高原电气设计要点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高原电气设计要点
高原地区,从地理上讲,一般指海拔高度在500m以上、比较完整的大面积隆起地区。高原地区的自然条件特点主要是海拔高、空气稀薄、空气含氧量低、气压低、昼夜温差变化大等等。电气设备正常使用环境的海拔高度一般不超过1000m,而中国四大高原(黄土高原、内蒙古高原、青藏高原、云贵高原)的最低海拔基本上都超过或者接近上述数值,因此,在进行国内四大高原地区的电气设计的时候,必须考虑地理、气候因素对电气设备的影响,进行设计、计算的时候对相关的参数进行必要的调整。随着高原地区经济的发展,高原地区的工程设计也越来越多,工程规模也越来越大,笔者以拉萨某酒店改扩建项目为例,简单概括一下高原地区电气设计需要注意的问题。
1 概况简介
1.1 气象情况
工程位于拉萨市区,海拔高度3650m左右,年日照时数3000小时以上;最高气温28C,最低气温零下14C,全年雷暴日数(d/a)72.6,7月0.8m深土壤温度(摄氏度):15.3,最大冻土深度26cm。
1.2 市政电力情况
市政可提供两路独立的10kV电源,另外还设置一台柴油发电机组用于给消防负荷及特别重要的负荷供电。
2 高压电器和导体的选择
当地实际海拔远超过高压电气设备正常使用环境的海拔(1000m),因此,高海拔对电气设备的影响必须考虑。高海拔对电器的影响是多方
面的,主要的影响有两方面。
(1)电器设备的温升
高压电器一般都采用风冷的方式,海拔增加,空气密度随之降低,对于电器设备来说,其赖以散热的条件变的恶劣,造成的结果便是高压电器在运行过程中的温升会比低海拔高度下增加。不过,由于气温是随着海拔高度的增加而相应的降低的,一定程度上能抵消低空气密度对于设备温升带来的影响,因此,在海拔不超过4000m的地区,高压电器的额定电流可以保持不变。拉萨地区海拔高度3650m左右,因此,高压电器的额定电流可按照常规的进行选择。
(2)外绝缘水平
高海拔地区由于空隙稀薄,气压较低,空气绝缘的强度变弱,是高压电器的外绝缘水平降低。对于海拔高度在1000m~4000m的高压电器外绝缘,海拔每升高100m,其外绝缘强度约降低1%。本工程针对这种情况,选择了适用于高海拔地区的对外绝缘进行了加强的高压电器以满足相关规范的要求。
海拔1000m以上的高压电器,选择其绝缘耐受电压的时候需要乘以修正系数(Ka)来进行修正。
Ka=em(H-1000)/8150
H―海拔,米。
m―工频、雷电冲击和相间操作冲击电压时取1。
纵绝缘操作冲击电压时取0.9。
相对地操作冲击电压时取0.75。
Ka也可按照图1进行选择。
3 导体载流量
由于内阻,导体在承载电流的情况下温度会升高,导体主要通过空气来进行散热。高海拔地区空气稀薄,散热效果比低海拔地区的要差,因此,在选择导体的时候,其载流量应该按照所在地区的海拔和环境温度进行修正,修正系数见表1。
4 防雷
西藏高原由于奇特多样的地形地貌、高空空气环境以及天气系统的影响,形成了复杂多样的独特气候,灾害性天气时有发生。西藏是一个高雷暴区,其中拉萨地区的全年雷暴日数(d/a)为72.6,远高于一般的平原及沿海区域,进行防雷计算的时候应充分考虑当地的气候条件,以免造成不必要的经济损失。
本设计中具体的防雷计算如下所示
已知条件:
建筑物的长度L = 110.6m
建筑物的宽度W = 48.8m
建筑物的高度H = 13.7m
当地的年平均雷暴日天数Td =72.6天/年
校正系数k = 1.0
计算公式:
年预计雷击次数:N = k*Ng*Ae = 0.1859
其中:建筑物的雷击大地的年平均密度:Ng = 0.024Td .3 =
0.02435.60 .3 = 6.3013
等效面积Ae为:H100M,Ae =[LW+2(L+W)SQRT(H(200-H))+3.1415926H (200-H)]10-6 = 0.0295
计算结果:
根据《防雷设计规范》,该建筑应该属于三类防雷建筑。
三类:0.012=N=0.06 省部级办公建筑和其他重要场所、人员密集场所。
0.06=N=0.3 住宅、办公楼等一般性民用建筑物。
N=0.06 一般性工业建筑。
5 室外管线敷设
高原地区由于气候的原因,通常冻土层比较深,室外电缆采用在冻土层以下直埋敷设的话,施工的时候需要下挖很深,既不便于施工,也不利于以后的维护。因此,室外电缆如果需要采用直埋的话,可以考虑将直埋电缆敷设在冻土层,同时增加敷设细沙的厚度,这个厚度建议不小于200mm;考虑到机械强度等其它因素的需要,在冻土层内直埋的深度不应小于0.7m;具体的做法如图2所示。
高原地区的冻土情况也不尽相同,上述做法适合冻土层比较深,不方便在冻土层以下直埋敷设的情况。由于拉萨地区的最大冻土深度为26cm,可以按照常规的直埋方式进行敷设。
6 柴油发电机
本工程设置一台柴油发电机组用于给消防负荷及特别重要的负荷供电。高原地区柴油发电机额定功率的选择跟一般地区有很大的不同。
我国生产的普通型柴油发电机组,只合用于海拔1000m以下。通常来说,柴油发电机的额定功率系指外界大气压力为101.325kPa (760mmHg),大气温度为20摄氏度,相对湿度为50%的情况下,保证能连续运行12小时的功率。对于柴油发电机而言,高原地区区别于一般地区最大的运行条件就是气压。以本工程所在的拉萨地区为例,年实际最低气压只有358mmHg(冬季),空气稀薄,含氧量比较低,如果采用普通的自然吸气的柴油发电机组,会因进气量不足而导致燃烧条件变差,使柴油发电机组不能发出额定的功率。不考虑高原地区的特殊气象条件去选择柴油发电机的话,势必会造成柴油发电机额定功率偏小,应急状态下无法给相应的设备供电,造成不必要的人员、财产损失。
一般来说,高原地区设置柴油发电机的时候会从两个方面去解决上述问题。
(1)修正系数法
根据工程所在地的实际海拔、气压、气温等气象参数,在计算柴油发电机的额定功率的时候采用一个修正系数进行修正以弥补柴油发电机的功率损失。常规的修正系数如表2所示。
通过表中的数据可以看出,在比较极端的情况下,需要采用的修正系数是非常小的。以本工程为例,拉萨地区海拔高度3650m,假设考虑柴油发电机在20摄氏度的环境下进行运行,需采用的修正系数都不到0.6。显然,对自然吸气的柴油发电机仅进行修正系数法来进行计算、选择的话,会造成柴油发电机的效率非常低,油耗非常大,甚至对电能质量也会造成相应的影响。因此这种方法建议在海拔不是特别高的地区使