数字通信综合实验报告--数字频带传输系统的仿真(用Simulink实现)陈信

合集下载

通信系统仿真实验报告二Simulink模块的认识和应用

通信系统仿真实验报告二Simulink模块的认识和应用

学院电气信息工程学院学号课程通信系统仿真日期2013年10月31日一、实验项目:Simulink模块的认识和应用二、实验目的:1、学会Simulink基本模块的使用和仿真参数设置;2、学会使用Simulink的基本模块:信号发生器,数学模块,示波器,应用这些模块构建基本的通信系统模型,并进行仿真验证。

三、实验原理:Simulink的名称说明了该系统的两个主要功能:Simulate〔仿真〕和Link〔链接〕,即该软件可以利用鼠标在模型窗口上绘制出所需要的系统模型,然后利用Simulink提供的功能对系统进行仿真和分析。

四、实验设备:电脑五、实验内容及步骤:1、用信号发生器产生1MHz,幅度为15mV的正弦波和方波信号,并通过示波器观察波形。

注意设置仿真参数和示波器的扫描参数和幅度显示参数。

使得示波器能够观察10个正弦波周期。

2、通过示波器观察1MHz,幅度为15mV的正弦波和100KHz,幅度为5mV正弦波相乘的结果。

写出数学表达式。

通过使用三踪示波器同时观察1MHz、100KHz正弦波以及相乘的结果。

注意设置仿真参数和示波器的扫描参数和幅度显示参数。

3、将50Hz,有效值为220V的正弦交流电信号通过全波整流〔绝对值〕模块,观察输出的波形。

注意,有效值为220V的正弦信号的振幅是多少?六、实验结果与总结:1、- 1 -学院电气信息工程学院学号课程通信系统仿真日期2013年10月31日参数设置如下列图:结果如下:- 2 -学院电气信息工程学院学号课程通信系统仿真日期2013年10月31日2、参数设置如下列图:- 3 -学院电气信息工程学院学号课程通信系统仿真日期2013年10月31日- 4 -学院电气信息工程学院学号课程通信系统仿真日期2013年10月31日结果如下列图:3、- 5 -学院电气信息工程学院学号课程通信系统仿真日期2013年10月31日参数设置如下列图:- 6 -学院电气信息工程学院学号课程通信系统仿真日期2013年10月31日结果如下列图:七、拟完成的思考题目:1、你认为SIMULINK仿真和m语言编程仿真的各自特点和优点是哪些?答:SIMULINK仿真的特点:Simulink采用时间流的链路级仿真方法,将仿真系统建模与工程中同用的方框图设计方法统一起来。

基于Simulink的数字通信系统的仿真设计.

基于Simulink的数字通信系统的仿真设计.

课程设计(论文)任务书信息工程学院信息工程专业信息(2)班一、一、课程设计(论文)题目基于Simulink的数字通信系统的仿真设计二、课程设计(论文)工作自2014年6 月23日起至2014年7月 4日止。

三、课程设计(论文) 地点: 4-403,4-404,图书馆四、课程设计(论文)内容要求:1.本课程设计的目的(1)使学生掌握系统各功能模块的基本工作原理;(2)培养学生掌握电路设计的基本思路和方法;(3)能提高学生对所学理论知识的理解能力;(4)能提高和挖掘学生对所学知识的实际应用能力即创新能力;(5)提高学生的科技论文写作能力。

2.课程设计的任务及要求1)基本要求:(1)学习SystemView或MATLAB/Simulink仿真软件;(2)对需要仿真的通信系统各功能模块的工作原理进行分析;(3)提出系统的设计方案,选用合适的模块;(4)对所设计系统进行仿真;(5)并对仿真结果进行分析。

2)创新要求:在基本要求达到后,可进行创新设计,完善系统的性能。

3)课程设计论文编写要求(1)要按照书稿的规格打印誊写课程设计论文(2)论文包括目录、绪论、正文、小结、参考文献、谢辞、附录等(3)课程设计论文装订按学校的统一要求完成4)评分标准:(1)完成原理分析:(20分)(2)系统方案选择:(30分)(3)仿真结果分析:(30分)(4)论文写作:(20分)5)参考文献:(1)孙屹.《SystemView通信仿真开发手册》国防工业出版社(2)李东生.《SystemView系统设计及仿真入门与应用》电子工业出版社(3)赵静.《基于MATLAB的通信系统仿真》北京航空航天大学出版社(4 ) 陈萍.《现代通信实验系统的计算机仿真》国防工业出版社(5)刘学勇.《详解MATLAB/Simulink通信系统建模与仿真》电子工业出版社6)课程设计进度安排内容天数地点构思及收集资料 2 图书馆熟悉软件与系统仿真 6 4-403,4-404撰写论文 2 4-403,4-404学生签名:2014年6月23日课程设计(论文)评审意见(1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)系统方案选择(30分):优()、良()、中()、一般()、差();(3)仿真结果分析(30分):优()、良()、中()、一般()、差();(4)论文写作(20分):优()、良()、中()、一般()、差();(5)格式规范性及考勤是否降等级:是()、否()评阅人:职称:讲师2014年7月4日目录绪论 (1)第1章二进制数字调制解调系统 (2)1.1 数字通信系统 (2)1.1.1 数字通信系统的优点 (2)1.1.2 数字通信系统的缺点 (3)1.2 二进制数字调制解调 (3)第2章 Simulink软件介绍 (4)2.1 Simulink软件简介 (4)2.2 Simulink仿真步骤 (4)2.3 Simulink的模块库 (4)第3章 2ASK仿真系统的设计 (6)3.1 二进制振幅键控(2ASK)系统的调制与解调原理 (6)3.2 2ASK的调制解调仿真设计 (7)3.3 4ASK的仿真结果和分析 (7)3.3.1 参数设置与分析 (7)3.3.2 仿真结果图 (8)第4章 2FSK仿真系统的设计 (9)4.1 二进制移频键控(2FSK)的调制与解调原理 (9)4.1.1 2FSK调制............................................... 错误!未定义书签。

simulink数字通信系统仿真与仿真流程图

simulink数字通信系统仿真与仿真流程图

基于Simulink的通信系统建模与仿真——数字通信系统姓名:XX完成时间:XX年XX月XX日一、实验原理(调制、解调的原理框图及说明)ASK调制数字信号对载波振幅调制称为振幅键控即ASK(Amplitude-Shift Keying)。

ASK有两种实现方法:1.乘法器实现法2.键控法。

乘法器实现法的输入是随机信息序列,经过基带信号形成器,产生波形序列,乘法器用来进行频谱搬移,相乘后的信号通过带通滤波器滤除高频谐波和低频干扰。

键控法是产生ASK信号的另一种方法。

二元制ASK又称为通断控制(OOK)。

最典型的实现方法是用一个电键来控制载波振荡器的输出而获得。

乘法器实现法框图键控法实现框图ASK解调ASK的解调有两种方法:1.包络检波法2.相干解调。

同步解调也称相干解调,信号经过带通滤波器抑制来自信道的带外干扰,乘法器进行频谱反向搬移,以恢复基带信号。

低通滤波器用来抑制相乘器产生的高次谐波干扰。

由于AM信号波形的包络与输入基带信号成正比,故也可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成。

相干解调框图包络检波框图FSK调制2FSK 信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。

由于频率选择法产生的2FSK 信号为两个彼此独立的载波振荡器输出信号之和,在二进制码元状态转换(0 →1或1 →0 )时刻,2FSK 信号的相位通常是不连续的,这会不利于已调信号功率谱旁瓣分量的收敛。

载波调频法是在一个直接调频器中产生2FSK 信号,这时的已调信号出自同一个振荡器,信号相位在载频变化时始终时连续的,这将有利于已调信号功率谱旁瓣分量的收敛,使信号功率更集中于信号带宽。

在这里,我们采用的是频率选择法,其调制原理框图如下图所示:FSK解调FSK信号的解调方法很多,我们主要讨论1.非相干解调2.相干解调。

非相干解调框图如下相干解调框图如下PSK调制相移键控是一种用载波相位表示输入信号信息的调制技术。

通信原理综合实验数字频带传输系统的仿真报告

通信原理综合实验数字频带传输系统的仿真报告

课程名称数字通信综合实验题目数字频带传输系统的仿真专业电子信息工程班级学号姓名指导教师地点时间:2015年7月04日至2015年7月08日摘要此次课程设计主要运用MATLAB集成环境下的Simulink仿真平台对2ASK频带传输系统仿真,并把运行仿真结果输入到显示器,根据显示器结果分析设计的系统性能。

在设计中,目的主要是仿真通信系统中频带传输技术中的ASK调制。

产生一段随机的二进制非归零码的频带信号,对其进行ASK调制后再加入加性高斯白噪声传输,在接收端对其进行ASK解调以恢复原信号,观察还原是否成功。

通过Simulink的仿真功能摸拟到了实际中的2ASK 调制与解调情况。

关键词:Simulink ;高斯白噪声;调制与解调第1章前言 (4)1.设计平台 (4)2. Simulink (5)第2章通信技术的历史和发展 (7)2.1通信的概念 (7)2.2 通信的发展史简介 (9)2.3通信技术的发展现状和趋势 (9)第3章2ASK的基本原理 (10)3.1 2ASK定义 (10)3.2 2ASK的调制 (11)3.3 2ASK的解调 (11)第4章2ASK频带系统设计方案 (12)4.1仿真系统的调制与解调过程 (12)4.2 SIMULINK下2ASK系统的设计 (12)第5章仿真结果分析 (17)第6章出现的问题及解决方法 (23)第7章总结 (24)参考文献 (24)第1章前言在现代数字通信系统中,频带传输系统的应用最为突出。

将原始的数字基带信号,经过频谱搬移,变换为适合在频带上传输的频带信号,传输这个信号的系统就称为频带传输系统。

在频带传输系统中,根据数字信号对载波不同参数的控制,形成不同的频带调制方法。

幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波数字形式的调制信号在控制下通断,此时又可称作开关键控法(OOK)。

本设计中选择正弦波作为载波,用一个二进制基带信号对载波信号的振幅进行调制,载波数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送,调制后的信号的频带宽度为二进制基带信号宽度的两倍,此制称为二进制振幅键控信号。

设计报告--004---数字频带传输系统的SIMULINK建模与仿真

设计报告--004---数字频带传输系统的SIMULINK建模与仿真

数字频带传输系统的SIMULINK建模与仿真一.8-PAM的基带仿真仿真AWGN信道下的8PAM传输系统,观察接收信号的星座图并统计误比特率。

传输码元时隙为1ms。

要求调制输出电平最小矩离为2,高斯信道加入噪声方差为0.05。

仿真模型如图4-1所示。

图4-1 8-PAM的基带仿真模型在模型中将输入数据设置为0~7的随机整数,M-PAM Modulator Baseband 模块设置为8元的,输入数据类型为整型,归一化方式选择为符号间最小距离方式,并设最小距离为2.每个码元的采样点数为1,这样每个传输时隙上调制器输出为等效低通信号的一个采样点。

仿真结果如图4-2所示,可见调制输出信号点位于复平面实轴方向上,是一维的,共8个点,点间最小距离为2.经过高斯信道后,接收信号点受到干扰而以高斯分布概率密度函数规律、以各点发送信号为期望值散布于发送信号点附近。

方差越大,接收信号点的分散程度越高。

由波形图也可以看出输入0~7的随机整数经调制输出后没有发生变化,说明信号信号基本没有延时,信号传输过程中的误比特率小为0.0003.图4-2 8-PAM的调制输出信号以及经过高斯信道后的信号星座图分析:图4-2是8-PAM调制输出信号和高斯信道后的星座图,可见调制输出信号点是一维的,共8个点,点间最小距离为2。

经过高斯信道后,接收信号点受到干扰而以高斯分布概率密度函数规律、以各点发送信号为期望值散布于发送信号点附近。

二./8π相位偏移的8PSK仿真π相位偏移的8PSK传输系统,观察调制输出信号通过加性高斯建立一个/8信道前后的星座图,并比较输入数据以普通二进制映射和格雷码映射两种情况下的误比特率。

测试模型如图4-3所示。

调制器和解调器的参数设置必须一致:调制器的输π,入数据类型为比特,解调器的输出数据类型也为比特,相位偏移量都设置为/8数据映射方式设置为普通二进制方式或格雷码方式。

当信道中加入的高斯噪声方差为0.02时,发送和接收信号的星座图仿真结果如图4-4所示,相对横轴的角度π,接收信号向量点分散在发送信号向量点附近。

数字通信综合实验报告--数字频带传输系统仿真(用Simulink实现)陈信

数字通信综合实验报告--数字频带传输系统仿真(用Simulink实现)陈信

广东石油化工学院计算机与电子信息学院综合实验报告课程名称数字通信综合实验题目:数字频带传输系统的仿真(用Simulink实现)专业电子信息工程班级电信12-***学号 120344901**姓名 *********指导教师陈信地点主楼8楼通信实验室时间:2015年5月04日至2015年5月08日目录一、目的和要求 (1)二、实验原理 (2)三、实验内容 (3)四、系统设计 (3)4.1、ASK调制 (3)4.2、ASK调制与解调 (5)五、实验结果与分析 (9)六、心得体会 (12)七、参考文献 (13)一、目的和要求目的:这次课程设计主要是运用MATLAB集成环境下的Simulink仿真平台对2ASK频带传输系统仿真,并把运行仿真结果输入到显示器,根据显示器结果分析设计的系统性能。

在设计中,目的主要是仿真通信系统中频带传输技术中的ASK调制。

产生一段随机的二进制非归零码的频带信号,对其进行ASK调制后再加入加性高斯白噪声传输,在接收端对其进行ASK解调以恢复原信号,观察还原是否成功。

通过Simulink的仿真功能摸拟到了实际中的2ASK调制与解调情况。

数字频带传输系统的仿真(用Simulink实现)要求:含纠错编译码、2ASK/2FSK/2PSK/2DPSK调制与解调4种方式中的一种和高斯白噪声的信道。

1.画出系统结构图。

2.绘制出基带信号、已调信号、解调信号波形和它们频谱图,列出各simulink模块参数设计界面和眼图。

、二进制振幅键控原理(2ASK )数字幅度调制又称幅度键控(ASK ),二进制幅度键控记作2ASK 。

2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。

有载波输出时表示发送“1”,无载波输出时表示发送“0”。

2ASK 信号可表示为t w t s t e c cos )()(0= (2-1) 式中,c w 为载波角频率,s(t)为单极性NRZ 矩形脉冲序列)()(b n n nT t g a t s -=∑ (2-2) 其中,g(t)是持续时间b T 、高度为1的矩形脉冲,常称为门函数;n a 为二进制数字⎩⎨⎧-=P P a n 101,出现概率为,出现概率为 (2-3)2ASK/OOK 信号的产生方法通常有两种:模拟调制(相乘器法)和键控法。

通信原理综合实验数字频带传输系统的仿真报告解析

通信原理综合实验数字频带传输系统的仿真报告解析

课程名称数字通信综合实验题目数字频带传输系统的仿真专业电子信息工程班级学号姓名指导教师地点时间:2015年7月04日至2015年7月08日摘要此次课程设计主要运用MATLAB集成环境下的Simulink仿真平台对2ASK频带传输系统仿真,并把运行仿真结果输入到显示器,根据显示器结果分析设计的系统性能。

在设计中,目的主要是仿真通信系统中频带传输技术中的ASK调制。

产生一段随机的二进制非归零码的频带信号,对其进行ASK调制后再加入加性高斯白噪声传输,在接收端对其进行ASK解调以恢复原信号,观察还原是否成功。

通过Simulink的仿真功能摸拟到了实际中的2ASK 调制与解调情况。

关键词:Simulink ;高斯白噪声;调制与解调第1章前言 (4)1.设计平台 (4)2. Simulink (5)第2章通信技术的历史和发展 (7)2.1通信的概念 (7)2.2 通信的发展史简介 (9)2.3通信技术的发展现状和趋势 (9)第3章2ASK的基本原理 (10)3.1 2ASK定义 (10)3.2 2ASK的调制 (11)3.3 2ASK的解调 (11)第4章2ASK频带系统设计方案 (12)4.1仿真系统的调制与解调过程 (12)4.2 SIMULINK下2ASK系统的设计 (12)第5章仿真结果分析 (17)第6章出现的问题及解决方法 (23)第7章总结 (24)参考文献 (24)第1章前言在现代数字通信系统中,频带传输系统的应用最为突出。

将原始的数字基带信号,经过频谱搬移,变换为适合在频带上传输的频带信号,传输这个信号的系统就称为频带传输系统。

在频带传输系统中,根据数字信号对载波不同参数的控制,形成不同的频带调制方法。

幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波数字形式的调制信号在控制下通断,此时又可称作开关键控法(OOK)。

本设计中选择正弦波作为载波,用一个二进制基带信号对载波信号的振幅进行调制,载波数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送,调制后的信号的频带宽度为二进制基带信号宽度的两倍,此制称为二进制振幅键控信号。

设计报告--003---数字基带传输系统的SIMULINK建模与仿真

设计报告--003---数字基带传输系统的SIMULINK建模与仿真

数字基带传输系统的SIMULINK建模与仿真一.基带传输系统的仿真设计系统仿真采样率为1e4Hz,滤波器采样速率等于系统仿真采样率。

数字信号速率为1000bps,故在进入发送滤波器之前需要10倍升速率,接收解码后再以10倍降速率来恢复信号传输比特率。

仿真模型如图3-1所示,其中系统分为二进制信源、发送滤波器、高斯信道、接收匹配滤波器、接收采样、判决恢复以及信号测量等7部分。

图3-1 高斯信道下的基带传输系统测试模型图3-2 高斯信道下的基带传输系统测试仿真结果分析:将发送数据延迟22个采样单位的发送信号和经过基带传输系统传输过的接收恢复的信号,才吻合。

观察两个波形,不存在相位差。

即恢复定时脉冲的上升沿对准图的最佳采样时刻,定时系统设置成功完成。

图3-3 高斯信道下的基带传输系统测试仿真结果分析:①进行码型变换后的信号②进行波形变换后的信号,即发送滤波器的输出信号③信道输出信号,与信道输入信号即进行波形变换后的信号相比,存在衰减、失真和噪声干扰④接收滤波器输出的信号图3-4 高斯信道下的基带传输系统测试仿真结果分析:经过采样、判决和保持后信号二.接收机定时恢复并系统仿真在上述模型基础上,设计其接收机定时恢复系统并进行仿真。

双极性二进制信号本身不含有定时信息,故需要对其进行非线性处理(如平方或取绝对值),提取时钟的二分频分量,最后通过二分频来恢复接收定时脉冲。

系统仿真模型如图3-5所示,定时恢复子系统的内部结构如图3-6所示,其中采用了锁相环来锁定定时脉冲的二次谐波后,以二分频得出定时脉冲。

示波器用来恢复定时与理想定时之间的相位差,然后通过调整Integer Delay模块的延迟量使恢复定时脉冲的上升沿对准眼图最佳采样时刻。

图3-5 高斯信道下的基带传输系统——定时提取系统的模型图3-6 定时提取子系统的内部结构图3-7 定时提取系统的仿真结果分析:将发送数据延迟22个采样单位的发送信号和经过基带传输系统传输过的接收恢复的信号,才吻合。

数字频带传输系统实验报告(通信原理)

数字频带传输系统实验报告(通信原理)

电子信息与自动化学院《通信原理》实验报告学号: 姓名:实验五:数字频带传输系统实验 一、实验原理数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。

数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信一样,可以通过对基带信号的频谱搬移来适应信道特性,也可以采用频率调制、相位调制的方式来达到同样的目的。

1.调制过程 1)2ASK如果将二进制码元“0”对应信号0,“1”对应信号t f A c π2cos ,则2ASK :()()cos 2T n s c n s t a g t nT A f t π⎧⎫=-⎨⎬⎩⎭∑{}1,0∈n a ,()⎩⎨⎧≤≤=其他 0T t 0 1st g 。

可以看到,上式是数字基带信号()()∑-=nsnnT t g a t m 经过DSB 调制后形成的信号。

其调制框图如图1所示:图1 2ASK 信号调制框图2ASK 信号的功率谱密度为:()()()][42c m c m s f f P f f P A f P ++-=2)2FSK将二进制码元“0”对应载波t f A 12cos π,“1”对应载波t f A 22cos π,则形成2FSK 信号,可以写成如下表达式:()()()()()12cos 2cos 2T n s n n s n nns t a g t nT A f t a g t nT A f t πϕπθ=-++-+∑∑当0=n a 时,对应的传输信号频率为1f ;当1=n a 时,对应的传输信号频率为2f 。

上式中,n ϕ、n θ是两个频率波的初相。

2FSK 也可以写成另外的形式如下:()()cos 22T c n s n s t A f t h a g t nT ππ∞=-∞⎛⎫=+- ⎪⎝⎭∑其中,{}1,1-+∈n a ,()2/21f f f c +=,()⎩⎨⎧≤≤=其他0T t 0 1s t g ,12f f h -=为频偏。

数字频带传输系统2ASK的simulink仿真实现

数字频带传输系统2ASK的simulink仿真实现

数字频带传输系统2ASK的simulink仿真实现*******************实践教学*******************兰州理工大学计算机与通信学院2021年秋季学期通信系统综合训练题目:数字基带传输系统的仿真实现专业班级: 09级通信()班姓名:学号:指导教师:陈海燕成绩:摘要此次课程设计主要运用MATLAB集成环境下的Simulink仿真平台对2ASK频带传输系统仿真,并把运行仿真结果输入到显示器,根据显示器结果分析设计的系统性能。

在设计中,目的主要是仿真通信系统中频带传输技术中的ASK调制。

产生一段随机的二进制非归零码的频带信号,对其进行ASK调制后再加入加性高斯白噪声传输,在接收端对其进行ASK解调以恢复原信号,观察还原是否成功。

通过Simulink的仿真功能摸拟到了实际中的2ASK调制与解调情况。

关键词:Simulink;高斯白噪声;调制与解调2目录第一章二进制振幅键控(2ASK)的分析 .......................................... 4 第二章2ASK频带系统设计方案 ....................................................... 6 2.1仿真系统的调制与解调过程................................................... 6 2.2 SIMULINK下2ASK系统的设计 ............................................... 6 第三章仿真结果分析 (11)第四章遇到的问题及解决的方法 ................................................... 14 总结 ........................................................................... ....................... 15 参考文献............................................................................ ............... 16 致谢 ........................................................................... (17)3第一章二进制振幅键控(2ASK)的分析由模拟调制原理,2ASK信号可由单极性二元基带信号与载波相乘得到。

基于simulink的数字基带传输系统仿真报告

基于simulink的数字基带传输系统仿真报告

通信系统建模与仿真课程设计2009级通信工程专业71 班级题目基于SIMULINK的基带传输系统的仿真姓名张建涛学号********6指导教师闫利超胡娟小组成员李迎亚黄乔飞2012年5月21日1任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。

发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。

另外,对发送信号和接收信号的功率谱进行估计。

假设接收定时恢复是理想的。

2基带系统的理论分析(参照通信原理教材146页,分两方面说明:1.基带系统传输模型和工作原理;2.基带系统设计中的码间干扰和噪声干扰以及解决方案)1.基带系统传输模型和工作原理数字基带传输系统的基本组成框图如图 1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。

系统工作过程及各部分作用如下。

{r n}{ân}g T(t)定时信号图1:数字基带传输系统方框图发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。

这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。

基带传输系统的信道通常采用电缆、架空明线等。

信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。

接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。

其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。

抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n },然后对抽样值进行判决,以确定各码元 是 “1”码还是“0” 码。

2.基带系统设计中的码间干扰和噪声干扰以及解决方案由图 1所示,其中发送滤波器的传递函数为G T (f ),冲击响应为g T (t );接收滤波器的传递函数为G R (f ),冲击响应为g R (t )。

simulink仿真通信原理课程设计报告

simulink仿真通信原理课程设计报告

Simulink仿真通信原理课程设计报告一、设计背景通信原理是电子信息类专业的重要课程,它涵盖了通信系统的组成、信号传输原理、调制解调技术等内容。

为了加深学生对通信原理的理解,本次课程设计采用Simulink仿真工具,设计一个简单的通信系统模型,以实现信号的调制、传输和接收。

二、设计目标1. 实现信号的调制和解调;2. 观察调制和解调前后的信号质量;3. 分析通信系统的性能指标。

三、设计原理1. 调制方式:采用调幅(AM)和调频(FM)两种方式进行调制;2. 解调方式:采用相干解调;3. 传输介质:模拟无线信道。

四、设计步骤1. 搭建调制和解调模块:包括正弦波生成器、低通滤波器、调幅器和解调器等模块;2. 搭建信道模块:包括模拟无线信道和噪声源等模块;3. 连接各模块,设置参数,实现信号的调制和解调过程;4. 观察和分析仿真结果,包括调制和解调前后的信号质量、误码率等指标。

五、设计结果与分析1. 调制和解调前后的信号质量对比:调制后的信号经过信道传输后,解调前后的信号质量有明显差异,表明调制和解调技术在通信系统中的重要性;2. 误码率分析:在信道中加入噪声后,观察误码率的变化,说明信道对通信系统的性能影响;3. 系统性能指标分析:通过对调制方式、信道特性和解调方式等因素的综合考虑,分析通信系统的性能指标,为实际应用提供参考。

六、总结与展望本次课程设计通过Simulink仿真工具,实现了通信原理中的调制和解调过程,加深了学生对通信原理的理解。

同时,通过对仿真结果的分析,进一步了解了通信系统的性能指标。

本次设计虽然取得了一定的成果,但仍存在一些不足之处,如信道模型的复杂性和噪声源的精确度等。

未来可以在此基础上进一步优化模型,提高仿真精度,为实际通信系统的设计和优化提供更有价值的参考。

此外,还可以尝试使用其他调制解调方式,如相位调制(PM)和偏振调制(PM)等,以扩展通信系统的应用范围。

基于Simulink的数字通信系统仿真— 采用 2PSK调制技术

基于Simulink的数字通信系统仿真—    采用 2PSK调制技术

1.项目目的基于Simulink的数字通信系统仿真—采用2PSK调制技术1.1技术要求(1)对数字通信系统主要原理和技术进行研究,包括二进制相移键控(2PSK)及解调技术和高斯噪声信道原理等。

(2)建立数字通信系统数学模型;(3)建立完整的基于2PSK的模拟通信系统仿真模型;(4)对系统进行仿真、分析。

1.2主要任务(1)建立模拟通信系统数学模型;(2)利用Simulink的模块建立模拟通信系统的仿真模型;(3)对通信系统进行时间流上的仿真,得到仿真结果;(4)将仿真结果与理论结果进行比较、分析。

2. 项目正文:2.1二进制相移键控——2PSK设计原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。

为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。

数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当作模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。

这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。

相应的2psk信号波形的示例见下一页1 0 1图1-1 2psk信号波形▪调制原理数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。

如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。

一般把信号振荡一次(一周)作为360度。

如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。

当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。

数字信号的频带传输系统的仿真分析设计

数字信号的频带传输系统的仿真分析设计

数字信号的频带传输系统的仿真分析设计摘要本文首先介绍了通讯的历史和发展,随后介绍了数字信号的二进制和多进制对载波的幅度、频率或相位进行调制,并以幅度键控(ASK)为例利用MATLAB 集成环境下的Simulink仿真平台对调制解调的原理、过程以及特点进行深入了解以及各种模拟调制方式性能的比较。

对于不同的调制解调方式,让它们处于高斯白噪声或者随机环境下,对它们的信噪比、增益、误码率等进行对比分析,总结归纳出各自的优缺点以及应用。

关键字:二进制,多进制,MATLAB,Simulink,高斯白噪声ABSTRACTIn this paper, we first introduce the history and development of communication, then introduces the digital signal of binary and M-ary the carrier amplitude, frequency, or phase modulation, and amplitude shift control (ask) for example to use the integrated environment of MATLAB Simulink simulation platform of modulation and demodulation principle, process and characteristics of the deep understanding and various modulation performance simulation. For different modulation and demodulation, let them under Gaussian white noise or random environment, their signal to noise ratio, gain and bit error rate (BER) are compared and analyzed, summed up their respective advantages and disadvantages as well as application.Keywords: binary, multi band, MATLAB, Simulink, Gauss white noise目录摘要 (1)ABSTRACT (2)前言 (3)目录 (4)第1章通信技术的历史和发展 (5)1.1通信的概念 (5)1.2通信的发展史简介 (6)1.3通信技术的发展现状和趋势 (7)第2章数字信号频带传输系统的基本原理 (8)2.1数字信号的二进制调制 (8)2.1.1 幅度键控(2ASK) (8)2.1.2频移键控(2FSK) (10)2.1.3相移键控(2PSK) (13)2.2数字信号的多进制调制 (14)2.2.1 MASK的调制 (14)2.2.2 MFSK的调制 (15)2.2.3 MPSK的调制 (16)第3章仿真及结果分析 (19)3.1ASK调制与解调 (19)3.2加入高斯白噪声后的ASK调制与解调 (25)3.3误码率的计算 (28)参考文献 (31)致谢 (32)摘要本文首先介绍了通讯的历史和发展,随后介绍了数字信号的二进制和多进制对载波的幅度、频率或相位进行调制,并以幅度键控(ASK)为例利用MATLAB集成环境下的Simulink 仿真平台对调制解调的原理、过程以及特点进行深入了解以及各种模拟调制方式性能的比较。

数字信号2ASK频带传输系统simulink仿真实现

数字信号2ASK频带传输系统simulink仿真实现

*******************实践教学*******************兰州理工大学计算机与通信学院2012年秋季学期通信系统综合训练题目:数字信号频带传输系统的仿真实现专业班级:通信工程四班姓名:学号:指导教师:陈海燕成绩:现代通信系统要求通信远距离,通信容量大,传输质量好。

实际生活中,大多数信道因具有带通特性而不能直接传输基带信号,因为基带信号往往含有丰富的低频分量。

因此必须用数字基带信号对载波进行调制,即完成频谱搬移,以使信号与信道的特性相匹配。

本次综合训练设计了以2ASK为调制方式的经济型数字频带传输系统;分析了系统组成,电路工作原理;详细阐述了系统各个模块的设计方案。

实验结果验证了该设计具有稳定性和合理性。

关键词:调制;频谱搬移;频带传输数字通信是通信技术和计算机技术相结合而产生的一种新的通信方式。

要在两地间传输信息必须有传输信道,根据传输媒体的不同,有线数字通信与无线数据通信之分。

但它们都是通过传输信道将通信与计算机联结起来,而使不同地点的数字终端实现软、硬件和信息资源的共享。

随着通信技术日新月异的发展,尤其是数字通信的快速发展,越来越普及,研究人员对其相关技术投入了极大的兴趣。

为使数字信号能在带通信道中传输,必须用数字信号对载波进行调制,其调制方式与模拟信号调制相类似。

根据数字信号控制波的参量不同也分为调幅、调频和调相三种方式。

因数字信号对载波参数的调制通常采用数字信号的离散值对载波进行键控,故这三种数字调制方式被称为幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)。

在现代数字通信系统中,频带传输系统的应用最为突出。

数字信号将原始的数字基带信号,经过频谱搬移,变换为适合在频带上传输的频带信号,传输这个信号的系统就称为频带传输系统。

在频带传输系统中,根据数字信号对载波不同参数的控制,形成不同的频带调制方法。

幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波数字形式的调制信号在控制下通断,此时又可称作开关键控法(OOK)。

数字信号2ASK频带传输系统的simulink仿真实现

数字信号2ASK频带传输系统的simulink仿真实现

*******************实践教学*******************兰州理工大学计算机与通信学院2012年秋季学期通信系统综合训练题目:数字信号频带传输系统的仿真实现专业班级:通信工程四班姓名:学号:指导教师:陈海燕成绩:现代通信系统要求通信远距离,通信容量大,传输质量好。

实际生活中,大多数信道因具有带通特性而不能直接传输基带信号,因为基带信号往往含有丰富的低频分量。

因此必须用数字基带信号对载波进行调制,即完成频谱搬移,以使信号与信道的特性相匹配。

本次综合训练设计了以2ASK为调制方式的经济型数字频带传输系统;分析了系统组成,电路工作原理;详细阐述了系统各个模块的设计方案。

实验结果验证了该设计具有稳定性和合理性。

关键词:调制;频谱搬移;频带传输数字通信是通信技术和计算机技术相结合而产生的一种新的通信方式。

要在两地间传输信息必须有传输信道,根据传输媒体的不同,有线数字通信与无线数据通信之分。

但它们都是通过传输信道将通信与计算机联结起来,而使不同地点的数字终端实现软、硬件和信息资源的共享。

随着通信技术日新月异的发展,尤其是数字通信的快速发展,越来越普及,研究人员对其相关技术投入了极大的兴趣。

为使数字信号能在带通信道中传输,必须用数字信号对载波进行调制,其调制方式与模拟信号调制相类似。

根据数字信号控制波的参量不同也分为调幅、调频和调相三种方式。

因数字信号对载波参数的调制通常采用数字信号的离散值对载波进行键控,故这三种数字调制方式被称为幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)。

在现代数字通信系统中,频带传输系统的应用最为突出。

数字信号将原始的数字基带信号,经过频谱搬移,变换为适合在频带上传输的频带信号,传输这个信号的系统就称为频带传输系统。

在频带传输系统中,根据数字信号对载波不同参数的控制,形成不同的频带调制方法。

幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波数字形式的调制信号在控制下通断,此时又可称作开关键控法(OOK)。

基于Simulink的通信系统仿真实验报告

基于Simulink的通信系统仿真实验报告

西安邮电学院通信与信息工程学院 基于Simulink 的通信系统仿真实验报告专业班级: 学生姓名: 学号(班内序号):年 月 日——————————————————————————装订线————————————————————————————————报告份数: 1份实验总成绩:实验一一、调试好的程序(1)①(3+5+8)/5*10②sin(3*pi)/sqrt(9/5)③A=[1 2 3 ;4 5 6;7 8 9] , B=[7 8 9; 4 5 6;1 2 3]④A=[3 1.2 4;7.5 6.6 3.1;5.4 3.4 6.1] , A' ,inv(A), abs(A) ⑤Z=[1+2i 3+4i; 5+6i 7+8i](2).M文件代码:for i=1:1:50for j=1:1:50A(i,j)=i+j-1;endenddisp(A);B=fliplr(A);disp(B);C=flipud(A);disp(C);A(1:10,1:10)=0;D=A;disp(A);(3).M文件代码:X = 0 + (255-0)*rand(50);for i =1:50for j =1:50if X(i,j)>128X(i,j)=255;else X(i,j)=0;endendenddisp(X);(4)代码:A=2.4+sqrt(0.2)*randn(3,4)二、实验结果及分析(1)①ans =32②ans = 2.7384e-016③A = 1 2 34 5 67 8 9B = 7 8 94 5 61 2 3C = 18 24 3054 69 8490 114 138D = 8 10 128 10 128 10 12ans = 34.0000 22.0000 62.0000 -50.0000 -23.0000 -100.000028.0000 16.0000 56.0000 ans = NaN NaN NaNNaN -Inf InfNaN NaN NaN④A = 3.0000 1.2000 4.00007.5000 6.6000 3.10005.4000 3.40006.1000 ans = 3.00007.5000 5.40001.2000 6.6000 3.40004.0000 3.1000 6.1000 ans = 2.1555 0.4555 -1.6449 -2.1040 -0.2393 1.5013-0.7354 -0.2698 0.7833ans =3.0000 1.2000 4.00007.5000 6.6000 3.10005.4000 3.40006.1000⑤Z = 1.0000 + 2.0000i 3.0000 + 4.0000i5.0000 +6.0000i7.0000 +8.0000i(2)(3)(4)A =2.2066 2.5287 2.9318 2.47811.6551 1.88732.3832 2.31652.4561 2.9326 2.5464 2.7246实验二(1)一、调试好的程序二、实验结果及分析(2)一、调试好的程序.M文件代码:function [sys,x0,str,ts] =ch2example5funB(t,x,u,flag) % 连续系统状态方程;% x'=Ax+Bu% y =Cx+Du% 定义A,B,C,D矩阵A=[0 1 0;0 0 1;-4 -6 -3];B=[0;0;1];C=[0 4 0];D=0;flagtxuswitch flag,case 0 % flag=0 初始化[sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D);% 可将A,B,C,D矩阵送入初始化函数case 1 % flag=1 计算连续系统状态方程(导数)sys=mdlDerivatives(t,x,u,A,B,C,D);case 3 % flag=3 计算输出sys=mdlOutputs(t,x,u,A,B,C,D);case { 2, 4, 9 } % 其他作不处理的flagsys=[]; % 无用的flag时返回sys为空矩阵otherwise % 异常处理error(['Unhandled flag = ',num2str(flag)]);end% 主函数结束% 子函数实现(1)初始化函数----------------------------------function [sys,x0,str,ts] = mdlInitializeSizes(A,B,C,D) % sizes = simsizes; % 获取sizes.NumContStates = 3; % 连续系统的状态数为3sizes.NumDiscStates = 0; % 离散系统的状态数,对于本系统此句可不用sizes.NumOutputs = 1; % 输出信号数目是1sizes.NumInputs = 1; % 输入信号数目是1sizes.DirFeedthrough = 0; % 因为该系统不是直通的sizes.NumSampleTimes = 1; % 这里必须为1sys = simsizes(sizes);str = []; % 通常为空矩阵x0 = [0;0;0]; % 初始状态矩阵x0 (零状态情况)ts = [0 0]; % 表示连续取样时间的仿真% 初始化函数结束% 子函数实现(2)系统状态方程函数-----------------------------function sys=mdlDerivatives(t,x,u,A,B,C,D) % 系统状态方程函数sys = A*x+B*u ; % 这里写入系统的状态方程矩阵形式即可% 系统状态函数结束% 子函数实现(3)系统输出方程函数-----------------------------function sys = mdlOutputs(t,x,u,A,B,C,D)sys = C*x; % 这里写入系统的输出方程矩阵形式即可% 注意,如果使用语句sys = C*x+D*u ;代替上句,即使D=0,% 也要将初始化函数中的sizes.DirFeedthrough 设为1% 即系统存在输入输出之间的直通项, 否则执行将出现错误% 系统输出方程函数结束Simulink建模:二、实验结果及分析flag =0 t =[] x =[] u =[]flag =3 t =0 x =0 0 0 u =NaNflag =2 t =0 x =0 0 0 u =-3flag =1 t =0 x =0 0 0 u =-3flag =3 t =0.1000 x =-0.0005 -0.0135 -0.2565 u =NaN flag =2 t =0.1000 x =-0.0005 -0.0135 -0.2565 u =-3 flag =1 t =0.1000 x =-0.0005 -0.0135 -0.2565 u =-3flag =3 t =0.2000 x =-0.0035 -0.0485 -0.4328 u =NaN flag =2 t =0.2000 x =-0.0035 -0.0485 -0.4328 u =-3 flag =1 t =0.2000 x =-0.0035 -0.0485 -0.4328 u =-3flag =3 t =0.3000 x =-0.0107 -0.0976 -0.5393 u =NaN flag =2 t =0.3000 x =-0.0107 -0.0976 -0.5393 u =-3 flag =1 t =0.3000 x =-0.0107 -0.0976 -0.5393 u =-3flag =3 t =0.4000 x =-0.0233 -0.1544 -0.5870 u =NaN flag =2 t =0.4000 x =-0.0233 -0.1544 -0.5870 u =-3 flag =1 t =0.4000 x =-0.0233 -0.1544 -0.5870 u =-3flag =3 t =0.5000 x =-0.0417 -0.2134 -0.5868 u =NaN flag =2 t =0.5000 x =-0.0417 -0.2134 -0.5868 u =-3flag =1 t =0.5000 x = -0.0417 -0.2134 -0.5868 u =-3flag =3 t =0.6000 x =-0.0660 -0.2704 -0.5490 u =NaN flag =2 t =0.6000 x =-0.0660 -0.2704 -0.5490 u =-3 flag =1 t =0.6000 x =-0.0660 -0.2704 -0.5490 u =-3flag =3 t =0.7000 x =-0.0957 -0.3221-0.4833 u =NaN flag =2 t =0.7000 x =-0.0957 -0.3221 -0.4833 u =-3 flag =1 t =0.7000 x =-0.0957 -0.3221 -0.4833 u =-3flag =3 t =0.8000 x =-0.1302 -0.3663 -0.3987 u =NaN flag =2 t =0.8000 x =-0.1302 -0.3663 -0.3987 u =-3 flag =1 t =0.8000 x =-0.1302 -0.3663 -0.3987 u =-3flag =3 t =0.9000 x =-0.1686 -0.4014 -0.3029 u =NaN flag =2 t =0.9000 x =-0.1686 -0.4014 -0.3029 u =-3 flag =1 t =0.9000 x =-0.1686 -0.4014 -0.3029 u =-3flag =3 t =1 x =-0.2101 -0.4267 -0.2025 u =NaN flag =2 t =1 x =-0.2101 -0.4267 -0.2025 u =-3 flag =9 t =1 x =-0.2101 -0.4267 -0.2025 u =-3实验三(1)一、调试好的程序.M文件代码:function[sys,x0,str,ts]=xinhaoqiehuanfun(t,x,u,flag,threshold) flag=0switch flag,case 0 % flag=0 初始化sizes = simsizes; % 获取SIMULINK仿真变量结构sizes.NumContStates = 0; % 连续系统的状态数是0 sizes.NumDiscStates = 0; % 离散系统的状态数是0 sizes.NumOutputs = 1; % 输出信号数目是1sizes.NumInputs = -1; % 输入信号数目是自适应的sizes.DirFeedthrough = 1; % 该系统是直通的sizes.NumSampleTimes = 1; % 这里必须为1sys = simsizes(sizes);str = []; % 通常为空矩阵x0 = []; % 初始状态矩阵x0ts = [-1 0]; % 采样时间由外部模块给出case 3 % flag=3 计算输出sys=u(1)*(u(2)>threshold)+u(3)*(u(2)<=threshold); case {1, 2, 4, 9 } % 其他作不处理的flagsys=[]; % 无用的flag时返回sys为空矩阵otherwise % 异常处理error(['Unhandled flag = ',num2str(flag)]);EndSimulink建模:二、实验结果及分析(2)一、调试好的程序二、实验结果及分析>> whosName Size Bytes Classtout 5x1 40 double arrayx1 4x1x5 160 double arrayx2 5x4 160 double arrayx3 2x2x5 160 double arrayGrand total is 65 elements using 520 bytes实验四(1)一、调试好的程序二、实验结果及分析(2)一、调试好的程序二、实验结果及分析实验五(1)一、调试好的程序.M文件代码:①% ch5xiti1A.m% 方波功率谱理论结果作图clear;f=100; % HzT=1/f; % 方波周期A=1; % 方波幅度Omega=2*pi*f;idx=1;% 功率谱数组下标m=7; %作图谐波数for n=-m:mpsd(idx)=4*A^2/(n+eps)^2*(cos(n*pi)-1)^2;idx=idx+1;endstem([-m*f:f:m*f],psd/(2*pi)^2,'^');%以频率为单位的功率谱axis([(-m-1)*f (m+1)*f -0.1 0.5]);grid on;xlabel('频率 Hz');ylabel('PSD');% ch5xiti1B.m% 方波功率谱数值分析结果作图②clear;f=100; % HzT=1/f; % 方波周期A=1; % 方波幅度Omega=2*pi*f;fs=2000; % Hz 采样频率Ts=1/fs; % 采样时间间隔T_end=2; % 计算结束时间t=0:1/fs:T_end;squarewave=A*sign(sin(2*pi*f*t));N=2000;% FFT变换点数squarewavefft=fftshift(fft(squarewave,N));PowerSpectrum=(Ts*abs(squarewavefft)).^2;plot([-1000:1:999],PowerSpectrum,'-^');axis([-1000 1000 -0.1 0.5]);grid on;xlabel('频率 Hz');ylabel('PSD '); Simulink建模:二、实验结果及分析(2)实验六(1)一、调试好的程序二、实验结果及分析一、调试好的程序二、实验结果及分析实验心得在学习初,课堂上我们了解到Matlab是一款功能强大又实用又简单的仿真软件。

基于simulink的数字基带传输系统仿真

基于simulink的数字基带传输系统仿真

基于s i m u l i n k的数字基带传输系统仿真Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT基于s i m u l i n k的数字基带传输系统仿真【摘要】本课题主要是通过构建数字基带传输系统的各组成模块,包括信号发送,信号接受,谱分析和误码分析部分,从而对数字基带传输系统有深刻的认识。

主要研究方法是利用Simulink软件进行数字基带传输系统的仿真,将各组成模块连接与封装,从而仿真出整个基带传输系统,最后通过调节噪声方差值的不同,运行并分析结果。

研究的目的在于,熟悉基带传输系统各个环节,从而对基带传输系统有更深刻的了解。

仿真的结果表明,在噪声较小的情况下误码率较小,较大的情况下则较大,而且各个模块基本可以完成其相对应的功能。

本课题使用的MATLAB软件是当今最优秀的科技应用软件之一,它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发的基本工具和首选平台。

【关键词】数字基带传输系统;升余弦滤波器;数字基带信号;SIMULINK1 引言通过对计算机仿真的了解,对计算机仿真在工程领域的运用,可以体会到它的优点仿真软件matlab在控制领域以及通信,数字信号处理等等领域都有它强大的生命力。

其功能的完善奠定了它在各个领域的仿真的地位。

通过对simulink的使用会对数字基带传输系统的各个部分具有更加直观而深刻的理解,对通信系统的仿真,以及各个波形的仿真,可以很直观的理解各个模块的功能以及注意的问题。

需要仿真的包括基带信号,发送滤波器、接受滤波器、信道、定时系统、抽样判决系统、误码率分析模块眼图模块。

现在通信系统是非常复杂和庞大的大规模系统,在各种噪声和干扰的存在下,一般很难通过解析的方法求得系统的精确数学描述。

在这种情况下系统仿真就成为了一个极为有效的工具[2]。

此外,在对现代通信系统协议、新算法和新体系结构的设计当中,直接进行试验测试几乎是不可能的,因为这些新系统、新算法、和新的体系结构根本就还没有实现,在这种情况下只能通过仿真来检验所考察的对象,从而验证这些新的结论,以及方法。

基于simulink仿真实现的2PSK数字带通传输系统 设计报告

基于simulink仿真实现的2PSK数字带通传输系统 设计报告

基于simulink仿真实现的2PSK数字带通传输系统设计报告通信系统课程设计报告用simulink仿真实现一个2PSK数字带通传输系统摘要Simulink是Mathworks公司推出的基于Matlab平台的著名仿真环境,Simulink作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建的积木式建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。

本次设计主要是以Simulink为基础平台,对2PSK信号进行仿真。

介绍了2PSK信号,及其调制和解调的基本原理,并运用Simulink搭建仿真电路,分析在混入噪声及码间串扰的环境下的误码率,以及使用Matlab生成界面。

本设计的主要目的是对Matlab的熟悉和对数字通信理论的更加深化、理解。

关键词:Simulink;2PSK;误码率目录1.引言 ................................................................ - 1 - 2.设计要求 ............................................................ - 1 - 3.设计思路 ............................................................ - 1 -3.1 数字调制概述 ...................................................... - 1 -3.1.1数字调制系统各个环节分析............................................... - 1 -3.1.2 数字调制的意义 ........................................................ - 2 - 3.2二进制移相键控(2PSK) ..................................................... - 2 - 3.3 误码率分析 ................................................................ - 3 - 3.4总体设计思路............................................................... - 3 -4.设计原理以及方案 .................................................... - 3 - 5.设计的实现 .......................................................... - 5 - 5.1模拟调制................................................................... - 5 -5.1.1模型建立............................................................... - 5 -5.1.2原件的选取及参数设置................................................... - 5 - 5.2数字键控调制............................................................... - 9 -5.2.1模型建立............................................................... - 9 -5.2.2原件的选取及参数设置.................................................. - 10 -11 -5.3不同信噪比下的误码率...................................................... -6.总结 .............................................................. - 12 - 7.致谢 .............................................................. - 13 - 8.参考文献 ........................................................... - 13 -1.引言1.引言基带信号的调制主要分为线性调制和非线性调制,线性调制是指已调信号的频谱结构与原基带信号的频谱结构基本相同,只是占用的频率位置搬移了。

基于MatlabSimulink数字基带传输系统仿真

基于MatlabSimulink数字基带传输系统仿真

《通信技术综合实验》实验报告题目基于Matlab/Simulink数字基带传输系统仿真系(院)计算机科学技术系专业通信工程班级学生姓名学号2011年 1月 11日基于Matlab/Simulink数字基带传输系统仿真1.引言(对所要进行的仿真进行介绍);未经调制的数字信号所占据的频谱是从零频或者很低频率开始,称为数字基带信号,不经载波调制而直接传输数字基带信号的系统,称为数字基带传输系统。

常用转码型有AMI码(传号交替反转码)、HDB3码(三阶高密度双极性码)、双相码、差分双相码、密勒码、CMI码(传号反转码)、块编码等。

在仿真软件设计中采用了Mathw or ks 公司的MAT LAB 作为仿真工具, 其仿真平台SIMU LINK 具有可视化建模和动态仿真的功能. 用SIMULINK 构造仿真系统, 方法简单直观, 开发的仿真系统使用时间流动态仿真, 可以准确描述真实系统的每一细节, 并且在仿真进行的同时具有较强的交互功能, 易于使用. 另外该软件还具有较好的可扩展性和可维护性。

本文给出了采用仿真工具SIMU LINK, 设计数字基带传输系统仿真实验软件的系统定义、模型构造的过程。

通过对仿真结果分析和误码性能测试表明, 该仿真系统完全符合实验要求。

下文主要就仿真分析与设计进行了阐述。

2.仿真分析与设计数字基带传输系统是把数字基带信号直接送往信道, 不经调制直接传输的系统. 数字基带系统的基本结构可以由图1的模型表示。

发送滤波器、传输信道、接收滤波器等效为传输函数为H (w) 基带形成网络, 对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性. 在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性[ 2~4] . 传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路, 在定时精度要求不高的场合, 可以用滤波法提取定时信号[ 2, 5] , 滤波法提取位定时的原理可用图2表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东石油化工学院
计算机与电子信息学院
综合实验报告
课程名称数字通信综合实验
题目:数字频带传输系统的仿真(用Simulink实现)
专业电子信息工程
班级电信12-***
学号 120344901**
姓名 *********
指导教师陈信
地点主楼8楼通信实验室
时间:2015年5月04日至2015年5月08日
目录
一、目的和要求 (1)
二、实验原理 (2)
三、实验内容 (3)
四、系统设计 (3)
4.1、ASK调制 (3)
4.2、ASK调制与解调 (5)
五、实验结果与分析 (9)
六、心得体会 (12)
七、参考文献 (13)
一、目的和要求
目的:
这次课程设计主要是运用MATLAB集成环境下的Simulink仿真平台对2ASK频带传输系统仿真,并把运行仿真结果输入到显示器,根据显示器结果分析设计的系统性能。

在设计中,目的主要是仿真通信系统中频带传输技术中的ASK调制。

产生一段随机的二进制非归零码的频带信号,对其进行ASK调制后再加入加性高斯白噪声传输,在接收端对其进行ASK解调以恢复原信号,观察还原是否成功。

通过Simulink的仿真功能摸拟到了实际中的2ASK调制与解调情况。

数字频带传输系统的仿真(用Simulink实现)
要求:
含纠错编译码、2ASK/2FSK/2PSK/2DPSK调制与解调4种方式中的一种和高斯白噪声的信道。

1.画出系统结构图。

2.绘制出基带信号、已调信号、解调信号波形和它们频谱图,列出各simulink模块参数设计界面和眼图。


二进制振幅键控原理(2ASK )
数字幅度调制又称幅度键控(ASK ),二进制幅度键控记作2ASK 。

2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。

有载波输出时表示发送“1”,无载波输出时表示发送“0”。

2ASK 信号可表示为
t w t s t e c cos )()(0= (2-1) 式中,c w 为载波角频率,s(t)为单极性NRZ 矩形脉冲序列
)
()(b n n nT t g a t s -=∑ (2-2) 其中,g(t)是持续时间b T 、高度为1的矩形脉冲,常称为门函数;n a 为二进制数字
⎩⎨⎧-=P P a n 101,出现概率为,出现概率为 (2-3)
2ASK/OOK 信号的产生方法通常有两种:模拟调制(相乘器法)和键控法。

本课程设计运用模拟幅度调制的方法,用乘法器实现。

相应的调制如下图:
图2.1模拟相乘法
AM 信号的解调一样,2ASK/OOK 信号也有两种基本的解调方法:非相干解调(包络检波法)和相干解调(同步检测法)。

本课程设计要求的是相干解调,如下图: )(2t e ASK 输出 t c ωcos 定时脉冲
相干解调方式
带 通 滤 波 器 低通滤波器 抽样判决器
相乘器
数字频带传输系统的仿真(用Simulink实现)含纠错编译码、2ASK/2FSK/2PSK/2DPSK 调制与解调4种方式中的一种和高斯白噪声的信道。

四、系统设计
4.1、ASK调制
首先将信号源的输出信号与载波通过相乘器进行相乘,在MATLAB下Simulink仿真平台构建了ASK调制原理图如下图所示:
图4.1ASK调制电路图
数字基带信号数据设置:基带码元传码率设为4Baud,基带信号设置为二进制单极性信号数据设置如下图。

图4.2基带信号数据设置
由于信号经过远距离传送时,信号频率越高,信号传送的更远,因此在信号调制过程中,载波信号的频率一般要大于信号源的频率。

信号源频率为4 Hz,所以将载波频率设置为8 Hz,参数设置如图4.3 。

由于在载波参数设置里,频率的单位是rad/sec,所以即为16*pi。

实际上载波频率远大于信号院频率,这样设置只是为了更清晰的观察调制信号波形,了解产生原理。

图4.3载波信号参数设置
4.2、ASK调制与解调
未加噪声的ASK信号产生和解调原理总图如下图所示。

图4.4 ASK调制与解调仿真电路图
低通滤波器(Filter type为Lowpass)的频带边缘频率与信号源的频率相同,前面设置信号源频率为 4 Hz,所以对话框中“Passband edge frequency (rads/sec):”应填“8*pi”。

参数设置如下图所示。

图4.5低通滤波器数据设置
抽样保持器的抽样保持时间应该设为0.25,与基带信号周期时间一致如下图。

图4.6抽样保持器参数设置
对于2ASK系统,当发送“0”和“1”概率相等时,判决器的最佳判决门限为a/2,它与接受机输信号的幅度有关。

当接收机输入的信号幅度发生变化,最佳判决门限也将随之改变。

抽样判决器参数设置如下图所示:
图4.7抽样判决器的参数设置
设置好参数之后,进行仿真,由示波器的输出波形可知,信号的调制解调成功,但存在 1比特的时延(用时延时间乘以采样量化编码器的采样频率)。

因而,误码器的可接纳时延为1比特。

其参数设置如下图所示:
图4.8误码器的参数设置
加入高斯白噪声后的ASK调制与解调
加性高斯白噪声(AWGN)在信道中传输。

故在加载在接收端之前,然后通过带通滤波器后再次与载波相乘,接着通过低通滤波器、抽样判决器,最后由示波器显示出各阶段波形,并用误码器观察误码率。

如下图所示。

图4.9ASK调制与解调中加入高斯白噪声仿真图
高斯白噪声的抽样时间设置为0.001(误码少),如下图所示
图4.10高斯白噪声的参数设置
带通滤波器的下频应该等于载波频率与调制信号频率之差,上频应该等于载波频率与调制信号频率之和。

前面已设置信号源频率为4Hz,载波频率为8Hz,计算得上、下截止频率分别为4Hz、12Hz,转换成以rads/sec为单位即为8*pi 、24*pi。

参数设置如下图所示:
图4.11带通滤波器的参数设置
最终得到的眼图如下图所示:
图4.12眼图
五、实验结果与分析
在ASK调制与解调中加入高斯白噪声后各波形图,如下图。

图5.1 各点信号的波形
高斯白噪声的抽样时间设置为0.018时,500个编码中有9个是误码如下图
图5.2高斯白噪声为0.018时误码率
高斯白噪声的抽样时间设置为0.001,没有误码,符合设计要求,如图所示
图5.3高斯白噪声为0.001时误码率
六、心得体会
在本次课程设计中,我了解到了通信系统仿真的重要性和simlink功能的强大。

它可以很好地让我们理解通信原理以及其中的过程,能够对系统进行仿真,这对于我们专业的学生来说是非常重要。

我们以后会经常用到系统仿真来设计我们所需的通信系统,需要从仿真结果检验出我们所设计的系统是否达到目标,从中及时发现并解决问题,不断地改进和优化方案,这样可以提高效率,节约投资,缩短开发设计时间。

经过将近一周的设计制作,我对通信系统的仿真有了很大的了解,掌握的设计的方法和思路,提高了对系统的分析能力和解决能力。

在这次课程设计中,我也遇到了许多的困难,如参数的设置,如何将不同的功能框图整合一起以实现更强大的功能,怎么降低误码率等等。

该设计终于做完,其功能基本上可以满足设计要求。

由于个人能力有限,有许多地方没有做的那么完美,需要将来做进一步的改善。

通过这次课程设计,我对matlab有了较深的认识,真正把理论与实践联系起来,是我所学的专业知识得到了运用,更深刻的理解了理论知识,理论联系实际的实践操作能力也进一步提高。

并且强化自己分析问题、解决问题和团队合作的能力,加深了对软件的掌握和应用,为下一次课程设计打好基础。

七、参考文献
[1] 张辉,曹丽娜现代通信原理与技术(第二版)西安电子科技大学出版社2008.7
[2] 管爱红张红梅杨铁军 MATLAB基础及其应用教程电子工业出版社2009.8
[3] 贺超英 MATLAB应用与实验教程电子工业出版社2010.1。

相关文档
最新文档