雨中行走数学建模

合集下载

雨中行走问题模型

雨中行走问题模型

数学建模之雨中行走问题模型摘要:由于降雨方向的变化,在跑步过程中尽力快跑不一定是最好的策略。

就淋雨量与跑步快慢这个问题,我们通过建立数学模型来探讨在雨中如何行走才能使淋雨量最少。

在不考虑雨的方向时,当然是跑的越快淋得越少;考虑雨的方向时,那么再分情况讨论,若雨是迎着你前进的方向落下,这时以最大的速度向前跑可使淋雨量最少;若雨是从你的背后落下,那么你应控制在雨中行走的速度,让它刚好等于落雨速度的水平分量。

关键词:淋雨量,数学模型,降雨的方向。

正文1.问题的提出要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方形,高a=1.5(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步估计跑完全程的淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为 ,问跑步速度v 为多大时可使淋雨量最少。

(3)雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)2.问题的分析总的淋雨量等于人体的各个面上的淋雨量之和。

每个面上的淋雨量等于单位面积、单位时间的淋雨量与面积以及时间的乘积。

面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。

再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。

淋雨量(V )=降雨量(ω)×人体淋雨面积(S )×淋浴时间(t ) ①时间(t )=跑步距离(d )÷人跑步速度(v ) ②由①② 得: 淋雨量(V )=ω×S ×d/v3.合理假设3.1模型的假设(1)人身体的表面非常复杂,为了使问题简单化,假设将人视为一个长方体,并设其高1.5m(颈部以下),宽0.5m,厚0.2m.其前、侧、顶的面积之比为1:b:c, (2)假设降雨量到一定时间时,应为定值; (3)此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;(5)设雨速为常速且方向不变,选择适当的空间直角坐标系,使人行走的速度为(u,0,0)设雨的速度为(,,)x y z v v v v =,人行走的距离为d=100米。

雨中行走数学建模

雨中行走数学建模

雨中行走问题的分析吴珍数学与应用数学二班 A班冯奎艳数学与应用数学二班 A班杨彦云数学与应用数学二班 A班摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。

针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。

然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。

针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。

关键词雨滴降落频率;优化模型;淋雨量一、问题重述一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。

那么在雨中以何种速度跑,淋雨量最少。

现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。

按以下步骤进行讨论:(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问速度多大时,总淋雨量最少。

(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为α,问速度多大时,总淋雨量最少。

(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。

二、问题分析人在雨中行走时,行走时间即淋雨时间。

把人看成一个长方体,总淋雨量是各个面淋雨量之和。

为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。

对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。

微积分的应用雨中行走 药物浓度 水流问题 最速降线

微积分的应用雨中行走 药物浓度 水流问题 最速降线
I sin 表示顶部的降雨强度。
•前表面淋雨量
C2
(v cos
v
u
I )wh(L
/
u)
v cos u I是前面的降雨强度。
v
•总淋雨量(基本模型)
C
C1
C2
wdL [sin
u
h d
(v cos
v
u)]
因为考虑了降雨的方向,淋湿的部位只有顶部和前
面。分两部分计算淋雨量。
取参数v 4m / s, I 2cm / h
第五章 微积分的应用
本章通过用学习过的高等数学知识解决一些简单的问题, 以增加同学们学习数学的兴趣和应用数学的能力。同时,也 通过对其中一些问题的不断深入讨论来体会数学建模没有最 好、只有更好的精神。
1. 雨中行走问题 2. 体内药物浓度的变化 3. 水的流出问题 4. 最速降线问题
1. 雨中行走问题
16
2. 体内药物浓度的变化
医生给病人开处方时必须注明两点:服药的剂量 和服药的时间间隔。超剂量的药物会对患者产生不 良的后果,甚至死亡;剂量不足,则不能达到治疗 的效果。已知患者服药后,随时间推移,药物在体 内被逐渐吸收,发生化学反应,也就是体内药物的 浓度逐渐降低。药物浓度降低的速率与体内当时药 物的浓度成正比。当服药量为A、服药时间间隔为T 时,试分析体内药物的浓度随时间的变化规律。
2)在同样时间内,水从小孔流出的体积为 BS
--- S是从小孔流出的水时在时间段 内流t 经的距离
由质量守恒得
Ah BS
两端同除以 ,t 并令 t取极0 限得
25
可得一阶方程: dh B ds
dt
A dt
由于 ds v, 代入上式得 dt

数学建模实验雨中漫步1

数学建模实验雨中漫步1

数学实验作业雨中漫步系部:数学系专业:s10数学教育学号:103103011013姓名:张鹏飞实验目的:1.生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少2.运用matlab软件实验内容:给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

1,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

2,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量v时,淋W与行走速度v之间的函数关系。

分析表明当行走速度为m ax雨量最少。

3,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。

列出函数关系式分析并求解。

实验准备: matlab软件绘图,从网上查找各种资料a---长方体的长单位:米b---长方体的宽单位:米c---长方体的厚度单位:米Q---淋雨量单位:升v---人行走的速度单位:米每秒D---路程单位:米I---降雨强度单位:厘米每小时P---雨滴的密度单位:u---雨滴下落的速度单位:米每秒θ---雨迎面吹来时与人体的夹角α---与从后面吹来与人体的夹角实验步骤:在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

数学建模 淋雨模型

数学建模 淋雨模型

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设四、(1)、将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;五、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=(㎡)V= (cm3)= (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v 1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。

数学模型论文雨中行走(1)

数学模型论文雨中行走(1)

队号:第四队成员:刘桂清、徐丽蓉、林雪梅指导老师:刘于江老师雨中行走少淋雨问题真题摘要建一模型说明当你在雨中行走又想少淋雨时,应当如下做:(1)若你行走的方向是顺风且雨的夹角至少为,你应以雨速水平分量的速度行走,以便使雨相对于你是垂直下落的(2)在其他情况下,你都应以最快的速度行走。

关键词:少淋雨;雨速的水平分量;夹角;人速1.问题的重述当下雨时,假如你当时没带雨伞你又不得不从A地走到B地,该如何行走才能少淋到雨呢?针对这个问题,建立合理的数学模型。

讨论一下,人在顺风行走时,你以雨速的水平分量的速度走时,雨的夹角至少是多少?进而近一步讨论,在其他情况下,你都应以最快的速度行走。

2.模型的假设与符号说明2.1模型的假设(1)把人体看作长方体,底边长a米、宽为b米;高为h米;(2)风速保持不变,人速以V(m/s)匀速行走;(3)人从A地行走到B地,路程为L=1000米;2.2符号说明a 人体的宽度 (m)b 人体的厚度 (m)h 人体的身高 (m)V 人的速度(m/s)ν风速(雨速)(m/s)L 人行走的路程 (m)θ下雨的方向与人的夹角t 人在雨中行走的时间 (s)ρ降雨密度3.模型的建立与求解(1)考虑人在顺风行走时,此种情况下,如图:人淋雨的部位有头、背后,则:头顶的淋雨量:C1=VLabθρνcos侧面的淋雨量:C2=VVLbh)sin(θνρ-总淋雨量: C=C1+C2=VVhaLb)]sin(cos[θνθνρ-+结论:可以看出总淋雨量与速度.角度有关,且与人的速度成反比,当V=νsinθ时,即=θarcsinνV,总淋雨量C最小。

所以,上述情况就转化为与θ有关的问题:(1)当0=θ时C=VhV a Lb )(+νρ=ρρνLbh VLab +结论:可以看出总淋雨量与人的行走速度成反比,当速度尽可能大的时候,淋雨量越小。

(2)当4πθ=时C=VV h a Lb )]22(22[ννρ-+=VLab νρ22+h Lb ρ-Vh Lb νρ22=(Vh Lbb a ρ22)1-+h Lb ρ结论:可以看出总淋雨量与人的行走速度成反比,当速度尽可能大的时候,淋雨量越小。

雨中行走问题数学模型案例

雨中行走问题数学模型案例

雨中行走问题数学模型案例
一个常见的数学模型案例是“雨中行走”问题。

在这个问题中,假设有一个人需要从一个地方到另一个地方,但是正在下雨。

人可以以一定的速度行走,但是会因为雨水而放慢速度。

问如何确定最快的路线,使得从起点到终点的时间最短。

为了建立这个数学模型,可以采用以下假设和变量:
1. 假设下雨时,人的行走速度是正常时的百分之多少,这个值称为“减速因子”。

假设减速因子为x%,则雨中行走的速度为正常速度的x%。

2. 假设人在雨中行走时的速度是与雨水的强度相关的。

可以假设速度与雨水强度成正比,即速度v与雨水强度I之间存在关系v = kI (其中k为比例常数)。

3. 假设人在雨中行走的路径是直线。

1
根据上述假设和变量,可以建立以下数学模型:
1. 定义起点和终点的坐标(x1,y1)和(x2,y2)。

2. 定义每个点(x,y)处的雨水强度I。

3. 计算人在一段距离(Δx,Δy)内花费的时间t:t = l / (v * x / 100),其中l是距离,v是速度,x是减速因子。

4. 计算从起点到终点的路线上每个点(x,y)的雨水强度I。

5. 根据模型3计算从起点到终点的每个区间的时间t,并将它们的
和作为总时间T。

6. 通过改变减速因子x,并重新计算总时间T,找到最小的总时间
对应的减速因子x,确定最快的路线。

这样,通过数学模型,可以帮助人们确定在雨中行走时最快的路线。

2。

数学建模淋雨模型

数学建模淋雨模型

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v=5m/s,雨速u=4m/s,降雨量ωm:=2cm/h,及跑步速度为v,按以下步骤进行讨论[17](1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.=5m/s,雨速u=4m/s,降雨量ω=2cm/h,设跑步距离d=1000m,跑步最大速度vm记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;四、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=2.2(㎡)V=0.00244446 (cm³)=2.44446 (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ.,且0°<θ<90°,建立a,b,c,d,u,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θu⋅且方向与v相反,sin故人相对于雨的水平速度为:()v⋅θsinu+则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v s i n u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /c o s b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v1800v875.1sin 5.7cos V ⋅++=θθ由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。

初等数学建模试题极其答案

初等数学建模试题极其答案

1.你要在雨中从一处沿直线走到另一处.雨速是常数.方向不变。

你是否走得越快.淋雨量越少呢?2.假设在一所大学中.一位普通教授以每天一本的速度开始从图书馆借出书。

再设图书馆平均一周收回借出书的1/10.若在充分长的时间内.一位普通教授大约借出多少年本书?3.一人早上6:00从山脚A上山.晚18:00到山顶B;第二天.早6:00从B下山.晚18:00到A。

问是否有一个时刻t,这两天都在这一时刻到达同一地点?4.如何将一个不规则的蛋糕I平均分成两部分?5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家.家中的狗一直在二人之间来回奔跑。

已知哥哥的速度为3公里/小时.妹妹的速度为2公里/小时.狗的速度为5公里/小时。

分析半小时后.狗在何处?6.甲乙两人约定中午12:00至13:00在市中心某地见面.并事先约定先到者在那等待10分钟.若另一个人十分钟内没有到达.先到者将离去。

用图解法计算.甲乙两人见面的可能性有多大?7.设有n个人参加某一宴会.已知没有人认识所有的人.证明:至少存在两人他们认识的人一样多。

8.一角度为60度的圆锥形漏斗装着10端小孔的面积为0.5平方厘米.9.假设在一个刹车交叉口.所有车辆都是由东驶上一个1/100的斜坡.计算这种情下的刹车距离。

如果汽车由西驶来.刹车距离又是多少?10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。

包扎时用很长的带子缠绕在管道外部。

为了节省材料.如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。

:顶=1:a:b.选坐.v>0,而设语雨L(1q -+v x ),v≤x Q(v)=L(v x -q +1),v>x2.解:由于教授每天借一本书.即一周借七本书.而图书馆平均每周收回书的1/10.设教授已借出书的册数是时间t 的函数小x(t)的函数.则它应满足(时间t 以周为单位)其中 初始条件表示开始时教授借出数的册数为0。

解该线性题得X(t) =70[1-e t 10 ]由于当t ∞时.其极限值为70,故在充分长的时间内.一位普通教授大约已借出70本书。

数学建模淋雨量与跑步速度

数学建模淋雨量与跑步速度

数学建模淋雨量与跑步速度
情景重现
下雨天忘了带雨伞,要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑的越快,淋雨越少,将人体简化为长方体,高a=1.5米(颈部以下),宽b=0.5米,厚c=0.2米,设跑步距离d=100米,跑步最大速度=5米/秒,雨速u=4米/秒,降雨量w=2cm/h,记跑步速度为)
基本假设
(1)风速始终保持不变
(2)降雨速度和降雨强度保持不变
(3)跑完全程的速度始终不变
符号的约定
a人的身高(颈部以下)(已知)
b人的宽度(已知)
c人的厚度(已知)
d全程距离(知)
Vm跑步最大速度(已知)
u雨速(已知)
w降雨量(已知)
v人跑步的速度(未知)
C身上被淋的雨水总量(升)(未知)
I降水强度(单位时间平面上降下雨水的厚度)(厘米/时)
模型的建立
结论
通过对以上模型的分析我们可以知道,在雨中行走时要使身上淋的雨水最少,除了要考虑降雨角度外,还好考虑降雨速度,即是根据降雨角度和降雨速度来选择自己在雨中的行走速度,具体做法如下:
(1)如果雨是迎着前进的方向落下,应该以最大的速度跑完全程..
(2)如果雨是从背后落下,这时应该控制在雨中的速度,让它刚好等于落雨速度的水平分量.。

降雨模型(参考)

降雨模型(参考)
参与这问题的因素: 参与这问题的因素: 1. 2. 3. 降雨的大小; 降雨的大小; 降雨)的方向; 风(降雨)的方向; 路程的远近和人跑的快慢
[模型的假设] 模型的假设]
1.设雨滴下落的速度为 降水强度( 1.设雨滴下落的速度为 r ( 米/ 秒),降水强度(单 位时间平面上的降水厚度) 为 位时间平面上的降水厚度)
p = 1.39 × 10 6
,
,
D = 1000米.ຫໍສະໝຸດ ,h = 1.50米
,
w = 0.50米 d = 0.20米
6.95 × 10 4 (0.8 sin θ + 6 cosθ + 1.5v ) …………………(2) C= …………………(2) v
的减函数. 1. 是 v 的减函数 . 人将以最快的速度跑, 淋雨量最小, 人将以最快的速度跑 , 淋雨量最小 , 取 v = 6 米 秒 .
θ = 60 0 时 , C 当
0 0 < θ < 900 时 , sin θ , cosθ > 0 , C 当
= 14.7 × 10 米 = 1.47升
3
4
2.
6.95 × 10 4 0.8 sin 90 0 + 1.5v 当 θ = 90 时 , C = v
0
(
)
= 6.95 × 10 4 (1.5 + 0.8 v )
于是 C = pwD[rd cos α + h(v r sin α )] v
例如当 例如 当 v = 6 米 秒 且 α = 30 0 时 , C
= 0.77升 .
[结论] 结论] 1. 如 果 雨 是 迎 着 你 前 进 的 方 向 向 你 落 下 (θ ≤ 90 0 ) , 此 时 策 略 很 简 单 , 你 应 以 最 大 速 度 向前跑.

数学模型人在雨中奔跑速度与淋雨量的关系

数学模型人在雨中奔跑速度与淋雨量的关系

《数学模型与数学实验》摘要本文在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

针对问题一,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

针对问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量W与行走速度v之间的函数关系。

分析表明当v时,淋雨量最少。

行走速度为max针对问题三,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。

列出函数关系式分析并求解。

关键词淋雨量;降雨的大小;降雨的方向(风);路程的远近;行走的速度;雨滴下落的速度,角度;降雨强度;一、问题重述生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少,让我们假设一数学模型模拟计算真实情况。

当我们在雨中从一处沿直线跑到另一处时,如果雨速为常数,走的时候身体的动作的大小和暴露在雨中的面积大小影响着淋雨的多少,并且行走速度也同样影响着淋雨量Q,将人体简化成一个长方体,高a=1.5米,宽b=0.5米,厚c=0.2m,行走距离D,雨速u,降雨量I,行走速度为ν。

1、当我们不考虑风,即雨滴垂直下落时,淋雨量和人行走速度之间的关系2、当雨滴从前方(斜的)下落时,即雨滴与人体的夹角为θ,建立总淋雨量与速度v及其它参数之间的关系,此时速度与淋雨量的关系3、当雨从人的背面吹来,即雨滴与人体的夹角为θ,建立总淋雨量与速度v之间的关系二、模型的假设与符号说明2.1 基本假设1、假设人行走的路线是直线;2、不考虑风的方向(即假定前后左右都淋雨),这是一种较为理想的假设,主要为了建模的方便,并且假设雨滴的速度为常数;3、为计算淋雨面积的方便,把人体表面积看成长方体,长用a表示,宽用b表示,厚度用c 表示,且abc都是定值。

模型参考.ppt

模型参考.ppt

又设包含试剂A 的组数为c ,包含A 的 2-组合为
c

C
1 3
(个).

2C
2 n
个 2-组合中包含 A 的 2-组合有
2(n 1) 个.

2n 1 3C ……(2)
数学模型:
n 种试剂满足条件的试验方案存在的必要条件为:
nn 1 2n 1
1.
6 , 3 为整数,且n 4 .
现在要把以上2Cn2个2-组合分成 b
组,每一组有
C
42个2-组合,且这C
2 4

6
个2-组合恰好由4种试剂构成.
[模型的建立及求解]

如果满足
条件的试验方案存在.
且2C
2 n
个 2-组合分
成b 组,则
bC42 2Cn2 …………… (1)
② 若试验方案存在,则在n 种试剂中取定一种试剂 A.
§4 生 活 中 的 建 模 问 题
一. 组 织 春 游 问 题 [问题的提出]
某校组织春游,可以租用两种型号的客车:45座客车和60 座客车.已知45座客车的租金为每辆250元,60座客车的租金 为每辆300元;又若单独租用45座客车若干辆,则刚好坐满; 若单独租用60座客车,可少租一辆且余30个座位.
[问题的分析]
设 n 种化学试剂为1,2,3,, n .试验条件为:
① 每一组安排4种试剂; ② 任意两种试剂都恰好有两次被安排在同组中进行试验.
n 种试剂的 2-组合(或 2-子集)有Cn2 个.由于恰好
有两次被安排在同组中,所以有如下2Cn2 个 2-组合:
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

数学建模-淋雨模型

数学建模-淋雨模型

建模论文|淋雨模型姓名:王瑜班级:服工112学号:1人在雨中行走的速度与淋雨量关系摘要本文在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

针对问题一,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

针对问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量W与行走速度v之间的v时,淋雨量最少。

函数关系。

分析表明当行走速度为max针对问题三,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。

列出函数关系式分析并求解。

关键词淋雨量;降雨的大小;降雨的方向(风);路程的远近;行走的速度;一、问题重述生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少,让我们假设一数学模型模拟计算真实情况。

当我们在雨中从一处沿直线跑到另一处时,如果雨速为常数,走的时候身体的动作的大小和暴露在雨中的面积大小影响着淋雨的多少,并且行走速度也同样影响着淋雨量Q,将人体简化成一个长方体,高a=1.5米,宽b=0.5米,厚c=0.2m,行走距离D,雨速u,降雨量I,行走速度为ν。

1、当我们不考虑风,即雨滴垂直下落时,淋雨量和人行走速度之间的关系?2、当雨滴从前方(斜的)下落时,即雨滴与人体的夹角为θ,建立总淋雨量与速度v及其它参数之间的关系,此时速度与淋雨量的关系?3、当雨从人的背面吹来,即雨滴与人体的夹角为θ,建立总淋雨量与速度v之间的关系?二、模型的假设与符号说明2.1 基本假设1、假设人行走的路线是直线;2、不考虑风的方向(即假定前后左右都淋雨),这是一种较为理想的假设,主要为了建模的方便,并且假设雨滴的速度为常数;3、为计算淋雨面积的方便,把人体表面积看成长方体,长用a表示,宽用b表示,厚度用c 表示,且abc都是定值。

数学建模数学建模之雨中行走问题模型

数学建模数学建模之雨中行走问题模型

数学建模雨中行走模型系别:班级:姓名:学号:正文:数学建模之雨中行走问题模型摘要:考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。

若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑;若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。

① 当αsin r v <时,淋在背上的雨量为[]v vh rh pwD -αsin ,雨水总量()[]v v r h dr pwD C -+=ααsin cos .② 当αsin r v =时,此时02=C .雨水总量αcos v pwDdr C =,如030=α,升24.0=C这表明人体仅仅被头顶部位的雨水淋湿.实际上这意味着人体刚好跟着雨滴向前走,身体前后将不被淋雨.③ 当αsin r v >时,即人体行走的快于雨滴的水平运动速度αsin r .此时将不断地赶上雨滴.雨水将淋胸前(身后没有),胸前淋雨量()v r v pwDh C αsin 2-= 关键词:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度1.问题的重述人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢一个简单的情形是只考虑人在雨中沿直线从一处向另一处进行时,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少2.问题的分析.由于没带伞而淋雨的情况时时都有,这时候大多人都选择跑,一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。

但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

,一、我们先不考虑雨的方向,设定雨淋遍全身,以 最大速度跑的话,估计总的淋雨量;二、再考虑雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ ,如图1,建立总淋雨量与速度v 及参数a,b,c,d,u,w,θ之间的关系,问速度v 多大,总淋雨量最少,计算θ=0,θ=090时的总淋雨量;三、再是雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2.,建立总淋雨量与速度v及参数a , b , c, d , u , w , α之间的关系,问速度多大,总淋雨量最少;四、以总淋雨量为纵轴,对(三)作图,并解释结果的实际意义;五、若雨线方向不在同一平面内,模型会有什么变化;按照这五个步骤,我们可以进行研究了。

核心素养导向的高中数学建模活动--以“雨中行”教学为例

核心素养导向的高中数学建模活动--以“雨中行”教学为例

核心素养导向的高中数学建模活动--以“雨中行”教学为例李志鹏
【期刊名称】《上海课程教学研究》
【年(卷),期】2024()2
【摘要】为了落实课程标准中数学建模核心素养的教学要求,以“雨中行”一课为例,通过设计丰富的课堂实验和学生探究活动,有效地解决了学生在分析问题和建立模型环节中遇到的困难。

通过自主学习,学生学会如何将实际问题转化为数学问题,培养了用数学知识解决生活中实际问题的能力,提升数学建模的整体素养。

【总页数】5页(P42-46)
【作者】李志鹏
【作者单位】上海市杨浦高级中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.核心素养导向下的高中数学建模教学设计——以《三角函数模型的简单应用》一课为例
2.核心素养导向下高中生数学建模活动实践
3.核心素养导向下的高中数学建模教学探索
——以"体重与脉搏"教学为例4.核心素养导向下的高中物理探究式活动教学——以“弹力”教学为例5.核心素养导向下高中化学项目式教学实践——评《核心素养导向的化学教学实践与探索》
因版权原因,仅展示原文概要,查看原文内容请购买。

雨中行走数学建模报告

雨中行走数学建模报告

中国地质大学(武汉)China University of Geosciences(Wuhan)数学建模课程作业———雨中行走问题小组成员:姓名班级学号张蓓 121131 20131002378徐静茹 121132 20131004282解傲月 123131 20131002866一、 建模准备建模题目: 雨中行走的数学模型一个雨天,你有急事需要从家中到学校去。

学校离家仅lOOOm ,而且情况紧急,你不准备花时间去翻找雨具,决定碰一下运气,顶着雨去学校。

如果刚刚出发雨就下起来了,但你也不再打算回去了。

一路上,你将被雨水淋湿。

一个似乎很简单的事实是你应该在雨中尽可能的快走,以减少淋雨的时间和淋雨量,事实是不是总是如此呢?试组建数学模型来探讨雨中行走的测略,以尽量减少淋雨量。

建模目标:在给定的降雨条件下,试组建数学模型来探讨雨中行走的测略,以尽量减少淋雨量。

题目分析:影响结果的主要因素: 淋雨量, 降雨的大小,风向,路程的远近,行走的速度。

二、创建模型假设及物理量符号标注1.将人体视为身高h 米,宽度 w 米,厚度d 米的长方体,人体所受淋雨总量用C 升来记。

2.降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。

在这里可视其为一常量。

3.外部风速保持不变。

4.你一定常的速度 v 米/秒跑完全程D 米。

三、 模型建立与计算1.不考虑雨的方向,此时,你的前后左右和上方都将淋雨。

淋雨的面积:)(米2 wd +2dh +2wh = S , 雨中行走的时间:(秒)v D t = 降雨强度: (升)S × 3600 / I × / v)10(D = ) 米( S 0.01× 3600) / (I ×t = C ⨯ 模型中 D ,I ,S 为参数,而v 为变量。

结论,淋雨量与速度成反比。

这也验证了尽可能快跑能减少淋雨量。

s) / (m 3600)I (0.01/ = )时/ 米( 0.01I= )时/ 厘米( I若取参数D=1000米,I=2厘米/小时,h=1.50米, w=0.50米,d=0.20米,即2米2.2= S 。

雨中行走问题(数学问题解决)

雨中行走问题(数学问题解决)

雨中行走问题(数学问题解决)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN科目:数学问题解决摘要:雨天,你有件急事需要从家中到学校去,学校离家不远,仅有一公里,况且事情紧急,你不准备花时间翻找雨具,决定碰一下运气,顶着雨去学校。

假设刚刚出发雨就大了,但你也不打算再回去了。

一路上,你将被大雨淋湿。

一个似乎很简单的事实是你应该在雨中尽可能地快走,以减少雨淋的时间。

但是如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

通过建立数学模型来探讨如何在雨中行走才能减少淋雨的程度,分别从雨与人的方向以及是否在同一平面等情况找出如何在雨中行走才能淋雨最少。

一.问题的提出对于雨中行走这个实际的问题,它的背景是简单的,人人皆知无需进一步讨论。

我们的问题是:要在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最低。

显然它可以按确定性模型处理。

分析参与这一问题的因素,主要有:①降雨的大小;②风(降雨)的方向;③路程的远近与你跑的快慢。

二、模型假设1、降雨的速度(即雨滴下落速度)和降水强度(单位时间平面上降下雨水的厚度)保持不变;2、你以定常的速度跑完全程;3、风速始终保持不变;4、把人体看成一个长方体的物体;三、模型的建立与求解1、不考虑降雨的角度的影响即在你行走的过程中身体的前后左右和上方都将淋到雨水。

参数与变量::d雨中行走的距离;t雨中行走的时间;::v雨中行走的速度;:a你的身高;:b你的宽度;:c你的厚度;:q你身上被淋的雨水的总量;:w降水强度(降雨的大小,即单位时间平面上降下雨水的厚度,厘米/时)行走距离d,身体尺寸不变,从而身体被雨淋的面积22s ba ca bc=++是不变的,可认为是问题的参数。

雨中行走的速度v,从而在雨中行走的时间/t d v=及降雨强度的大小在问题中是可以调节、分析的,是问题中的变量。

考虑到各参数取值单位的一致性,可得在整个雨中行走期间整个身体被淋的雨水的总量是:()3(/3600)0.01()/(/3600)10() q t w S d v w S=⋅⋅⋅=⋅⋅⋅米升模型中的参数可以通过观测和日常的调查资料得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雨中行走问题的分析
吴珍数学与应用数学二班 A班
冯奎艳数学与应用数学二班 A班
杨彦云数学与应用数学二班 A班
摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.
针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。

针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。

然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。

针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.
针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。

关键词雨滴降落频率;优化模型;淋雨量
一、问题重述
一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。

那么在雨中以何种速度跑,淋雨量最少。

现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。

按以下步骤进行讨论:
(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问
速度多大时,总淋雨量最少。

(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为
α,问速度多大时,总淋雨量最少。

(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。

二、问题分析
人在雨中行走时,行走时间即淋雨时间。

把人看成一个长方体,总淋雨量是各个面淋雨量之和。

为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。

对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。

人以最大速度匀速运动时,通过位移公式S vt =,可计算出运动时间。

对于问题二,当雨迎面而来时,由于雨速与人行走方向成θ角且在同一铅直平面,通过速度分解,分别考虑人头顶方向雨的方向、人正面雨速方向,再根据淋雨面积和淋雨时间即可确定淋雨量,建立总淋雨量模型,分析淋雨量关于速度的函数,得到最优解v ,使淋雨量最小。

对于问题三,雨从背面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为α,与题二类似,淋雨量从人背面和头顶两个面讨论,两个面的雨速经过速度分解,雨降在两个面的速度是不同的,最终得出两个面的淋雨量,建立总淋雨量模型,通过分析淋雨量关于速度的函数,得到最优解v 使淋雨量最小。

对于问题四,固定人的行走方向,从一个点出发建立直角坐标系,雨斜向下与竖直方向成β(02
π
β≤<
)雨向以β绕竖直方向旋转一周包含了雨所有的方向,涵盖了雨的方向与行走方向处于铅直平面和异面的情况,建立模型,分情况讨论即可得出雨向与行走方向异面时的淋雨量。

三、模型假设
1.假设人是一个长为l ,宽为d ,高为h 的长方体,人的各个面都有被淋到雨的可能;
2.假设人在奔跑过程中以v 匀速运动;
3.假设下雨过程中,风速方向及大小稳定;
四、符号表示
五、模型建立与求解
冒雨行走是生活中常见的问题,为了被淋湿的最少,建立相应的数学模型来解决在雨中如何行走,使淋雨量最少。

5.1不考虑雨的方向时的淋雨量分析
在不考虑雨的方向的条件下,设降雨淋遍全身,则淋雨量包括顶部淋雨量,两个侧面淋雨量,迎面和侧面淋雨量。

淋雨时间 D
t v
=
淋雨面积(顶部和四个侧面面积) 22s dl hl hd =++
淋雨量 ()122D
Q c dl hl hd v
=⨯++
5.2雨迎面吹来的淋雨量分析
图1
雨迎面吹来时,雨的速度方向和人体的夹角为θ,当是大暴雨时,雨像屋檐流水是不间断的,用雨速就可以确定降雨量,但通常雨都是不连续下落的,为了描述雨的大小引入降雨频率p 的概念。

定义p 为雨下落的频率用来描述雨的大小,将单位时间划分为n 个t ∆(n 尽
可能的大)
()cos sin Dc Dc v r
αα+- 其中有m 个t ∆的时间在下雨。

m
p n
=(0< p <1)记V 为雨的体积则
m mV c p n nV v ===
当p =1时,雨是大暴雨连续的下。

当p =0时,晴天没有下雨。

前部降雨量
()()sin D
r v p hl v θ+ 顶部降雨量 ()cos D
r p dl v θ
总降雨量
()()()()2sin cos cos sin D D
Q r v p hl r p dl v v
D Dchl r cdl chl v r v
θθθθ=
++=++
5.3雨背面吹的淋雨量分析
图2
顶部降雨量
cos D
rpdl v α 背部淋雨量 sin D
dh r v p v
α-⨯
总淋雨量 3cos sin D D
Q rpdl dh r v p v v αα=+-⨯
当sin r v α>时 ()3cos sin D D
Q dlrp dh r v p v v αα=+-⨯
=
cos sin 1Dcdl Ddhc r v r v αα⎛⎫
+- ⎪⎝⎭
α 当sin r v α<时3Q =
cos sin 1Dcdl Ddhc r v r v αα⎛⎫+- ⎪⎝⎭
5.4 雨线方向与行走方向异面
A x
图3(n 为雨向)
把人当做长方体以侧棱AB 为Z 轴建立图3所示的直角坐标系,确定人的行
走方向(如图3),引入角γ,γ是雨线在xoy 平面即水平面上的投影与y 轴的夹角,β是雨线与z 轴的夹角(0,022
π
βγπ≤<
≤≤)
,可以确定:雨线与人头顶的夹角为πβ-,与人的后面AA ’B ’B 的夹角为πγ-,与人的侧面ABCD 夹角为
γ。

其中:β=0时,雨线垂直下落; γ=0时,雨线从背面吹来; γ=π时,雨线迎面吹来。

这三种情况的雨线方向与行走方向都在同一铅直平面内,此处不予详细讨论。

即 02
πβ<<
,02γπ<<时,雨线方向与行走方向异面。

顶部淋雨量:
cos D
rdl v β 背面:30,222ππγγπ<<<<(迎面:32π
πγ<<
)淋雨量 :sin()2
D hdr v v π
γ-- 侧面淋雨量:
sin D
hlr v
γ 总淋雨量:cos sin()sin 2D D D
Q dlr hdr v hlr v v v
πβγγ=
+--+ 六 、结果分析与检验
6.1不考虑雨的方向,雨淋遍全身时的淋雨量为
()122D
Q c dl hl hd v
=⨯++,
1Q 是关于v 的一元函数,随v 增大而减小。

即人的行走速度越大,淋雨量越小,
符合生活实际。

6.2雨迎面吹来情况
淋雨量为()2cos sin D Dchl r cdl
Q chl v r v
θθ=++,2Q 是关于v 的一元函数,随v
的增大而减小。

即人的行走速度越大,淋雨量越小,符合生活实际。

6.3 雨背面吹来情况
总淋雨量 3cos sin D D
Q rpdl dh r v p v v
αα=
+-⨯ 当sin r v α>即arcsin v r α⎛⎫
> ⎪⎝⎭时3Q =cos sin 1Dcdl Ddhc r v r v αα⎛⎫+- ⎪⎝⎭.3Q 是关于v 的一元函数,随v 的增大而减小。

即人的行走速度越大,淋雨量越小。

当sin r v α>时即arcsin v r α⎛⎫
> ⎪⎝⎭时3Q = ()cos sin D D dlrp dh v r p v v αα+-⨯=
cos sin 1Dcdl Ddhc r v r v αα⎛⎫
+- ⎪⎝⎭。

因为在现实问题中sin 0v r α->,所以当sin v r α=时
3Q 取得最小值。

即当雨从背面吹来,行走方向和雨的方向的夹角arcsin v r α⎛⎫> ⎪⎝⎭

条件下,行走速度sin v r α=时,淋雨量最少。

6.4 异面情况分析
七、模型推广与评价
优点:
(1) 引入降雨频率来描述雨的大小,具有合理性和正确性. (2) 模型简单易懂; 缺点:
(1)将人的形状考虑为长方体,理想化. (2)仅考虑了道路为直线的形式 推广
可以将人考虑为圆柱体,将道路转弯处的因素考虑进去,建立出相应的模型
参考文献
[1]熊启才,数学模型方法及应用,重庆大学出版社 [2]方道元,韦明俊,数学建模,浙江大学出版社。

相关文档
最新文档