粉笔、多媒体设备等。

六、教学计划1. 第六章:概率初步6.1 随机事件与概率6.2 排列组合6.3 概率的计算与应用2. 第七章:初中数学综合应用7.1 数学与生活7.2 数学与科学7.3 数学与社会科学3. 第八章:数学阅读与写作8.1 数学阅读8.2 数学写作8.3 数学语言表达4. 第九章:数学思想方法9.1 化归思想9.2 数形结合思想9.3 分类讨论思想5. 第十章:总复习10.1 复习要点与方法10.2 中考数学考试大纲解析10.3 模拟测试与真题演练七、教学策略1. 第六章:概率初步运用实例引入概率的概念,通过实践活动让学生体验概率的计算过程,培养学生的实际应用能力。

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)北师大版九年级数学上全册精品教案第一证明(二)(时安排)1.你能证明它们吗?3时2.直角三角形2时3.线段的垂直平分线2时4.角平分线1时1你能证明它们吗?(一)教学目标:知识与技能目标:1.了解作为证明基础的几条公理的内容。

2.掌握证明的基本步骤和书写格式.过程与方法1.经历“探索——发现——猜想——证明”的过程。

2.能够用综合法证明等区三角形的有关性质定理。

情感态度与价值观1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键1.重点:探索证明的思路与方法。

能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:1.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:1.等腰三角形两腰相等,两个底角相等。

2.等边三角形三边相等,三个角都相等,并且每个角都等于延伸.二、回忆上学期学过的公理本套教材选用如下命题作为公理:1两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2两条平行线被第三条直线所截,同位角相等;3两边夹角对应相等的两个三角形全等; (SAS)4两角及其夹边对应相等的两个三角形全等; (ASA)三边对应相等的两个三角形全等; (SSS)6全等三角形的对应边相等,对应角相等三、推论两角及其中一角的对边对应相等的两个三角形全等。

(AAS)证明过程:已知:∠A=∠D,∠B=∠E,B=EF求证:△AB≌△DEF证明:∵∠A+∠B+∠=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠=∠F又∵B=EF(已知)∴△AB≌△DEF(ASA)推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。

北师大版九年级上册数学 第一章 直角三角形的边角关系 全章经典教案

北师大版九年级上册数学  第一章 直角三角形的边角关系 全章经典教案

第一章 直角三角形的边角关系第1节 锐角三角函数导入:如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?【知识梳理】1、正切的定义在确定,那么A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA 。

即tanA=baA =∠∠的邻边的对边A■例1已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。

跟踪练习:1、在Rt △ABC 中,锐角A 的对边和邻边同时扩大100 倍,tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不能确定 2、已知∠A,∠B 为锐角(1)若∠A=∠B,则tanA tanB; (2)若tanA=tanB,则∠A ∠B.3、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.4、在等腰△ABC 中,AB=AC=13,BC=10,求tanB.5、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.2、坡度的定义及表示(难点)我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或坡比)。

坡度常用字母i 表示。

斜坡的坡度和坡角的正切值关系是:lha =tan 注意:(1)坡度一般写成1:m 的形式(比例的前项为1,后项可以是小数); (2)若坡角为a ,坡度为a lhi tan ==,坡度越大,则a 角越大,坡面越陡。

■例2拦水坝的横断面为梯形ABCD ,坝顶宽BC 为6m ,坝高为3.2m ,为了提高拦水坝的拦水能力,需要将水坝加高2m ,并且保持坝顶宽度不变,迎水坡CD 的坡度不变,但是背水坡的坡度由原来的i=1:2变成i’=1:2.5(有关数据在图上已标明)。

求加高后的坝底HD 的宽为多少?跟踪练习:1、如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)2、若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高_______米3、正弦、余弦的定义在Rt 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。

北师大版九年级数学全册教案

北师大版九年级数学全册教案

结论 : 菱形判定定理 1: 四边都相等的四边形是菱 形 . (板书) 三、探究新知
例 1: 已知:如图,在 ABCD 中, BD ⊥ AC,O 为垂 足 . 求证:四边形 ABCD 是菱形 .
4. 通过运用菱形知识解决具体问题,提高分析能力
和观察能力 , 并根据平行四边形、矩形、菱形的从属关
系,向学生渗透几何思想 .
法,是本节的教学难点 . 【教学过程】 一、复习引入
观察以下由火柴棒摆成的图形,议一议:
(2) 与图一相比,图二与图三有什么共同的特点?
目的是让学生经历菱形的概念,性质的发现过程,
并让学生注意以下几点:
( 1)要使学生明确图二、图三都为平行四边形;
( 2)引导学生找出图二、图三与图一在边方面的差
异.
【活动方略】
问题 2:既然它具有平行四边形的所有性质 ,那么
矩形是否具有它独特的性质呢?(教师提问) 学生活动 :由平行四边形对边平行以及刚才 α 变为
90°, 可以得到 α的补角也是 90°从而得到 : 矩形的四个
教师活动 : 板书例 1,分析例 1 的思路,教会学生解
题分析法,然后板书解题过程 ( 课本 P13). 学生活动 : 参与教师讲例,总结几何分析思路 .
( 菱形的性质定理 ) ,二个结论 ( 菱形是轴对称图形,又是 中心对称图形 ).
六、布置作业 教材 P4~5 习题 1. 1
第 2 课时
【教学目标】 1. 经历菱形的判定定理的发现过程 . 2. 掌握菱形的判定定理“四边相等的四边形是菱
形” . 3. 掌握菱形的判定定理“对角线互相垂直的平行
四边形是菱形” .
分析 : 本题是菱形的性质定理 2 的应用,由 ∠ BAC= 30° , 得出 Δ ABD 为等边三角形 ,就抓住了问题解决的关 键.

北师大版九年级数学上册全册教案

北师大版九年级数学上册全册教案

第一章特殊平行四边形1 菱形的性质与判定第1课时菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度】培养学生主动探究的习惯、严密的思维意识和审美意识.【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.一、情境导入,初步认识四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.见教材P3第1题.2.见教材P3例1 .3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.153 2C.7.5D.153【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.求证:DE=12 BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=12 BE.证明:方法一:如图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12 BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE的中点,∴DE=BC=12 BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.学生自主完成,如有一定难度可相互交流,最后由教师总结.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.1.布置作业:教材“习题1.1”中第1、2 题.2.完成练习册中相应练习.本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.第2课时菱形的判定【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC ⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2 .2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG =∠CFG =∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.第3课时菱形的性质与判定的运用【知识与技能】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.【过程与方法】经历菱形性质定理及判定定理的应用过程,体会数形结合、转化的思想.【情感态度】培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】利用菱形性质定理与判定定理解决一些相关问题.【教学难点】菱形性质的探究.一、情境导入,初步认识活动:如图,你能用一张锐角三角形纸片ABC折出一个菱形,使∠A成为菱形的一个内角吗?【教学说明】通过折纸活动激发学生的兴趣,同时对于菱形的相关判定方法也进行了巩固.二、思考探究,获取新知如图,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?拓展:若纸条的宽度是4cm ,∠ABC=60°,你会求菱形的面积吗?你有几种不同的方法?与同学交流.【归纳结论】菱形面积的计算公式:①如图,S 菱形ABCD =AB ·DE ,即菱形的面积等于底乘高;②S 菱形ABCD =12AC ·BD ,即菱形的面积等于两条对角线乘积的一半.【教学说明】对菱形性质的归纳是学生对菱形特征的认识、是知识的一次升华,有助于培养学生的概括能力,突出教学重点.三、运用新知,深化理解如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 的重点.(1)求证:四边形BDEF 是菱形;(2)若AB=10cm ,求菱形BDEF 的周长.解:(1)证明:∵E 、F 分别是AC 、AB 的中点,∴EF=12BC ,EF ∥CB. 又∵D 、E 分别是BC 、AC 的中点,∴DE=12AB ,DE ∥AB, ∴四边形BDEF 是平行四边形.又∵AB=BC ,∴EF=DE ,∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,∴BF=12AB.又∵AB=10cm,∴BF=5cm.∵四边形BDEF是菱形,∴BD=DE=EF=BF,∴四边形BDEF的周长为4×5=20(cm).【教学说明】菱形的性质与判定的综合应用,一般先证明四边形是菱形,再利用菱形的性质进行求解或证明,要注意两者的区别与联系.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.3”中第2、3、4题.2.完成练习册中相应练习.通过复习回顾菱形的性质和判定,唤醒学生的记忆,然后给学生设置好一个个有梯度的问题,调动学生的求知欲,树立勇于战胜自我的信念.2 矩形的性质与判定第1课时矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质.【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【情感态度】培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.【教学重点】掌握矩形的性质,并学会应用.【教学难点】理解矩形的特殊性.一、情境导入,初步认识将收集来的有关长方形的图片给学生观察,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知1.拿一个活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?【教学说明】采用观察、操作、交流、演绎的手法来解决重点突破难点.【归纳结论】矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.3.矩形是轴对称图形吗?如果是,它有几条对称轴?4.如图,在矩形ABCD中,AC、BD相交于点O,求AO与BD的数量关系.【归纳结论】直角三角形斜边上的中线等于斜边的一半.【教学说明】引导学生尽可能多地发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm ,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:(1)设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6. 则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE·DB=AD·AB,解得AE =4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生独立思考,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20 cm.解:本题需分两种情况解答.即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是矩形的基本性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生共同回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.4”中第2、3题.2.完成练习册中相应练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生的视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生更容易把握问题的本质,真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握.第2课时矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识事例引入:小华想做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知动手操作,拿一个活动的平行四边形教具,轻轻拉动一个点.思考:1.随着∠α的变化,两条对角线的长度将发生怎样的变化?2.当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做准备.【归纳结论】对角线相等的平行四边形是矩形.证明:(见教材P14例题)矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.三、运用新知,深化理解1. 对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.下列说法正确的是(D )A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形解析:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等并有一个角是直角的四边形是矩形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C 错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】让学生口答第1、2道题,训练学生的语言表达能力.3.如图所示,□ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°.∴∠H=90°.同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.【教学说明】在黑板上展示第3题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.5”中第2、3题.2.完成练习册中相应练习.本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.第3课时矩形的性质与判定的运用【知识与技能】熟练运用矩形的性质和判定定理进行相关的计算和证明.【过程与方法】经历从性质到判定的转化过程,合理、准确地运用已有的知识进行推导、证明,体会数学知识之间的联系和区别.【情感态度】通过严谨的推理,强化学生的规范意识.【教学重点】灵活运用矩形的性质和判定定理进行相关的计算和证明.【教学难点】利用矩形的相关性质构造新的图形,进而对知识进行转化.一、情境导入,初步认识如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.【教学说明】通过例题感受知识的应用的同时体会知识之间的联系及转化,并通过规范的步骤强调教学推理的严谨性.二、思考探究,获取新知已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.【思考】在上例中,连接DE,交AC于点F.(1)试判断四边形ABDE的形状,并证明你的结论;(2)线段DF与AB有怎样的关系?请证明你的结论.【教学说明】让学生感受矩形与等腰三角形之间的联系,感受知识转化在解决问题中的作用.三、运用新知,深化理解1.见教材P16~P17例3.2.如图,O是矩形ABCD的对角线的交点,过点O的直线EF分别交AB、CD于点E、F,那么阴影部分的面积是矩形ABCD的面积的(B )3.(一题多解)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?解:解法一:能.如图所示,过P点作PH⊥DC,垂足为H.可得四边形PHDE是矩形,∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.如图,延长EP,过C点作CH⊥EP,垂足为点H,如图所示,可得四边形HEDC是矩形,∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】通过应用性的练习,巩固基础知识的同时,感受知识的综合运用在解题过程中的重要性,使所学知识进行深化.四、师生互动,课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.6”中第1、2、3题.2.完成练习册中相应练习.本节课在复习前一节课内容的基础上利用矩形的性质和判定解决具体问题,在例题的选择和设计上,追寻知识向能力的转化,让学生主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,同时训练学生清晰、有条理地表达自己的思考过程,从而培养学生的推理能力和分析问题的能力.3 正方形的性质与判定第1课时正方形的性质【知识与技能】使学生掌握正方形的概念,知道正方形具有矩形和菱形的一切性质,并会用它们进行有关的论证和计算.【过程与方法】学会用正方形的性质解决一些问题,进一步发展学生的推理能力,促进其逐步掌握说理的基本方法.【情感态度】通过分析正方形的概念、性质与矩形、菱形的概念、性质的联系和区别,对学生进行辩证唯物主义教育.【教学重点】正方形的性质.【教学难点】正方形的性质.一、情境导入,初步认识1.在我们的生活中除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?2.展示正方形图片,学生观察它们有什么共同特征?【教学说明】学生回答后,再展示图片,使学生感受到生活中到处存在数学,激发学习热情.【归纳结论】有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.二、思考探究,获取新知1.做一做:用一张长方形的纸片折出一个正方形.2.观察:这个正方形具有哪些性质?【教学说明】让学生在动手操作中对正方形产生感性认识.【归纳结论】正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.3.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地说明吗?【教学说明】小组交流,引导学生从角、对角线的角度归纳总结.使学生感受变化过程,更清晰地了解各四边形之间的联系与区别.三、运用新知,深化理解1.见教材P21例1 .2.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中互相全等的三角形的对数为()A.12B.13C.26D.30解析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成102的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.3.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为(1,0)和(1,1).(只写一组)解析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.∵正方形ABCD 的点A(0,1),点B(0,0),∴AD∥x轴,CD∥y轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).4.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF度数.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,所以可得∠EAF=45°.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=12(∠DAG+ ∠BAG)=12∠DAB=45°,故∠EAF=45°【教学说明】主要考查了正方形的性质和全等三角形的判定.5.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE≌△AFE及角之间的关系从而求得∠EFC的度数;解:(1)延长EB至G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°.【教学说明】学生独立完成以培养学生的独立意识.四、师生互动,课堂小结1.师生共同回顾正方形有哪些性质?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.7”中第2 、3题.2.完成练习册中相应练习.本课虽然是学习正方形的性质,实际上应起到对平行四边形、矩形、菱形性。

北师大版数学九年级上册4.1.2《视图》教案

北师大版数学九年级上册4.1.2《视图》教案

北师大版数学九年级上册4.1.2《视图》教案一. 教材分析北师大版数学九年级上册4.1.2《视图》一课,主要让学生掌握三视图的概念及画法,培养学生空间想象能力,体会数学与实际生活的联系。

此课内容是学生在学习了平面几何和立体几何的基础上进行学习的,对学生空间想象能力的培养起着承上启下的作用。

二. 学情分析九年级的学生已经具备了一定的空间想象能力,对平面几何和立体几何有一定的了解。

但学生在学习过程中,可能会对一些复杂几何图形的三视图难以理解和掌握。

因此,在教学过程中,教师需要关注学生的个体差异,引导学生通过观察、思考、操作、交流等途径,逐步提高空间想象能力。

三. 教学目标1.知识与技能:使学生掌握主视图、左视图、俯视图的概念,学会从不同角度观察几何体,并能画出简单几何体和组合几何体的三视图。

2.过程与方法:通过观察、操作、思考等活动,培养学生的空间想象能力。

3.情感态度与价值观:让学生感受数学与实际生活的联系,激发学习兴趣,体验成功。

四. 教学重难点1.重点:三视图的概念及画法。

2.难点:对复杂几何图形三视图的画法和空间想象能力的培养。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识三视图,激发学习兴趣。

2.启发式教学法:引导学生主动探究、发现问题,培养空间想象能力。

3.合作学习法:分组讨论,共同完成实践操作,提高学生合作能力。

六. 教学准备1.教具:多媒体课件、几何模型、画图工具。

2.学具:学生用书、练习册、画图工具。

七. 教学过程1.导入(5分钟)教师通过生活中的实例,如建筑物的设计、机械制造等,引导学生认识三视图,激发学生学习兴趣。

2.呈现(5分钟)教师利用多媒体课件展示简单几何体和组合几何体的三视图,引导学生观察、思考,总结三视图的特点。

3.操练(10分钟)教师学生分组讨论,每组选择一个几何体,互相描述三视图,并尝试画出三视图。

教师巡回指导,解答学生疑问。

4.巩固(5分钟)教师挑选几组学生的作品,展示给大家,让大家判断其三视图是否正确。

北师大版九年级上册数学教案.1反比例函数

北师大版九年级上册数学教案.1反比例函数
2.培养学生的逻辑思维与抽象思维能力,通过探究反比例函数的图像与性质,提高学生对函数概念的理解,形成严谨的数学逻辑。
3.培养学生的数学建模素养,使学生能够根据实际问题建立反比例函数模型,并运用所学的数学知识解决现实生活中的问题。
4.培养学生的合作交流与自主学习能力,通过小组讨论、互动交流等形式,激发学生的学习兴趣,提高课堂参与度,促进学生全面发展。
实践活动环节,分组讨论和实验操作使学生能够动手实践,这有助于他们将理论知识应用到实际问题中。但我也观察到,有些小组在讨论时可能过于依赖实验结果,而忽略了反比例函数的理论推导。在未来的教学中,我需要引导学生平衡理论与实验,使他们能够将两者有机结合。
学生小组讨论的环节,我尝试作为一个引导者和协助者,鼓励学生提出自己的观点,并进行交流。这种方法促进了学生的思维碰撞,但我也发现,有些学生在分享观点时不够自信,可能需要我在今后的教学中更多地鼓励他们,提高他们的表达能力和自信心。
北师大版九年级上册数学教案.1反比例函数
一、教学内容
本节课选自北师大版九年级上册数学教材,主要围绕反比例函数进行教学。教学内容包括:
1.反比例函数的定义与性质:掌握反比例函数的定义,了解其图像特点,探究反比例函数的性质,如对称性、单调性等。
2.反比例函数的图像:绘制反比例函数的图像,观察图像特点,分析图像与反比例函数性质之间的关系。
举例解释:对于反比例函数图像与性质的关系,可以引导学生观察不同k值下的函数图像,通过实际绘图让学生直观感受反比例函数在x轴不同区间的单调性变化。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物品分配或速度与时间的关系成反比的情况?”(如两个人分一堆糖果,每个人得到的糖果数与人数成反比)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。

2017-2018学年北师大版九年级数学上册教案1.2矩形的性质与判定

2017-2018学年北师大版九年级数学上册教案1.2矩形的性质与判定
-难点2:对角线相等性质的证明,要求学生能够运用到等腰三角形的性质,以及平行线截等长线段定理。
b.矩形判定方法的灵活运用
-难点1:在复杂的几何图形中识别和应用判定方法,学生需要具备较强的观察力和空间想象力。
-难点2:结合多个条件综合判断,要求学生能够整合所学知识,进行综合分析。
c.实际问题的解决
-难点1:将矩形的性质与实际问题相结合,学生需要理解问题的本质,并抽象出数学模型。
3.增强学生的数学应用意识:将矩形的性质与实际生活中的问题相结合,让学生体会数学在现实生活中的应用,培养他们运用数学知识解决实际问题的能力。
4.培养学生的团队合作精神:在小组讨论和练习环节,鼓励学生相互交流、协作,共同解决问题,培养他们的团队合作意识。
三、教学难点与重点
1.教学重点
a.矩形的定义及其性质的理解和运用
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了矩形的基本概念、性质与判定方法,以及它们在实际中的应用。通过实践活动和小组讨论,我们加深了对矩形知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调矩形的性质和判定方法这两个重点。对于难点部分,比如矩形对角线相等性质的证明,我会通过图形演示和逐步推理来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与矩形相关的问题,如矩形的对角线性质在实际中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器制作一个矩形,并测量其对角线等。

北师大版九年级上册数学优秀教案

北师大版九年级上册数学优秀教案

北师大版九年级上册数学优秀教案教案是教师为顺利而有效地展开教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情形,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

这里给大家分享一些关于北师大版九年级上册数学优秀教案,方便大家学习。

北师大版九年级上册数学优秀教案篇1一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

一元一次不等式组的概念可以从以下几个方面知道:(1)组成不等式组的不等式必须是一元一次不等式;(2)从数量上看,不等式的个数必须是两个或两个以上;(3)每个不等式在不等式组中的位置并不固定,它们是并列的.二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。

求这个不等式组解集的进程就叫解不等式组。

解一元一次不等式组的步骤:(1)先分别求出不等式组中各个不等式的解集;(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.三.不等式(组)的解集的数轴表示:一元一次不等式组知识点1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。

公共部分也就各不等式解集在数轴上的重合部分;3..我们根据一元一次不等式组,化简成最简不等式组落后行分类,通常就可以把一元一次不等式组分成如上四类。

说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。

但是,在解题的进程中,这个等号要与不等号相连,不能分开。

四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解常常是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 特殊平行四边形1.1 菱形的性质与判定(一)学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。

②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。

教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。

教学难点:菱形的性质的理解及菱形性质的灵活运用。

学习过程: 活动一:自学课本例题以上的内容,完成下列问题: 1. 如何从一个平行四边形中剪出一个菱形来?的四边形叫做菱形,生活中的菱形有 。

2. 按探究步骤剪下一个四边形。

①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形? 有 对称轴。

图中相等的线段有: 图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。

性质:证明:活动二:对比菱形与平行四边形的对角线 菱形的对角线:平行四边的对角线:活动三:菱形性质的应用平行四边形菱形1.菱形的两条对角线的长分别是6cm 和8cm ,求菱形的周长和面积。

2.如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60° 沿菱形的两条对角线修建了两条小路AC 和BD , 求两条小路的长和花坛的面积。

课效检测: 一、填空(1)菱形的两条对角线长分别是12cm ,16cm ,它的周长等于 ,面积等于 。

(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 。

(3)已知:菱形的周长是20cm ,两个相邻的角的度数比为1:2,则较短的对角线长是 。

(4)已知:菱形的周长是52 cm ,一条对角线长是24 cm ,则它的面积是 。

二、解答题已知:如图,在菱形ABCD 中,周长为8cm ,∠BAD=1200 对角线AC ,BD 交于点O ,求这个菱形的对角线长和面积。

教学设计反思本节课的主要教学内容为菱形的定义和性质。

学生已经学习了平行四边形的性质,这是本节的知识基础。

关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的。

A BC D O1.1 菱形的性质与判定(二)教学目标:1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力; 2.经历菱形的判定方法的探索过程,在活动中发展合情推理意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力.3.通过设置问题情境丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识. 教学重点:菱形的判定方法.教学难点:菱形的判定方法的综合运用. 教学设计:模仿-猜想-论证-运用 教学过程: 一、知识回顾菱形的定义:有一组邻边相等的平行四边形叫做菱形 菱形的性质:1. 四条边都相等; 2. 两条对角线互相垂直; 3. 菱形是轴对称图形。

二、新课学习 1. 思考(1):除了运用菱形的定义,你能找出判定菱形的其他方法吗?猜想1:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形。

已知:平行四边形ABCD 中,对角线AC 、BD 互相垂直. 求证:四边形ABCD 是菱形.2.得出结论:判定定理1 对角线互相垂直的平行四边形是菱形. 3.实际应用:例题1:如图19. 3.4,已知平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于点E 、F ,求证四边形AFCE 是菱形. 4.思考(2):除了运用对角线,你还有其他判定菱形的方法吗? 猜想2:四边相等的四边形是菱形.已知:如图,四边形ABCD ,AB=BC=CD=DA 求证:四边形ABCD 是菱形思考:这里的条件能否再减少一些呢?能否类似对矩形的讨论那样,有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画,你就会知道,这个结论是不成立的.5.得出结论:判定定理2 四条边都相等的四边形是菱形. 三、随堂练习1、用两个边长为a 的等边三角形纸片拼成的四边形是( )A.等腰梯形 B.正方形 C.矩形 D.菱形 2、下列说法中正确的是( )A、有两边相等的平行四边形是菱形 B、两条对角线互相垂直平分的四边形是菱形C、两条对角线相等且互相平分的四边形是菱形 D、四个角相等的四边形是菱形四、课堂小结判定四边形是菱形共有哪几种方法? 五、板书设计六、布置作业 教材P7 习题1.2 1、2、3 七、教学反思本节课,课前布置的任务为本节课的探究做了有效的铺垫,学生资源的灵活运用提高了学生参与探究的兴趣,在证明思路的分析过程中体会了逆向思维、一题多解等的数学思想,另外,学生通过经历“实验—猜想—证明—应用”的探索过程提高了自身的科学素养。

1.2 矩形的性质与判定(一)教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质.过程与方法:经过探索矩形的概念和性质的过程,发展学生合情推理意识;情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重难点、关键重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.教学准备教师准备:投影仪,收集有关矩形的图片,制作教具.学生准备:复习平行四边形性质,预习矩形这节内容.学法解析1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.2.知识线索:情境与操作→平行四边形→矩形→矩形性质.3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程一、联系生活,形象感知矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.由此归纳直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.二、范例点击,应用所学例1 如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=4cm,•求矩形对角线的长.(投影显示)【问题探究】(投影显示)如图,△ABC中,∠A=2∠B,CD是△ABC的高,E是AB的中点,求证:DE=1/2AC.思路点拨:本题可从E是AB的中点切入,考虑应用三角形中位线定理.应用三角形中位线必需找到另一个中点.分析可知:可以取BC中点F,也可以取AC的中点G为尝试.三、随堂练习,巩固深化【探研时空】已知:如图,从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线相交于点E.求证:AC=CE.四、课堂总结,发展潜能1.矩形定义:有一个角是直角的平行四边形叫做矩形,因此,•矩形是平行四边形的特例,具有平行四边形所有性质.2.性质归纳:(1)边的性质:对边平行且相等.(2)角的性质:四个角都是直角.(3)对角线性质:对角线互相平分且相等.(4)对称性:矩形是轴对称图形.教学设计反思:本节课依据新课标的要求,设计的每个环节都是以学生为主体,在学生已有的知识经验的基础上,让学生自己动手探究完成,以便提高学生的探索创新思维和创造能力。

1.2 矩形的性质与判定(二)教学目标:1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。

重点、难点:1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.例题的意图分析本节课的三个例题都是补充题,例1的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2 (补充)已知平行四边形ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.例3 (补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.随堂练习1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.教学反思1.灵活处理教材2. 充分给学生以时间和空间3. 应当注意的问题1.2 矩形的性质与判定(三)【设计理念】根据新课程标准要求,学生学习数学的重要方式是动手实践、自主探索与合作交流。

学生是学习活动的主体,教师是学生学习的组织者、引导者与合作者。

相关文档
最新文档