(完整word版)光耦参数解释及设计注意事项
光耦参数详解范文
光耦参数详解范文光耦是一种将输入和输出电路隔离的器件,它由发光二极管(LED)和光敏三极管(光电三极管)组成。
它具有高耐电压、高隔离电阻、低反向漏电流等特点,在电子电路设计中广泛应用于信号隔离、电气隔离和驱动电路等领域。
下面详细介绍光耦的参数。
1.电源电压(VCC):这是光耦器件正常工作的电压范围。
它通常在数据表中指定,并应与应用电路的电源电压匹配。
2.峰值发光二极管电流(IFP):这是发光二极管在正向工作时的最大电流。
过大的电流可能会导致发光二极管损坏或寿命缩短。
3.受控电流传输比(CTR):CTR表示输入电流与输出电流的比例。
它是光耦的一个重要参数,用以描述输入光功率和输出电流的关系。
CTR 通常以百分比表示,并在数据表中给出。
4.响应时间(tR,tF):响应时间是光敏三极管从接收到光信号到输出电流达到规定值的时间。
它分为上升时间(tR)和下降时间(tF),通常以微秒为单位,并在数据表中给出。
5.隔离电压(VISO):隔离电压是指光电耦的输入与输出之间的电气隔离能力。
它表示器件能在工作电流和工作温度下承受的最大电压。
VISO 通常以伏特为单位,并在数据表中给出。
6.开关速度:开关速度是指光耦器件从关断到导通或从导通到关断的时间。
它主要由发光二极管和光敏三极管的响应时间决定。
7.工作温度范围:光耦器件通常具有工作温度范围,超出这个范围可能会导致器件性能下降或损坏。
工作温度范围通常在数据表中给出。
8.输入至输出间隔电容:光耦器件的输入和输出之间存在间隔电容。
间隔电容是由于器件结构造成的电容效应,会影响器件的高频响应和噪声特性。
9.反向漏电流(IRR):反向漏电流是指光敏三极管在无光照射时的漏电流。
正常情况下,漏电流应尽可能小,以确保器件的正常工作。
10.输入阻抗(RI):输入阻抗指的是光耦器件的输入端对外部电路的等效阻抗。
在设计中,应将输入阻抗与输入电源电阻、输出电气负载阻抗匹配,以确保信号正确传输。
光耦设计注意事项
光耦设计注意事项光耦合器件是一种将输入引脚和输出引脚通过光耦设计技术进行隔离的元件。
它由发光二极管(LED)和光敏二极管(光敏电阻)组成,可以将输入信号转化为光信号,并通过光电转换器件输出。
在光耦设计中,有一些注意事项需要特别关注,以确保光耦合器件的性能和可靠性。
本文将探讨一些光耦设计的注意事项。
首先,选择适当的光耦类型非常重要。
目前市场上有各种不同类型的光耦合器件可供选择,包括光电晶体管(OPTO),光电二极管(OPIC),光敏晶体管(OPT)等。
每种光耦类型都有其特定的用途和优缺点。
因此,在选择光耦类型时,需要根据具体应用需求来确定最合适的类型。
其次,要合理设计光耦的电路连接方式。
光耦可以采用串联连接或并联连接方式。
串联连接方式适用于需要实现电流放大和隔离的场景,而并联连接方式适用于需要实现电压放大和隔离的场景。
在确定连接方式时,需要考虑输入和输出电压、电流的匹配以及对电路性能和稳定性的影响。
另外,为了提高光耦的工作效果,需要注意光学和电学参数的匹配。
例如,光耦的输入电阻和输出负载阻抗之间的匹配是非常重要的。
如果输入电阻和输出负载阻抗之间存在不匹配,可能会导致信号损失和噪声增加。
因此,在设计光耦时,需要根据实际情况,选择合适的输入电阻和输出负载阻抗,以提高工作效果。
此外,为了增加光耦的可靠性和耐久性,应注意热管理。
由于光耦工作时会产生热量,如果热量不能有效散发,可能会导致器件的温度升高,从而影响器件的性能和寿命。
因此,在设计光耦时,需要提供适当的散热措施,如增加散热片、散热塑料等,以确保器件的稳定性和可靠性。
最后,在光耦的应用中,需要特别关注光耦的工作环境和工作条件。
例如,在高温、潮湿、震动等恶劣环境下,光耦的性能和可靠性可能会受到影响。
因此,在设计光耦时,需要考虑工作环境的特点,选择符合要求的光耦产品,或采取防护措施,以确保光耦在恶劣环境下的正常工作。
综上所述,光耦设计的注意事项包括选择适当的光耦类型、设计合理的电路连接方式、匹配光学和电学参数、进行热管理以及关注工作环境和工作条件。
光耦选型最全指南及各种参数说明
光耦选型手册光耦简介:光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。
光耦的分类:(1)光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。
常用的4N系列光耦属于非线性光耦。
线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。
常用的线性光耦是PC817A—C系列。
(2)常用的分类还有:按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。
按通道分,可分为单通道,双通道和多通道光电耦合器。
按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。
按输出形式分,可分为:a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。
b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。
c、达林顿三极管输出型,其中包括交流输入型,直流输入型。
d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。
e、低导通输出型(输出低电平毫伏数量级)。
f、光开关输出型(导通电阻小于10Ω)。
光耦参数详解
光耦参数详解光耦(Optocoupler),也被称为光电隔离器或光电耦合器,是一种常用的电气隔离元件。
它由发光二极管(LED)、光敏晶体管(光敏三极管)和光电耦合器件组成。
光耦器件可将输入电信号转换为光信号,再将光信号转换为输出电信号,实现输入与输出之间的电气隔离。
在实际应用中,光耦器件的参数非常重要,在选型和设计过程中需要充分了解光耦参数的含义与特性。
本文将对光耦参数进行详解。
一、LED电流(IF)LED电流是指通过发光二极管的电流。
较大的LED电流可以提高器件的输出响应速度和增大耦合光功率。
通常,我们应选择适当的LED电流,确保LED工作在额定电流范围内,以提供合适的光照强度。
二、输出电压(VCEsat)输出电压指的是光敏晶体管或光敏三极管的饱和电压。
当输入光强度与电流满足一定条件时,光敏晶体管或光敏三极管的输出电压将保持在较低的水平。
输出电压越小,表示光耦器件的开关速度越快。
三、耐压(BVCEO)耐压是指光敏晶体管或光敏三极管的耐受反向电压。
它是光耦器件能够工作的最大反向电压。
在选择光耦器件时,应确保其耐压大于实际工作电压,以保证其正常、稳定的工作。
四、光电流传输比(CTR)光电流传输比是衡量光耦器件性能的重要指标。
它定义了光信号与输入电信号之间的转换效率。
光电流传输比越大,表示器件对输入光信号的转换效率越高。
五、工作温度范围(Topr)工作温度范围是指光耦器件能够正常工作的环境温度范围。
在实际应用中,应确保光耦器件的使用环境温度在工作温度范围内。
光耦参数的选择与应用需求密切相关。
在选型时,我们应根据具体使用情况,合理选择合适的光耦器件,并对参数进行综合考虑。
同时,由于光耦器件的参数与性能之间存在一定关系,对于不同的应用场景,也需要灵活调整参数,以满足特定的电路要求。
需要注意的是,在设计电路时,也需要充分考虑光耦器件周围的光电磁环境,合理布局电路板,以减少光耦器件与外界的电磁干扰,确保其正常工作。
光耦的参数
光耦的参数一、光耦的概述光耦是一种将电信号转换为光信号或者将光信号转换为电信号的器件。
它由发光二极管(LED)和光敏晶体管(OPTO)组成,通过LED发出的光束照射到OPTO上,产生电流,从而实现电-光或者光-电转换。
二、常见的光耦参数1. 公共模式抑制比(CMRR)公共模式抑制比是指在输入信号中同时存在共模干扰和差模信号时,输出信号中差模信号与共模干扰之比。
CMRR越大,说明设备对共模噪声的抑制能力越强。
2. 隔离电压隔离电压是指在输入端和输出端之间所能承受的最大电压。
通常情况下,隔离电压越高,说明设备隔离效果越好。
3. 带宽带宽是指一个设备能够传输的最高频率范围。
通常情况下,带宽越大,说明设备传输速度越快。
4. 响应时间响应时间是指从输入信号变化到输出信号变化所需要的时间。
响应时间越短,说明设备响应速度越快。
5. 耐压耐压是指设备在工作过程中所能承受的最大电压。
通常情况下,耐压越高,说明设备的安全性能越好。
三、光耦参数的影响因素1. 温度温度对光耦的影响比较大。
当温度升高时,光耦的灵敏度会下降,同时输出信号也会有所变化。
2. 光源功率光源功率对光耦的影响也比较大。
当光源功率过低时,会导致输出信号弱化甚至消失;而当光源功率过高时,则会导致输出信号失真。
3. 工作电流工作电流对光耦的影响也比较明显。
当工作电流过低时,会导致输出信号弱化甚至消失;而当工作电流过高时,则会导致输出信号失真。
4. 入射角度入射角度也会影响光耦的性能。
通常情况下,入射角度越小,则输出信号越强;而入射角度越大,则输出信号越弱。
四、如何选择合适的光耦参数1. 根据需求确定参数范围首先需要根据实际需求,确定所需要的光耦参数范围。
比如,如果需要传输高速信号,则需要选择带宽较大的光耦;如果需要保证设备的安全性能,则需要选择隔离电压和耐压较高的光耦。
2. 选择合适的品牌和型号在确定所需参数范围后,可以根据品牌和型号进行筛选。
通常情况下,知名品牌和口碑好的型号更为可靠。
p3554 光耦参数
光耦参数1. 引言光耦(Optocoupler)是一种能够将电气信号转换为光信号并传输的器件。
它由发光二极管(LED)和光敏晶体管(Phototransistor)组成,通过光的反射或透射来实现输入和输出之间的电气隔离。
在很多应用中,光耦能够提供安全、稳定和快速的电气隔离,因此在电子领域得到广泛应用。
本文将介绍光耦的参数及其意义,并对各个参数进行详细解释。
2. 光耦参数2.1 输入端参数2.1.1 输入电流(IF)输入电流是指流经发光二极管的电流,通常以毫安(mA)为单位。
输入电流决定了发光二极管产生的光强度,较大的输入电流会导致更亮的发光效果。
2.1.2 输入功率(Pd)输入功率是指输入端所需的功率,通常以瓦特(W)为单位。
输入功率与输入电流之间存在以下关系:Pd = IF * Vf其中Vf为发光二极管的正向工作电压。
2.2 输出端参数2.2.1 输出电流传输比(CTR)输出电流传输比是指输出电流与输入电流之间的比值,通常以百分比表示。
CTR是光耦的重要参数之一,它表示了光耦的转换效率。
较高的CTR意味着更高的输出电流,因此在设计中需要选择合适的CTR以满足应用需求。
2.2.2 最大输出电压(VCEO)最大输出电压是指光敏晶体管能够承受的最大输出端电压。
超过最大输出电压可能会导致器件损坏,因此在设计中需要确保输出端电压不超过VCEO。
2.2.3 最大耐受功率(Pc)最大耐受功率是指光敏晶体管能够承受的最大功率。
超过最大耐受功率可能会导致器件损坏,因此在设计中需要确保输入和输出功率不超过Pc。
2.3 响应时间响应时间是指光耦从接收到输入信号到产生相应输出信号所需的时间。
响应时间包括上升时间和下降时间两部分。
2.3.1 上升时间(tr)上升时间是指光敏晶体管从低电平到高电平的转换时间。
较小的上升时间意味着光敏晶体管能够更快地响应输入信号。
2.3.2 下降时间(tf)下降时间是指光敏晶体管从高电平到低电平的转换时间。
光耦参数详解范文
光耦参数详解范文光耦是一种将输入信号和输出信号以光线的形式进行隔离的电子器件。
它由一个光气室和一个光敏元件组成,通过控制输入信号使光源发出或屏蔽光线,从而控制输出信号的产生。
光耦的参数是评价其性能和适用范围的重要指标,下面对光耦的一些主要参数进行详细解释。
1.隔离电压:光耦的隔离电压是指在光气室中光线没有透过时,输入端和输出端之间可以承受的最大电压。
隔离电压越大,说明光耦具有更好的隔离效果,可以抵御更高的电压干扰。
2.电传导电流:电传导电流是指在光源未发光时,由于电耦合产生的输入端到输出端的电流。
电传导电流越小,表示光耦的隔离效果越好,输入信号不会通过电耦合效应影响输出信号。
3.触发电流:触发电流是指在光源发光时,输入端需要提供的最小电流值来触发光敏元件。
触发电流越大,说明光敏元件对光的敏感性越低,需要更大的驱动电流才能正常工作。
4.输出电流:输出电流是指光耦的输出端可以提供的最大电流值。
输出电流越大,表示光耦可以驱动更大负载的电路。
5.饱和电压降:光耦的饱和电压降是指在输出电流达到最大值时,输入端和输出端之间的电压降。
饱和电压降越小,表示光耦在负载较大时能够提供更稳定的电压输出。
6.堵塞电流:堵塞电流是指在光源未发光时,输出端到输入端存在的电流。
堵塞电流越小,表示光耦的隔离效果越好,基本可以忽略漏电流。
7.响应时间:响应时间是指光耦在输入信号变化后,输出信号达到稳定状态所需要的时间。
响应时间越短,表示光耦的响应速度越快,适用于高频率的信号传输。
8.工作温度范围:工作温度范围是指光耦能够正常工作的温度范围。
光耦应在规定的温度范围内工作,超出该范围可能会导致光耦的性能下降或损坏。
以上是一些光耦的主要参数,不同类型的光耦会有一些特殊的参数。
在选择光耦时,需要根据具体的应用需求选择合适的参数,以获得最佳的性能和可靠性。
总结起来,光耦的参数对于保障信号隔离的效果、增强电路稳定性和提高性能都起到非常重要的作用,因此在设计和选择光耦时,需要充分考虑这些参数的特点和限制。
光耦元件参数
光耦元件参数光耦(Optocoupler)是一种将输入和输出电路隔离的元件,由发光二极管(LED)和光敏三极管(光电晶体管、光电晶体管、光敏二极管)组成。
它通过光的转换来实现输入和输出之间的电隔离,具有输入电路与输出电路之间高隔离、低耦合、高电阻和高速度等特点。
本文将对光耦元件的参数进行详细介绍。
1.绝缘电压(VISO):光耦的绝缘电压是指在输入和输出之间能够承受的最大电压。
它决定了光耦在工作时能够安全隔离输入和输出电路,防止电压过高引起的电击和损坏。
绝缘电压的单位一般为伏特(V),常见的光耦绝缘电压有250V、500V、1000V等。
2.电流传输比(CTR):电流传输比是指光耦输入端的电流与输出端电流之间的比值。
它反映了光耦将输入电流转换为输出电流的效率。
电流传输比越高,表示输入端的电流变化对输出端电流的影响就越大,输出电流也就越大。
常见的电流传输比有50%、100%等。
3.响应时间(tR、tF):响应时间是光耦从输入端接收到信号后,输出端从低电平到高电平(或从高电平到低电平)所需要的时间。
它决定了光耦的工作速度和响应能力。
响应时间越短,表示光耦的响应速度越快,适用于高速传输和快速开关等应用。
4.工作温度(Topr):工作温度是指光耦能够正常工作的温度范围。
光耦在工作时会产生一定的热量,如果工作温度超过了允许范围,可能会导致元件性能下降或损坏。
因此,在选择光耦时需要根据实际工作环境确定允许的工作温度范围。
5.耐压(VCEO、VCEOs):光耦的耐压是指输出端(光敏三极管部分)能够承受的最大电压。
它决定了光耦在输出端的电压变化范围,超过耐压范围可能会导致破坏。
耐压的单位一般为伏特(V),常见的耐压有30V、60V、80V等。
6.继电器特性(RL、VOL、VOH):光耦常用于控制继电器,因此相关的继电器特性也是需要考虑的。
RL是继电器的负载电阻,表示继电器在导通状态时所能承受的最大负载电流。
VOL是继电器的输出低电平,表示继电器在导通状态时输出端的低电平电压。
完整word版光耦选型最全指南及各种参数说明
光耦选型手册光耦简介:光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。
光耦的分类:(1)光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。
常用的4N系列光耦属于非线性光耦。
线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。
常用的线性光耦是PC817A—C系列。
(2)常用的分类还有:按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。
按通道分,可分为单通道,双通道和多通道光电耦合器。
按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。
按输出形式分,可分为:a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。
b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。
c、达林顿三极管输出型,其中包括交流输入型,直流输入型。
d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。
e、低导通输出型(输出低电平毫伏数量级)。
f、光开关输出型(导通电阻小于10Ω)。
光耦参数详解(一)
光耦参数详解(一)光耦参数详解1. 什么是光耦参数?•光耦参数是指光电耦合器的一些关键性能指标和参数,用于评估光电耦合器的性能和适用范围。
2. 常见的光耦参数及其意义•输入光功率:指输入光信号的功率水平,通常以光功率单位dBm 表示。
光功率越高,光电耦合器的灵敏度越好,可以实现更高的传输距离。
•频率响应:用于描述光电耦合器对输入光信号频率变化的响应能力。
频率响应越宽,光电耦合器的传输带宽越大,可以传输更高频率的信号。
•隔离电压:指输入端和输出端之间的电压隔离能力。
隔离电压越高,光电耦合器的隔离效果越好,可以有效防止信号干扰和电路短路。
•响应时间:用于描述光电耦合器对输入光信号变化的响应速度。
响应时间越短,光电耦合器的快速开关能力越强,适用于高速信号传输和快速开关电路。
•工作温度范围:指光电耦合器能够正常工作的温度范围。
工作温度范围越宽,光电耦合器的适用场景越广。
3. 如何选择合适的光耦参数?•根据实际应用需求,选择合适的光功率、频率响应、隔离电压、响应时间和工作温度范围等参数。
•如果需要传输高频率信号,需要选择具有宽频率响应的光电耦合器。
•如果要求输入输出电路隔离效果好,需要选择隔离电压较高的光电耦合器。
•如果需要进行快速开关或传输高速信号,需要选择响应时间较短的光电耦合器。
4. 光耦参数的实际应用•光电耦合器广泛应用于工业控制、通信设备、医疗设备等领域。
•在工业控制领域,光电耦合器可以实现输入信号和输出信号的隔离,保护下位机免受高压开关电路的干扰。
•在通信设备中,光电耦合器用于光纤通信系统中的信号隔离和信号调理。
•在医疗设备中,光电耦合器可以实现生物信号的隔离和测量,用于医学监护和诊断设备。
5. 总结•光耦参数是评估光电耦合器性能的关键指标。
•不同的光耦参数适用于不同的应用场景和需求。
•合理选择光耦参数能够提高系统的性能和稳定性。
以上是关于光耦参数的详细解释,希望对读者有所帮助。
当选择光耦参数时,需要根据实际应用需求来进行合理的选择,以确保系统性能和稳定性的提高。
光耦参数解释及设计注意事项
一:光耦参数解释1、正向工作电压f V (forward voltage ):f V 是指在给定的工作电流下,LED 本身的压降。
常见的小功率LED 通常以f I =10mA 来测试正向工作电压,当然不同的LED ,测试条件和测试结果也会不一样。
2、正向电流f I :在被测管两端加一定的正向电压时二极管中流过的电流。
3、反向工作电压r V (reverse voltage ):是指原边发光二极管所能承受的最大反向电压,超过此反向电压,可能会损坏LED 。
而一般光耦中,这个参数只有5V 左右,在存在反压或振荡的条件下使用时,要特别注意不要超过反向电压。
如,在使用交流脉冲驱动LED 时,需要增加保护电路。
4、反向电流r I :在被测管两端加规定反向工作电压r V 时,二极管中流过的电流。
5、反向击穿电压br V ::被测管通过的反向电流r I 为规定值时,在两极间所产生的电压降。
6、结电容j C :在规定偏压下,被测管两端的电容值。
7、电流传输比CTR(current transfer ratio ):指在直流工作条件下,光耦的输出电流与输入电流之间的比值。
光耦的CTR 类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同决定了光耦工作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。
若输入电流、输出电流、电流传输比设计搭配不合理,可能导致电路不能工作在预想的工作状态。
8、集电极电流c I (collector current ):如上图,光敏三极管集电极所流过的电流,通常表示其最大值。
9、输出饱和压降VCE(sat):发光二极管工作电流IF 和集电极电流IC 为规定值时,并保持IC/IF≤CTRmin 时(CTRmin 在被测管技术条件中规定)集电极与发射极之间的电压降。
10、反向击穿电压ceo )(BR V :发光二极管开路,集电极电流c I 为规定值,集电极与发射集间的电压降。
光耦全参数解释及设计注意事项
光耦全参数解释及设计注意事项光耦合器(Optocoupler)是将光电二极管和晶体管紧密结合并密封在一个封装中的一种电子元器件。
它通过光耦技术将输入信号和输出端电路进行电隔离,实现信号隔离和传输,避免了信号传输过程中的干扰,同时还能具备电隔离的安全性能。
光耦合器的参数解释:1.输入光功率(PCE):光耦合器输出端的光功率,以瓦特(W)为单位。
这个参数决定了光耦合器的灵敏度和信号传输质量,光功率越高,信号传输衰减越小。
2. 输出光通量(PCTR):光耦合器输入端产生的光通量,以流明(lm)为单位。
这个参数衡量了光电二极管的发光能力,对于需要传输长距离、低功耗的应用来说,输出光通量应该尽量大。
3.峰值波长(λp):光电二极管和光敏三极管的最佳光收集范围。
光电二极管的输入光源应该尽量接近该波长才能获得最佳的输出效果。
4.隔离电压(VISO):输入端和输出端之间的电压隔离能力,以伏特(V)为单位。
隔离电压越高,信号传输过程中受到的电压干扰越小,电源与负载之间的互连更加安全可靠。
5.工作温度范围(TC):光耦合器能够正常工作的温度范围。
在选择光耦合器时,应根据实际应用环境的温度要求来选择合适的工作温度范围,以确保稳定可靠的工作性能。
设计注意事项:1.光源选择:应根据光耦合器的峰值波长要求,选择适合的发光二极管(LED)作为输入光源。
要注意光源的发光强度和工作电流,以确保输出光功率符合要求。
2.光耦合器与负载之间的电路设计:在光耦合器的输出端与负载之间,应根据负载的特性设计合适的功率放大电路或电阻衰减电路,来改变信号的驱动能力和阻抗匹配。
这样可以提高信号传输的质量和稳定性。
3.信号传输线路的设计:应注意尽量缩短信号传输路径,减少线路中的串扰、电磁干扰和功率损耗。
使用合适的屏蔽线缆可以有效地抑制干扰。
4.光耦合器的引脚连接:在布线时,应确保输入端和输出端的引脚连接正确,且不会出现引脚交叉连接或短路的情况。
这样可以避免不正确的信号传输和元器件损坏。
光耦技术参数
光耦技术参数光耦技术是一种常见的电气隔离技术,通过光学传感器和光电二极管的组合来实现电气隔离和信号传输。
在不同的应用领域中,光耦的技术参数会有所不同。
本文将从光耦的四个主要参数入手,分别是耦合系数、切断频率、响应时间和绝缘电阻。
一、耦合系数耦合系数是光耦的一个重要参数,用来描述输入端和输出端之间的光能转换效率。
耦合系数越大,表示输入端的光能更好地转换为输出端的电能,具有更高的灵敏度。
常见的耦合系数有10%、20%、30%等,一般可根据具体需求选择。
二、切断频率切断频率是指光耦在高频信号传输中能够正常工作的频率范围。
光耦的切断频率越高,表示其响应速度越快,能够传输更高频率的信号。
切断频率一般以MHz为单位,常见的数值有10MHz、20MHz等。
在选择光耦时,需要根据实际应用中信号的频率范围来确定切断频率。
三、响应时间响应时间是光耦从输入端接收到光信号后,输出端反应的时间。
响应时间越短,表示光耦的响应速度越快,适用于高速信号传输。
常见的响应时间有几十纳秒、几百纳秒等。
需要注意的是,响应时间与切断频率有一定关系,一般来说,响应时间越短,切断频率越高。
四、绝缘电阻绝缘电阻是光耦的一个重要指标,用来衡量光耦的电气隔离性能。
绝缘电阻越大,表示输入端和输出端之间的电气隔离效果越好,能够有效阻止信号干扰和电气噪声。
常见的绝缘电阻有几百兆欧姆、几千兆欧姆等。
在一些对电气隔离性能要求较高的应用中,需要选择具有较高绝缘电阻的光耦。
除了以上四个主要参数,还有一些次要参数也需要考虑,例如工作温度范围、耐压能力、功耗等。
这些参数的选择需要根据具体的应用需求来确定,以确保光耦能够在相应的环境中稳定可靠地工作。
总结一下,光耦技术参数包括耦合系数、切断频率、响应时间和绝缘电阻,这些参数决定了光耦的性能和适用范围。
在选择光耦时,需要根据实际应用需求来确定各个参数的取值,以确保光耦在特定的环境中能够正常工作。
同时,还需要注意光耦的次要参数,以满足特定应用的要求。
从三个方面解析光耦参数
从三个方面解析光耦参数光耦参数是指衡量光耦器件性能的各项指标和参数,包括光耦系数、响应时间、频带宽度、传输速率等。
通过解析光耦参数,我们可以了解光耦器件在光电转换、光电隔离等方面的性能。
第一方面,光耦系数。
光耦系数是指输入光功率与输出电流的比值。
它决定了光耦器件的灵敏度和增益。
光耦系数越高,表示输入光功率转换为电流的效率越高,对于输入光功率较小的情况下,输出电流可以保持较高的稳定性。
光耦系数的计算可以通过将光电二极管的电流与输入光功率之比来得到。
在实际应用中,光耦器件的光耦系数通常通过器件手册中给出的典型数值来确定。
第二方面,响应时间。
光耦器件的响应时间是指从光输入到电输出之间的时间延迟。
它反映了光耦器件的转换速度和相应的灵敏度。
响应时间较低的光耦器件可以更快地将光信号转换为电信号,并实现快速的光电隔离。
响应时间的计算可以通过将光电隔离器件的信号传输延迟与光输入信号的频率之比来得到。
在实际应用中,响应时间的要求通常根据具体应用的需求来确定,例如在高速通信领域中,需要具备快速响应时间的光耦器件。
第三方面,频带宽度和传输速率。
频带宽度是指光耦器件能够传输的频率范围。
高频带宽度意味着光耦器件可以传输更高的频率信号,从而实现更高的传输速率。
传输速率是指光耦器件能够传输的最大数据速率。
传输速率的提高可以通过增加光耦系数和改善响应时间来实现。
对于高速通信和数据传输应用,需要具备宽频带宽度和较大的传输速率的光耦器件。
频带宽度和传输速率的计算可以通过器件手册中给出的典型数值和相关公式来确定。
综上所述,通过对光耦参数的解析,我们可以从光耦系数、响应时间、频带宽度和传输速率等方面了解光耦器件的性能。
这些参数能够帮助我们选择和评估光耦器件,确保其能够满足应用需求,并提供良好的光电转换和光电隔离效果。
光耦参数详解(二)
光耦参数详解(二)光耦参数详解1. 光耦的定义与作用•光耦是一种电光转换器件,能将电信号转换为光信号,或将光信号转换为电信号。
•光耦常用于电气隔离、信号传输与控制等领域。
2. 光耦的组成结构•发光二极管(LED):将电信号转换为光信号的光源。
•光敏二极管(PD):将光信号转换为电信号的光电探测器。
3. 光耦的参数•额定电压(V_CE或V_F):在给定电流下,LED或PD的额定工作电压。
•最大电流(I_Fmax或I_Dmax):LED或PD可承受的最大电流。
•隔离电压(V_ISO):光耦在工作时不会导通或击穿的电压。
•光耦容忍功率(P_Diss):光电转换过程中产生的热量。
•响应时间:光耦从输入到输出的响应的时间延迟。
•器件封装:光耦常见的封装形式,如SMD、DIP等。
4. 典型的光耦应用•电气隔离:将高电压与低电压电路之间进行隔离,以防止电气干扰和触及危险电压。
•信号传输:将信号从一个电路传输到另一个电路,如从模拟信号到数字信号的转换。
•控制应用:在自动化系统中,光耦可用于实现信号的隔离和控制。
5. 光耦的优缺点•优点:–电气隔离能力强,可有效防止电气干扰和触及危险电压。
–封装形式多样,适用于不同的应用场景。
–响应时间快,可实现高速信号传输。
•缺点:–电气特性易受温度和工作条件的影响。
–光敏元件易受光源波长和光强的影响。
6. 如何选择光耦•根据应用需求确定电气隔离等级和功率要求。
•需要考虑工作温度范围和环境条件。
•选择适合的封装形式,方便与其他元件进行连接和安装。
7. 小结光耦是一种重要的电光转换器件,具有广泛的应用价值。
了解光耦的参数和特性,能够更好地选择适合的光耦并合理应用于实际场景中,实现电路的隔离和信号传输。
希望本文对读者理解光耦有所帮助。
(完整word版)光耦原理介绍
(完整word版)光耦原理介绍光电耦合器TLP521是可控制的光电藕合器件,光电耦合器广泛作用在电脑终端机,可控硅系统设备,测量仪器,影印机,自动售票,家用电器,如风扇,加热器等电路之间的信号传输,使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,减化电路设计。
东芝TLP521-1,-2和-4组成的砷化镓红外发光二极管耦合到光三极管。
该TLP521-2提供了两个孤立的光耦8引脚塑料封装,而TLP521-4提供了4个孤立的光耦中16引脚塑料DIP封装集电极-发射极电压:55V(最小值)经常转移的比例:50 %(最小)隔离电压:2500 Vrms (最小)图1 TLP521 TLP521-2 TLP521-4 光藕内部结构图及引脚图图2 TLP521-2 光电耦合器引脚排列图Characteristic 参数Symbol符号Rating 数值Unit单位TLP521?1 TLP521?2 TLP521?4LEDForward current 正向电流IF 70 50 mA Forward current derating 正向电流减率ΔIF/℃?0.93(Ta≥50℃)?0.5(Ta≥25℃)mA/℃Pulse forward current 瞬间正向脉冲电流IFP 1 (100μ pulse, 100pps) A Reverse voltage 反向电压VR 5 V Junction temperature 结温Tj 125 ℃接收侧Collector?emitter voltage 集电极发射极电压VCEO 55 V Emitter?collector voltage 发射极集电VECO 7 V注:使用连续负载很重的情况下(如高温/电流/温度/电压和重大变化等),可能会导致本产品的可靠性下降明显甚至损坏。
Recommended Operating Conditions建议操作条件*1: Ex. rank GB: TLP521?1 (GB)(Note): Application type name for certification test, please use standard product type name, i.e.TLP521?1 (GB): TLP521?1, TLP521?2 (GB): TLP521?2Individual Electrical Characteristic 单独的电气特性参数(Ta = 25℃)Coupled Electrical Characteristic 耦合电气特性参数s(Ta = 25℃)Switching Characteristic 开关特性参数(Ta = 25℃)Characteristic 参数Symbol 符号Test Condition 测试条件Min最小Typ典型Max最大Unit单位Rise time 上升时间trVCC=10V IC=2mA RL=100?— 2 —μs Fall time下降时间tf — 3 —Turn?on time 开启时间ton — 3 —Turn?off time 关断时间toff — 3 —Turn?on time 开启时间tONRL = 1.9kΩ (Fig.1) VCC = 5V, IF= 16mA— 2 —μs S torage time 存储时间ts —15 —Turn?off time 关断时间tOFF —25 —图3 TLP521-1 封装图图4 TLP521-2 封装图图5 TLP521-4 封装图图6 开关时间测试电路特性曲线图:应用电路:图7 打开或关闭12V直流电动机的TTL控制信号输入电路图74HC04 特性:缓冲输入传输延迟(典型值): 6ns at V CC = 5V, C L = 15pF, T A= 25°C扇出(驱动)能力: (在温度范围内)- 标准输出 . . . . . . . . . . . . . . . 10 LSTTL Loads- 总线驱动 . . . . . . . . . . . . . . . 15 LSTTL Loads ?宽工作温度范围 . . . –55°C to 125°C对称的传输延迟和转换时间相对于LSTTL逻辑IC,功耗减少很多HC Types- 工作电压:2V到6V- 高抗扰度: N IL = 30%, N IH= 30% of V CC at V CC = 5VHCT Types- 工作电压:4.5V到5.5V- 兼容直接输入LSTTL逻辑信号, V IL= 0.8V (Max), V IH = 2V (Min)- 兼容CMOS逻辑输入, I l1μA at V OL, V O该74HC04/74HCT04是高速CMOS器件,低功耗肖特基的TTL(LSTTL)电路。
光耦参数详解
光耦参数详解
光耦是一种用于电气隔离的器件,其由光电耦合器和光电转换器组成。
光电耦合器包含一个发光二极管和一个光敏三极管,通过发光二极管产生光信号并通过光敏三极管接收光信号,从而实现电信号与光信号的转换。
在应用中,光耦可以实现电路的隔离,提高电路的稳定性和可靠性。
光耦参数主要包括输入参数和输出参数。
输入参数包括输入光电流、输入光功率和输入电流。
输入光电流是指输入到光电耦合器的光信号所产生的电流,通常以毫安(mA)为单位。
输入光功率是指光耦合器所接收到的光信号的强度,通常以瓦(W)为单位。
输入电流是指光电耦合器所需要的电流,它取决于发光二极管的工作特性。
输出参数包括输出光功率、输出电流和输出电压。
输出光功率是指光敏三极管产生的光信号的强度,通常以瓦(W)为单位。
输出电流是指光敏三极管所产生的电流,通常以毫安(mA)为单位。
输出电压是指光敏三极管所产生的电压,通常以伏特(V)为单位。
此外,光耦还有一些其他的参数,如耦合系数、响应时间和传输带宽。
耦合系数是指输入光功率和输出光功率之间的比例关系,它反映了光耦合器的效率。
响应时间是指光电耦合器从接收到输入光信号到产生输出电流的时间,通常以纳秒(ns)为单位。
传输带宽是指光耦合器能够传输的最高频率信号的范围,通常以赫兹(Hz)为单位。
总之,光耦的参数能够描述其输入输出特性、工作特性和性能指标,对于选择和设计电路具有重要的参考价值。
从三个方面解析光耦参数
从三个方面解析光耦参数光耦,也称为光耦合器或光电耦合器,是一种用于隔离和传输电信号的光电转换器件。
它由光源、光电转换器件(如光敏电阻或光电晶体管)、传输介质和驱动电路组成。
光源发出的光线被光电转换器件接收后,产生相应的电信号,完成光和电的相互转换。
光耦器件的参数直接关系到其转换效率和传输性能。
下面将从三个方面解析光耦参数。
一、光电转换特性1. 波长特性:光耦器件在接收光信号时,对输入光的波长有一定的敏感范围。
一般来说,光耦器的输入光波长范围在850nm、1300nm和1550nm这三个常用波长之一2.光电转换增益:光电转换增益是光耦输出电流与输入光功率之比,代表了光电转换的效率。
该增益通常以A/W(安培/瓦特)为单位。
增益值越大,表示光电转换效率越高。
3.暗电流:光耦器件在没有光照射时输出的电流称为暗电流。
暗电流是光耦器件的一个重要参数,它代表了在无光照射情况下光耦器件内部电流产生的源头,如果暗电流过大,就会对输出信号的准确性产生影响。
4.响应时间:光耦器件的响应时间指的是光信号从输入到输出所需要的时间,一般以微秒(μs)为单位。
响应时间越短,表示光耦器件的响应速度越快,能够更准确地传输信号。
二、光源特性1.光源波长:光耦器件的性能会受到光互振衰减的影响,而光互振衰减与光源与光接收器之间的波长一致性有关。
因此,光源的波长需要与光耦器件的波长匹配,才能获得较好的性能。
2.光源强度:光源强度表示光的亮度,通常以瓦特/立方厘米为单位。
光源强度越大,表示光源发出的光线越强烈,能够提供更高的信号传输效率。
3.光源稳定性:光源的稳定性是指在长时间运行中,光源输出的光强度是否能够保持在一个稳定的范围内。
光源稳定性的好坏直接影响到光耦器件的传输性能以及系统的可靠性。
三、电路特性1.工作电压:光耦器件的工作电压范围是指器件所能够承受的最大和最小工作电压。
如果工作电压超出了这个范围,光耦器件可能无法正常工作。
2.绝缘电压:绝缘电压是指光耦器件所能够承受的最大绝缘电压。
光耦的一些常用参数和使用技巧8页word文档
光耦常用参数正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。
反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。
反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。
结电容CJ:在规定偏压下,被测管两端的电容值。
反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC 为规定值,集电极与发射集间的电压降。
输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。
反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。
电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。
脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。
从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。
传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。
从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。
入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。
入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。
入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。
----------------------------------------------------------------------------------------常用的器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:光耦参数解释
1、正向工作电压f V (forward voltage ):f V 是指在给定的工作电流下,LED 本身的压降。
常见的小功率LED 通常以f I =10mA 来测试正向工作电压,当然不同的LED ,测试条件和测试结果也会不一样。
2、正向电流f I :在被测管两端加一定的正向电压时二极管中流过的电流。
3、反向工作电压r V (reverse voltage ):是指原边发光二极管所能承受的最大反向电压,超过此反向电压,可能会损坏LED 。
而一般光耦中,这个参数只有5V 左右,在存在反压或振荡的条件下使用时,要特别注意不要超过反向电压。
如,在使用交流脉冲驱动LED 时,需要增加保护电路。
4、反向电流r I :在被测管两端加规定反向工作电压r V 时,二极管中流过的电流。
5、反向击穿电压br V ::被测管通过的反向电流r I 为规定值时,在两极间所产生的电压降。
6、结电容j C :在规定偏压下,被测管两端的电容值。
7、电流传输比CTR(current transfer ratio ):指在直流工作条件下,光耦的输出电流与输入电流之间的比值。
光耦的CTR 类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同决定了光耦工作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。
若输入电流、输出电流、电流传输比设计搭配不合理,可能导致电路不能工作在预想的工作状态。
8、集电极电流c I (collector current ):如上图,光敏三极管集电极所流过的电流,通常表示其最大值。
9、输出饱和压降VCE(sat):发光二极管工作电流IF 和集电极电流IC 为规定值时,并保持IC/IF≤CTRmin 时(CTRmin 在被测管技术条件中规定)集电极与发射极之间的电压降。
10、反向击穿电压ceo )(BR V :发光二极管开路,集电极电流c I 为规定值,集电极与发射集间的电压降。
11、反向截止电流ceo I :发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。
12、C-E 饱和电压ce V (C-E saturation voltage ):光敏三极管的集电极-发射极饱和压降。
13、入出间隔离电容io C :光耦合器件输入端和输出端之间的电容值。
14、入出间隔离电阻io R :半导体光耦合器输入端和输出端之间的绝缘电阻值。
15、入出间隔离电压io V :光耦合器输入端和输出端之间绝缘耐压值
16、传输延迟时间PHL T 、PLH T :光耦合器在规定工作条件下,发光二极管输入规定电流FP I 的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V 时所需时间为传输延迟时间PHL T 。
从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V 时所需时间为传输延迟时间PLH T 。
17、上升时间Tr (Rise Time)& 下降时间f T (Fall Time),其定义与典型测试方法如下图所示,它们反映了工作在开关状态的光耦,其开关速度情况。
二:使用光耦隔离需要考虑以下几个问题
①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;
②光耦隔离传输数字量时,要考虑光耦的响应速度问题;
③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。
1 光电耦合器非线性的克服
光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。
由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。
图1 光电耦合器结构及输入、输出特性
解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。
如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。
由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。
图2 光电耦合线性电路
另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。
现场
变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。
在主机侧,通过一个频率电压转换电路将脉冲序列还原成模拟信号。
此时,相当于光耦隔离的是数字量,可以消除光耦非线性的影响。
这是一种有效、简单易行的模拟量传输方式。
图3 VFC方式传送信号
当然,也可以选择线性光耦进行设计,如精密线性光耦TIL300,高速线性光耦6N135/6N136。
线性光耦一般价格比普通光耦高,但是使用方便,设计简单;随着器件价格的下降,使用线性光耦将是趋势。
2 提高光电耦合器的传输速度
当采用光耦隔离数字信号进行控制系统设计时,光电耦合器的传输特性,即传输速度,往往成为系统最大数据传输速率的决定因素。
在许多总线式结构的工业测控系统中,为了防止各模块之间的相互干扰,同时不降低通讯波特率,我们不得不采用高速光耦来实现模块之间的相互隔离。
常用的高速光耦有6N135/6N136,6N137/6N138。
但是,高速光耦价格比较高,导致设计成本提高。
这里介绍两种方法来提高普通光耦的开关速度。
由于光耦自身存在的分布电容,对传输速度造成影响,光敏三极管内部存在着分布电容Cbe和Cce,如图4所示。
由于光耦的电流传输比较低,其集电极负载电阻不能太小,否则输出电压的摆幅就受到了限制。
但是,负载电阻又不宜过大,负载电阻RL越大,由于分布电容的存在,光电耦合器的频率特性就越差,传输延时也越长。
图4 光敏三极管内部分布电容
用2只光电耦合器T1,T2接成互补推挽式电路,可以提高光耦的开关速度,如图5所示。
当脉冲上升为“1”电平时,T1截止,T2导通。
相反,当脉冲为“0”电平时,T1导通,T2截止。
这种互补推挽式电路的频率特性大大优于单个光电耦合器的频率特性。
图5 2只光电耦合器构成的推挽式电路
此外,在光敏三极管的光敏基极上增加正反馈电路,这样可以大大提高光电耦合器的开关速度。
如图6所示电路,通过增加一个晶体管,四个电阻和一个电容,实验证明,这个电路可以将光耦的最大数据传输速率提高10倍左右。
图6 通过增加光敏基极正反馈来提高光耦的开关速度
3 光耦的功率接口设计
微机测控系统中,经常要用到功率接口电路,以便于驱动各种类型的负载,如直流伺服电机、步进电机、各种电磁阀等。
这种接口电路一般具有带负载能力强、输出电流大、工作电压高的特点。
工程实践表明,提高功率接口的抗干扰能力,是保证工业自动化装置正常运行的关键。
就抗干扰设计而言,很多场合下,我们既能采用光电耦合器隔离驱动,也能采用继电器隔离驱动。
一般情况下,对于那些响应速度要求不很高的启停操作,我们采用继电器隔离来设计功率接口;对于响应时间要求很快的控制系统,我们采用光电耦合器进行功率接口电路
设计。
这是因为继电器的响应延迟时间需几十ms,而光电耦合器的延迟时间通常都在10us 之内,同时采用新型、集成度高、使用方便的光电耦合器进行功率驱动接口电路设计,可以达到简化电路设计,降低散热的目的。
图7是采用光电耦合器隔离驱动直流负载的典型电路。
因为普通光电耦合器的电流传输比CRT非常小,所以一般要用三极管对输出电流进行放大,也可以直接采用达林顿型光电耦合器(见图8)来代替普通光耦T1。
例如东芝公司的4N30。
对于输出功率要求更高的场合,可以选用达林顿晶体管来替代普通三极管,例如ULN2800高压大电流达林顿晶体管阵列系列产品,它的输出电流和输出电压分别达到500mA和50V。
图7 光电隔离,加三极管放大驱动
图8 达林顿型光电耦合器
对于交流负载,可以采用光电可控硅驱动器进行隔离驱动设计,例如TLP541G,4N39。
光电可控硅驱动器,特点是耐压高,驱动电流不大,当交流负载电流较小时,可以直接用它来驱动,如图9所示。
当负载电流较大时,可以外接功率双向可控硅,如图10所示。
其中,R1为限流电阻,用于限制光电可控硅的电流;R2为耦合电阻,其上的分压用于触发功率双向可控硅。
图9 小功率交流负载
图10 大功率交流负载
当需要对输出功率进行控制时,可以采用光电双向可控硅驱动器,例如MOC3010。
图11为交流可控驱动电路,来自微机的控制信号经过光电双向可控硅驱动器T1隔离,控制双向可控硅T2的导通,实现交流负载的功率控制。
图11 交流可控电路
图12为交流电源输出直流可控电路。
来自微机的控制信号经过光电双向可控硅驱动器隔离,控制可控硅桥式整流电路导通,实现交流一直流的功率控制。
此电路已经应用在我们实验室研制的新型电机控制设备中,效果良好。
图12 交-直流可控
4 结束语
本文从光电耦合器的基本结构、性能特点出发,针对实际应用中可能遇到的非线性、响应速度、功率接口设计三个方面,提出了相应的几种电路设计方案,并介绍了各种不同类型的光电耦合器及其应用实例。