网架结构设计总结
钢网架 工程师总结(二)
网架制作与安装网架是用于大跨度房屋屋盖的空间结构体系,其自重轻、跨度大、节约材料。
近20年来网架结构得到了快速的发展。
我国首都机场机库所采用的网架达到宽90M,长360M,是目前跨度最大的网架结构之一。
第一节网架结构的形式网架结构的形式很多,按结构的组成形式可分为:双层网架、三层网架、组合网架。
其中,双层网架是指,由上弦、下弦、和弦杆间的腹杆、组成的网架。
三层网架是指,由上弦、中弦、下弦、和弦杆之间的腹杆、所组成的网架。
组合网架是用钢筋混凝土板替代网架的上弦杆,形成由钢筋混凝土板、钢腹杆、钢下弦组成。
双层网架,按照其网格形式可分为三大类:1平面桁架体系网架这类网架由平面桁架相互交叉组成,其上、下弦杆件长度相等,杆件类型少,且,上下弦和腹杆在同一面内。
由两组分别与边界平行的平面桁架互成90o组成。
见图8-1-1。
这种网架适用于接近正方形和跨度较小的建筑屋盖。
(1)两向正交正放网架图8-1-1两向正交正放网架(2)两向正交斜放网架由两组于边界成45o角的平面桁架,互成90o交叉而成。
见图8-1-2。
比正交正放网架空间刚度大,受力均匀用钢量小。
图8-1-2两向正交斜放网架(3) 两向斜交斜放网架这种网架由两组与边界成一斜角的平面桁架斜向相交而成,其构造复杂受力性能也不好因而很少采用。
见图8-1-3。
2 四角锥体系网架这类网架由倒置四角锥,按一定规律组成。
倒置四角锥的底边为上弦杆,锥菱为腹杆,锥顶间的连杆为下弦杆,其上下弦均是矩形。
图8-1-3两向斜交斜放网架(1) 正放四角锥网架将各个倒置的四角锥底边用上弦杆相连并与边界平行或垂直,用上弦杆平行的杆件,将各锥顶连接 形成四角锥网架,这种网架各个弦杆等长,当腹杆与上、下弦平面的夹角成45o 角时,则所有腹杆长度均相等。
此类网架适用于四边支撑,屋面荷载较大时的情况。
见图8-1-4。
图8-1-4正放四角锥网架(2) 斜放四角锥网架将各个倒置四角锥,底面的角与角相连,上弦杆与边界成45o 角,下弦杆正交正放,腹杆与下弦杆在同一垂直面内,就形成斜放四角锥网架。
空间网架结构设计浅析
空间网架结构设计浅析摘要:随着空间网架结构的应用越来越广泛,网架设计已经成为工程师提升自身设计水平及竞争力的必备能力之一。
本文以实际工程案例作为对象对空间网架的设计,计算以及施工要点进行简要的阐述和分析。
关键词:空间网架设计施工前言:近些年随着行业技术的发展及建筑多样化需求的增长,大跨度结构的应用逐渐增多,尤其是以公共建筑为主,大跨度屋面不仅要保证在地震作用和风作用下的结构安全性,同时要能发挥体现建筑风格的功能,并兼具排水甚至采光等一系列建筑功能,同时要具备较高的经济效益,复杂屋面设计还要能够保证施工的顺利进行;大型公共建筑因为大空间,密集人员交通疏散等建筑功能的需要,采用厚重的钢筋混凝土结构往往达不到理想的效果,空间网架结构通过多年的发展很好的满足这类空间建筑的需求,并得到了广泛的推广。
网架结构是一种空间网状杆系结构,由多根杆件按照一定的网格形式通过节点连接在一起形成的空间受力结构,其往往具备较小的尺寸单元以及相似风格的网格;通常情况下,平板网架简称为网架,曲面网架简称为网壳。
空间网架结构是一种具备三维受力特点的高次超静定结构,除关键杆件外局部单个杆件的失效由于具备一定的超静定次数可引起内力重分布而使结构继续承担荷载,因此具备较高的安全储备。
网架结构的节点一般假定为铰接,在承担外部荷载作用力时,能将所受荷载传递至所有杆件并将这些荷载均匀的分配到空间结构的支座。
平板型网架和双层壳型网架的杆件分为上弦杆,下弦杆和腹杆,主要是拉压杆,仅承担拉力和压力,充分利用材料的物理性能;单层壳型网架的杆件除承受拉力和压力以外还承受弯矩和切力,此时节点不再是单纯的铰接节点而且具备一定的刚度来承担弯矩和变形;腹杆一般相对于弦杆截面较小,作为支撑杆件,对结构整体稳定起到一定的作用。
1.设计背景本工程为某地一中学综合楼,地上四层,地下一层,建筑高度16.8米,顶层作为运动场,屋面采用网架结构。
结构设计使用年限为50年,建筑结构安全等级为二级,抗震设防类别采用乙类,所处地区为抗震设防烈度7度区,地震加速度0.1g,第一组,场地类别为II类场地,特征周期0.35s,框架结构,按政策相关要求,学校医院等乙类建筑抗震等级按所属地区抗震设防烈度提高一度确定,框架抗震等级为二级,计算地震作用加速度采用0.1g,所处场地地面粗糙类别为B类,基本风压0.55KN/ m2,基本雪压0.50KN/ m2;根据地勘报告项目所在场地为抗震一般场地,无不良地质作用。
网架结构杆件和节点的设计与构造
(2) 拉力支座节点
常用的拉力支座节点有下列两种型式: 1)平板拉力支座节点 对于较小跨度网架,支座拉力较小,可采
用与平板压力支座相同的构造,利用连接 支座与支承校的锚栓来承受拉力。 2)弧形拉力支座节点 弧形拉力支座节点的构造与弧形压力支座 相似。
6mm时,圆钢管杆件与空心球之间可采用 角焊缝连接,圆钢管内可不加设短衬管。 此时,按与杆件截面等强的条件可计算所
需角焊缝焊脚尺寸hf:
角焊缝的焊角尺寸hf还应符合以下要
求:
① 当t≤4mm时,hf≤1.5t,且不宜小于
4mm;
② 当t>4mm时,hf≤1.2t,且不宜小于 6mm。t为与空心球相连的圆钢管杆件的壁
3)螺栓球节点的设计
(1)螺栓钢球体的设计 螺栓钢球体直径的大小主要取决于高强度
螺栓的直径,高强度螺栓拧入球体的长度 及相邻两杆件轴线之间的夹角。 当网架中各杆件所需高强度螺栓直径确定 以后,螺栓钢球直径的大小应同时满足两 个条件: ① 保证相邻两螺栓在球体内不相碰; ② 保证套筒与钢球之间有足够的接触面。
式中,Nmax——网架杆件(弦杆或腹杆)中的最大拉力
设计值,N;
Nbt——高强度螺栓的抗拉承载力设计值,N;
ψ——螺栓直径对承载力影响系数,当螺栓直径<30mm时, ψ=1.0;
当螺栓直径>30mm时,ψ=0.93。
fbt——高强度螺栓经热处理后的抗拉强度设计值:对40Cr
钢、40B钢、20MnTiB钢为430N/mm2;对45号钢为 365N/mm2;
网架杆件的最小截面尺寸应根据网架跨度 及网格大小确定,
角钢不宜小于∟50×3, 圆钢管不宜小于Φ48×2。 薄壁型钢的壁厚不应小于2mm。
五、网架结构的节点设计与构造
网架结构节点设计解析
网架结构节点设计解析网架结构节点是指构成整个网架结构的基本组成部分,它们之间的连接和关系决定了网架的功能和性能。
设计好网架结构节点是一个关键的任务,本文将从设计的目标、关键要素、节点类型和实现方法四个方面对网架结构节点的设计进行解析。
一、设计目标网架结构节点的设计目标是确保整个系统的稳定性、可靠性、可扩展性和性能。
稳定性要求节点之间的通信和数据传输效率高、可靠性高,系统能够长时间运行而不发生故障;可扩展性要求节点能够扩展和缩小,适应不同规模和负载的需求;性能要求节点能够快速响应用户请求,处理大量的数据和并发访问。
二、关键要素1.节点类型:节点可以分为核心节点、边缘节点和终端节点。
核心节点是整个网架的核心部分,负责处理核心任务和协调各个节点的工作;边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载;终端节点是最终的用户访问节点,负责接收用户请求和返回处理结果。
2.节点连接:节点之间的连接可以通过物理连接或逻辑连接来实现。
物理连接是指直接通过网络、硬件等传输媒介进行连接,适用于距离较近、传输速度要求高的情况;逻辑连接是通过软件协议、API等进行连接,适用于跨网络、跨地域的通信。
3.节点功能:节点的功能包括数据处理、存储、计算、通信等,不同节点的功能可以根据具体需求进行配置和分配。
例如,核心节点的存储和计算能力要求较高,边缘节点的通信和转发能力要求较高,终端节点的用户接口和交互能力要求较高。
三、节点类型1.核心节点:核心节点是整个网架的核心部分,负责处理核心任务、协调各个节点的工作和维护整个系统的稳定性和可靠性。
核心节点的设计要考虑高可用性、高性能和高扩展性。
可以采用分布式架构,将不同功能和任务的核心节点分开部署,通过负载均衡和集群技术来分担负载和提高系统性能。
2.边缘节点:边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载,并提高系统的响应速度。
钢网架结构设计方法及其优化措施
钢网架结构设计方法及其优化措施摘要:本文深入探讨了钢网架结构设计的关键要点,涵盖了结构节点设计、杆件设计、屋面排水设计以及钢网架结构的耐久性设计对策等多个方面。
文章详细讲解了这些方面的设计原则和实施方法,以及优化设计的重要性和方法。
我们了解到,良好的钢网架结构设计需要基于深入的理论学习,实际经验的积累,以及持续的优化过程,以实现其在实际工程中的最佳表现。
关键词:钢网架结构;设计方法;优化措施1 选择钢网架结构类型的考量在选择钢网架结构的类型时,考虑因素众多。
主要的依据涵盖了结构的几何可变性、特定的载荷需求,以及实际的建设尺寸、形状和支持方式。
此外,制作安装的便捷性和项目的整体经济性也是决策过程中无法忽视的要素。
首先,我们注意到几何可变性对于选择网架结构类型的重要性。
常用的三角锥和四角锥,凭借其几何稳定性,在设计中常成为首选。
这两种单元形式构建的网架体系,在面对任何外力影响下,仍能保持其结构稳定,避免发生变形。
这为工程的安全性和稳定性提供了有力保障。
其次,建筑的实际载荷需求,必须作为决定钢网架类型的重要因素。
根据工程建设的具体需求,以及钢网架结构在受到不同外力时的形状变化性,我们需要选择最合适、最能发挥效能的结构类型。
钢网架的稳定性能始终是设计的首要关注点。
同时,我们需要从全局角度出发,考虑建筑的整体规模、形状、受力状况等因素。
这要求我们不仅要关注工程建设的技术可行性,更要关注经济性。
我们需要制定多套备选方案,从中择优选择,确保既能满足工程技术需求,又能控制好工程的投资成本。
对于平面形状接近正方形的建筑,斜放四角锥网架结构因其材料使用量少,经济性出众,而被广泛采用。
而正放四角锥结构虽然材料使用量较多,但其杆件标准,节点统一度高,非常适合工厂批量生产,因此在实际应用中也十分广泛。
如果平面为矩形,那么斜放四角锥网架、棋盘形四角锥网架和正放抽空四角锥网架则是理想的选择。
至于圆形、多边形等特殊形状的平面,一般倾向于选择三向网架、三角锥网架和抽空三角锥网架。
网架结构设计
(4-1)
如果将网架作为刚体考虑,则最少的支座约束链杆数为 6,故 r ≥6。
由此可知,当 m ≥ 3J − r 时,为超静定结构的必要条件;当 m =
3J − r 时,为静定结构的必要条件;当 m ≤ 3J − r 时,为几何可变体系。
3.网架几何不变的充分条件 分析网架结构几何不变的充分条件时,应先对组成网架的基本单元进 行分析,进而对网架的整体作出评价。 三角形是几何不变的。如果网架基本单元的外表面是由三角形所组 成,则此基本单元也将是几何不变的。在对组成网架的基本单元进行分析 时,一般有以下两种类型和两种分析方法。 1)两种类型: 自约结构体系 自身就为几何不变体系; 它约结构体系 需要加设支承链杆,才能成为几何不变体系。 2)两种分析方法:
图 4-16 棋盘形四角锥网架
图 4-17 三角锥网架
3)三角锥体系 这类网架的基本单元是一倒置的三角锥体。锥底的正三角形的三边为 网架的上弦杆,其棱为网架的腹杆。随着三角锥单元体布置的不同,上下 弦网格可为正三角形或六边形,从而构成不同的三角锥网架。 ① 三角锥网架 三角锥网架上下弦平面均为三角形网格,下弦三角形网格的顶点对着 上弦三角形网格的形心(图 4-17)。三角锥网架受力均匀,整体抗扭、抗 弯刚度好;节点构造复杂,上下弦节点交汇杆件数均为 9 根。适用于建筑 平面为三角形、六边形和圆形的情况。 上海徐汇区工人俱乐部剧场(六边形,外接圆直径 24m)采用了这种 网架结构型式。
的平面桁架相交而成(图 4-11)。
这类网架受力均匀,空间刚度大。
但也存在一定的不足,即在构造上
汇交于一个节点的杆件数量多,最
多可达 13 根,节点构造比较复杂,
宜采用圆钢管杆件及球节点。
三向网架适用于大跨度 (L>60m),而且建筑平面为三角形、
网架结构的支座设计要点
网架结构的支座设计要点网架(网壳)结构作为一种高次超空间感静定空间杆系结构,由于其受力性能好(理论上杆件只受轴力作用)、刚度大、整体性及抗震性能好、承载力强、受支座不均匀沉降影响小、适应性强,而计算理论的日益完善以及计算机技术飞速发展,使得对任何极其复杂的三维结构的分析与设计成为可能,因此网架结构建筑安装被广泛应用于工业与民用建筑领域中所。
但站台雨棚结构内部结构如果其支承结构、支座型式及边界条件设计不合理会对网架结构的安全性和经济性造成重要影响。
1.支承构造与支承方式目前在很多工程施工中,网架(网壳)一般的专业由大丁草公司根据事先假定的边界约束条件进行设计,再将他们算出来的支座反力作为外加荷载作用剪应力到下部支承结构中。
把网架(网壳)和下部支承结构连在一起计算,网架支座相对于下部结构的位移可以虽然通过弹性约束方法模拟,但是由下部支承结构变形带来的支座沉陷等支座本身的很难估算准确,算出来的结构灵气在某些情况下会与实际情况差别较大,可能会工程施工给工程留下安全隐患。
下部结构可能是柱,也可能是梁,也可能是其他结构形式,不仅刚度是极小的,而且具体情况可能出现工程刚度差异可能很大,在这种假定条件下所,算出来的杆件内力、支座反力及下部结构内力与采用网架支座刚度为刚度且上、下部结构共同工作的物理所计算出来的结果肯定是不相同的。
另外,分开计算割裂了上下部结构的协同工作,使得上、下部结构的周期和位移计算均不准确。
一般会网架的支承可以分为:周边支承、点支承以及点支承与周边支承混合使用三种方式,周边支承是将空心周边节点搁置在梁或柱上,点支承则是将网架支座以较大的间距搁置于独立梁或柱上,柱子与其他结构无联系。
网架(网壳)搁置在梁或柱上才时,可以认为梁和柱的竖向耐久性很大,忽略梁的梁柱变形和柱子轴向变形,因此网架(网壳)支座壁面位移为零,网架(网壳)支座水平变形应考虑下部结构共同工作。
在周边支承网架(网壳)支座的径向应将下部支承结构作为网架(网壳)结构的弹性约束,而点支承网架(网壳)本征值支座的边界条件应充分考虑水平X和Y两个路径的弹性约束。
网架结构毕业设计
网架结构毕业设计网架结构毕业设计近年来,随着城市化进程的加快和建筑技术的不断发展,网架结构作为一种新兴的建筑形式,逐渐受到人们的关注和喜爱。
网架结构以其轻巧、灵活、美观的特点,成为现代建筑设计中的热门选择。
本文将探讨网架结构的设计原理、应用领域以及发展趋势。
一、设计原理网架结构的设计原理是基于力学和材料学的原理。
其核心思想是通过将杆件和节点相连接,形成一个稳定的三维结构。
杆件承担着承重的功能,节点则起到连接和传递力的作用。
通过合理的设计和布局,使得整个结构能够承受外部荷载,并保持稳定。
在网架结构的设计中,材料的选择是至关重要的。
常见的网架结构材料包括钢材、铝材和复合材料等。
不同的材料具有不同的特点和性能,需要根据具体的使用环境和要求来选择。
同时,设计者还需要考虑材料的强度、刚度、耐久性等因素,以确保结构的安全和可靠性。
二、应用领域网架结构的应用领域非常广泛,涵盖了建筑、桥梁、体育场馆等多个领域。
在建筑领域,网架结构常用于大跨度建筑的设计,如展馆、体育场等。
其轻巧的特点使得大空间的覆盖成为可能,同时还能够创造出独特的建筑形象。
在桥梁领域,网架结构可以用于设计各种形式的桥梁,如悬索桥、斜拉桥等。
其高强度和刚性使得桥梁能够承受大荷载,同时又能够减少材料的使用量。
在体育场馆领域,网架结构可以用于设计大型的体育场馆,如足球场、篮球馆等。
其灵活性和可变形性使得观众能够获得更好的视野和观赛体验。
三、发展趋势随着科技的不断进步和创新,网架结构在设计和施工方面也有了许多新的发展趋势。
首先,数字化设计技术的应用使得网架结构的设计更加精确和高效。
通过计算机模拟和分析,可以在设计阶段就对结构的性能进行评估和优化,从而提高结构的安全性和可靠性。
其次,新材料的应用也为网架结构的发展带来了新的可能。
例如,碳纤维复合材料具有轻质、高强度的特点,可以用于设计更加轻巧和刚性的网架结构。
再者,可持续发展的要求也对网架结构的设计提出了新的挑战。
空间网架结构设计
为点支承时,可在周边布置封闭的边桁架。适用于中、小跨度周边支承,
或周边支承与点支承相结合的方形或矩形平面情况。
上海体育馆练习馆(35×35m,周边支承)和北京某机库(48×54m,
三边支承,开口)采用了这种网架结构型式。
图 4-14 斜放四角锥网架
④ 星形四角锥网架
图 4-15 星形四角锥网架 7
这种网架的单元体形似星体,星体单元由两个倒置的三角形小桁架相 互交叉而成(图 4-15)。两个小桁架底边构成网架上弦,它们与边界成 45 º角。在两个小桁架交汇处设有竖杆,各单元顶点相连即为下弦杆。因此, 它的上弦为正交斜放,下弦为正交正放,斜腹杆与上弦杆在同一竖直平面 内。上弦杆比下弦杆短,受力合理。但在角部的上弦杆可能受拉。该处支 座可能出现拉力。网架的受力情况接近交叉梁系,刚度稍差于正放四角锥 网架。
4
两向正交正放网架是由两组平面桁架互成 90º交叉而成,弦杆与边界 平行或垂直。上、下弦网格尺寸相同,同一方向的各平面桁架长度一致, 制作、安装较为简便(图 4-8)。由于上、下弦为方形网格,属于几何可 变体系,应适当设置上下弦水平支撑,以保证结构的几何不变性,有效地 传递水平荷载。
平面
上弦
剖面
下弦
星形四角锥网架适用于中、小跨度周边支承的网架。 杭州起重机械厂食堂(28×36m)和中国计量学院风雨操场(27×36m) 采用了这种网架结构型式。 ⑤ 棋盘形四角锥网架 棋盘形四角锥网架是在斜放四角锥网架的基础上,将整个网架水平旋 转 45º角,并加设平行于边界的周边下弦(图 4-16);也具有短压杆、长 拉杆的特点,受力合理;由于周边满锥,它的空间作用得到保证,受力均 匀。棋盘形四角锥网架的杆件较少,屋面板规格单一,用钢指标良好。适 用于小跨度周边支承的网架。 大同云岗矿井食堂(28×18m)采用了这种网架结构型式。
大型网架结构设计分析
大型网架结构设计分析【摘要】随着社会经济的飞速发展和我国科学技术的不断进步,大跨度网架结构在建筑工程中的运用日益广泛。
网架结构属于多次超静定结构,其空间受力性能、整体性和稳定性分析困难较大。
本文主要从网架结构的特点、形式以及网架结构设计分析三个方面进行了探讨,希望与同行共同切磋学习。
【关键词】大跨网架结构;四角锥;节点;控制内力组合;振动特性引言空间结构具有受力合理、总量轻、造价低以及形式活泼新颖、能够突出人类艺术创造力等优点,能够充分利用不同材料的特性,以适应各种变化的建筑造型的需要。
但空间结构具有三维结构形体,在荷载作用下为三向受力,结构成形和受力分析都极为复杂。
近年来,计算机的普及使得大跨度空间结构以异乎寻常的速度发展起来,对现代建筑产生了重大的影响为满足现代社会生活和居住环境的需要,人们需要更大的覆盖空间,如大型会场、体育馆、飞机库、展览馆和候车室等。
这些建筑物的跨度要求越来越大,几十米甚至更大,满足这种大跨度要求的屋盖体系只能是空间结构,因而空间结构成为一种备受关注的结构形式。
一、网架结构的特点网架结构最大的优势体现在大中跨度的屋盖结构,这时采用网架比采用门式刚架及钢屋架更经济合理。
网架结构最大的特点是由于杆件之间互相支撑作用,刚度大,整体陛好,抗震能力强,而且能够承受由于地基不均匀沉降所带来的不利影响;即使在个别杆件受到损伤的情况下,也能自动调节杆件内力,保持结构的安全。
网架结构的适应性大,既适用于中小跨度的建筑,也适用于大跨度的房屋,而且从建筑平面形式来说,网架结构也可以适应于各种平面形式的建筑:如矩形,圆形,扇形及各种多边形的平面建筑形式。
网架结构取材方便,一般多采用q235钢或16mn钢,杆件截面形式多采用钢管或型钢(型钢以角钢为主),并且可以用小规格的杆件截面建造大跨度的建筑。
另外,网架结构由于它的杆件规格划一,适宜工厂化生产,为加速工程进度提供了有利条件和保证。
网架结构可用通用的计算程序进行分析,制图简便,加上网架本身所具有的特点和优越性,给网架结构的发展提供了有利的条件。
网架工作总结
网架工作总结网架是一种用于支撑和固定各种设备和管道的结构,广泛应用于工业生产和建筑领域。
在网架工作中,我们需要充分了解各种材料的特性和使用方法,合理设计和搭建网架结构,确保其稳固和安全。
在这篇文章中,我将总结网架工作的关键要点,分享我的工作经验和心得体会。
首先,网架工作需要对各种材料有深入的了解。
不同材料具有不同的强度、耐腐蚀性和使用寿命,我们需要根据具体的工程需求选择合适的材料。
例如,对于需要承受重压的网架结构,我们通常会选择高强度的钢材,而对于需要防止腐蚀的情况,不锈钢或者镀锌钢是更好的选择。
在实际工作中,我们需要根据具体情况选择合适的材料,并严格按照相关标准和规范进行使用和安装。
其次,合理设计和搭建网架结构是网架工作的核心。
在设计网架结构时,我们需要充分考虑工程的实际情况,包括承载要求、使用环境、安全要求等。
我们需要根据这些要求设计出合理的结构方案,并确保其稳固和安全。
在搭建网架结构时,我们需要严格按照设计图纸和施工规范进行操作,确保每一个连接点的牢固和稳定。
同时,我们还需要注意施工现场的安全和环保,确保工程的顺利进行。
最后,网架工作需要团队合作和沟通。
在网架工作中,我们通常需要和设计师、施工人员、监理等多个团队进行合作。
良好的沟通和协作是保证工程质量和进度的关键。
我们需要及时沟通工程的进展和问题,共同解决困难和挑战,确保工程按时按质完成。
综上所述,网架工作是一项需要严谨和细致的工作。
我们需要充分了解材料特性,合理设计和搭建网架结构,同时和团队成员进行良好的沟通和协作。
只有这样,我们才能保证网架工程的质量和安全,为工业生产和建筑领域的发展做出贡献。
希望我的总结和经验能够对网架工作者有所帮助,也希望大家能够在工作中不断提升自己,为行业的发展做出更大的贡献。
网架结构设计总结
结构计算
• 网架结构一般下部为独立柱或框架柱支承,柱的水平侧向刚度 较小,并由于网架受力为类似于板的弯曲型,因此对于网架支 座的约束可采用两向或一向可侧移铰接支座或弹性支座
算等效刚度和等效质量作为上部空间网格结构分析时的条件; 也可把上部空间网格结构折算等效刚度和等效质量作为下部支 承结构分析时的条件;也可将上、下部结构整体分析。
• 分析空间网格结构时,应根据结构形式、支座节点的位置、数
量和构造情况以及支承结构的刚度,确定合理的边界约束条件
。支座节点的边界约束条件,对于网架应按实际构造采用两向 或一向可侧移、无侧移的铰接支座或弹性支座。
在抗震设防烈度为8度的地区,对于周边支承的中小跨度网架结 构应进行竖向抗震验算,对于其他网架结构均应进行竖向和水平 抗震验算;
在抗震设防烈度为9度的地区,对各种网架结构应进行竖向和水 平抗震验算
• 《抗规》10.2.6 下列屋盖结构可不进行地震作用计算,但应符 合本节有关的抗震措施要求:
7度时,矢跨比小于1/5的单向平面桁架和单向立体桁架结构可不 进行沿桁架的水平向以及竖向地震作用计算;
国内大跨度结构中采用较多,设计简单,规格 不需统一,球加工制作也简单,有优越性, 不足之处:现场工作量大,质量检验工作量大 。国内人工便宜尚有市场,而螺栓球节点内力受 到限制,因此尚有一定的使用价值
节点设计与构造
• 螺栓球节点
越来越为工程师接受,发展迅速 节点精度高,工厂化生产,现场安装方便,工作量小,速度快 高强螺栓质量的重要性
• 网架二相邻杆件间夹角不宜小于30度,以免杆件相碰或节点尺 寸过大要合并的数据文件名;
网架结构设计体会
般网架结构采用 Q 3B级钢 即可 。大跨 度 网架 结构 中主要采 腐性 , 25 它各方 向惯性矩 相 同, 回转 半径大 , 对受 压受 扭均 有利 , 其 用 Q4 35钢。焊接球 、 封板 、 锥头 同样可采用 Q 3 B级钢 或 Q 4 受力性能 比其 他形式截 面要好 , 25 35 在网架结构设计 中被广泛采用 。 钢 , 钢号宜 与杆 件统一 。高强度螺栓采用 4 C 钢较好 , 栓球 其 0 r 螺 圆形钢按制作方法 可分 为高频焊管和轧制 的无缝钢管两种 ,
Ju a o Mah maia An ls a d orl f n te t l c ayi n Ap l ain ,2 0 s pi t s 0 8 c o
z t n frn n ie ri ・ o e mme s i ・ p p rt r q a ai o o l a l- s d Ha o n l p rt n— eo e ao u ・ e t y e ・
3 三角锥体系 : ) 常见有三角锥 、 抽空 三角锥 、 蜂窝形三角锥 。
第一 , 不锈 钢杆件 附近 的 Q 3B钢或 Q4 将 25 35钢杆 网架 的支承情况 一般有周 边支 承、 支承 、 点 三边或 两边 支承 方法可供选择 : 件截 面按不锈钢杆件材料设计。第二 , 网架 中不锈 钢部分 均采用 等形式 。
错误在所难免 , 请大家包涵 。
表 1 网架结构选型
支承方式 平面形状 长宽比 网架形式
LB‘ 正放四角锥、 , 斜放 四角锥、 棋盘形 四角锥 、 15 . 正放抽空四角锥、 向正交正放、 向正交 两 两
周边支承
矩形 斜放 1 5< 两 向正交正放、 正放 四角锥、 正放抽空 四角 L 口< 锥 2
网架结构设计与加固研究
网架结构设计与加固研究网架结构是一种由相互支撑的杆件通过节点连接形成的空间结构,具有优异的承载性能和稳定性。
然而,随着现代工程技术的进步和建筑物的高层化、复杂化,网架结构的设计与加固面临着一系列新的挑战。
本文将围绕网架结构设计与加固研究展开,旨在为解决这些挑战提供理论支持和实践指导。
在过去的几十年中,网架结构设计与加固研究取得了显著的成果。
研究者们在结构分析、优化设计、新型连接装置以及耐震、抗风等方面进行了广泛而深入的探讨。
然而,现有的研究仍存在一些不足之处。
例如,对网架结构的整体性能和节点连接的精细化研究尚不充分;同时,网架结构在复杂荷载条件下的行为仍需进一步探究。
本文的研究方法主要包括文献综述、数值模拟和实验研究。
我们将系统地回顾网架结构设计与加固领域的历史和现状,分析现有研究的优势和不足。
接着,我们将利用有限元方法和实验手段对网架结构的性能进行深入分析,探究新型连接装置对网架结构性能的影响。
同时,我们还将对网架结构的优化设计进行深入研究,旨在实现结构的轻质、高强和稳定。
通过数值模拟和实验研究,我们发现新型连接装置能够有效提高网架结构的承载能力和稳定性。
优化设计策略也能够显著降低网架结构的重量和提高其抗震性能。
这些研究成果对于解决网架结构在实际工程中面临的问题具有重要的指导意义。
尽管本文的研究取得了一些积极成果,但仍需注意研究的局限性和未来研究的需求。
例如,虽然我们提出了一些优化设计策略,但这些策略在实际工程中的应用效果仍需进一步验证。
对网架结构的耐震、抗风等性能的深入研究仍需继续。
未来的研究应该这些尚未解决的问题,以期为网架结构的设计与加固提供更加完善、有效的理论和技术支持。
为了方便读者进一步了解网架结构设计与加固领域的文献,我们列举了部分本文将介绍SG531《钢网架结构设计》国家建筑标准设计图集,着重阐述钢网架结构的概念、特点、应用,国家建筑标准对钢网架结构的基本要求和设计原则,并列举了几个典型的钢网架结构实例。
网架结构的设计与分析
网架结构的设计与分析摘要:网架结构在我国广泛用作厂房、体育馆、展厅、俱乐部等的屋盖结构。
本文详细阐述了网架结构的特点和设计过程,最后呈现了一组钢网架结构、火力发电厂的设计案例。
关键词:网架结构;结构设计;钢结构1.网架结构特点分析网架结构的结构特点决定了网架作为一种空间杆系结构系统,具有三向受力强度,可以承受不同方向的荷载。
网架结构的特点具体包括以下几个方面:1.网架结构刚度大,材料强度高,抗震性强。
(2)网架结构重量轻,节约钢材。
(3)网架结构适合工厂化生产。
由于网架结构的构件是标准化的,也可以提前组装,适合工厂化生产,为加快项目进程提供了有利条件和保障。
2.网架结构设计流程网架结构的设计必须符合我国相关法律法规的要求。
同时,具体设计必须结合各自项目的特点来实现。
一般来说,可分为方案分析、网架计算、施工图深化三个阶段。
2.1方案分析阶段要注意确定关键点,如网架的高度不能过大,以保证下方设备的使用高度;初始杆件规格尺寸、网架高度、连接方式的选择等。
应当本专业的规范规程以及各个专业的使用功能等原则。
其次,即既要满足网架结构的特点,又要满足承载力的要求,并考虑现场施工安装的便利性。
2.2网架结构计算阶段在结构计算过程中,应注意设置网架支座的支撑条件、设计工况和调整计算结果。
针对于真实情况下的支座构件情况的模拟是否准确,各个工况组合中子荷载及其分项系数的取值是否合适;或计算结构内力或挠度的修正方法是否正确,是否符合结构的安全性和规范的构造要求;检查网架结构的连接节点,如螺栓布置或焊缝尺寸是否合适等。
2.3施工图深化阶段施工图深化阶段大部分是节点施工图的计算和施工图的过程。
水平网架一般选择水平面作为基准面,弧形网架一般使用合适的布局,但计算中网架图案计算多条弧线的交点最好使用其他数据布局。
平面的位置一定要移到基点,否则画图的时候会有很多小的角度差异,影响网架球的组成。
3.设计实例3.1工程概况项目建设规模为2x 1000 MW模块化热电厂设计。
网架结构的支座设计要点
网架( 网壳)结构作为一种高次超静定空间杆系结构,由于其受力性能好(理论上杆件只受轴力作用)、刚度大、整体性及抗震性能好、承载力强、受支座不均匀沉降影响小、适应性强,而计算理论的日益完善以及计算机技术飞速发展,使得对任何极其复杂的三维结构的分析与设计成为可能,因此网架结构被广泛应用于工业与民用建筑领域中。
但网架结构如果其支承结构、支座型式及边界条件设计不合理会对网架结构的安全性和经济性造成重要影响。
1. 支承结构与支承方式目前在很多工程中,网架(网壳)一般由专业的钢构公司根据事先假定的边界约束条件进行设计,再将他们算出来的支座反力作为外加荷载作用到下部支承结构中。
把网架(网壳)和下部支承结构分开计算,网架支座相对于下部结构的位移虽然可以通过弹性约束方法模拟,但是由下部支承结构变形带来的支座沉陷等支座本身的变位很难估算准确,算出来的结构内力在某些情况下会与实际情况差别较大,可能会给工程留下安全隐患。
下部结构可能是柱,也可能是梁,也可能是其他结构形式,不仅刚度是有限的,而且具体工程刚度差异可能很大,在这种假定条件下,算出来的杆件内力、支座反力及下部结构内力与采用网架支座刚度为实际刚度且上、下部结构共同工作的力学模型所计算出来的结果肯定是不相同的。
另外,分开计算还割裂了上下部结构的协同工作,使得上、下部结构的周期和位移计算均不准确。
通常网架的支承可以分为:周边支承、点支承以及点支承与周边支承混合使用三种方式,周边支承是将网架周边节点搁置在梁或柱上,点支承则是将网架支座以较大的间距搁置于独立梁或柱上,柱子与其他结构无联系。
网架(网壳)搁置在梁或柱上时,可以认为梁和柱的竖向刚度很大,忽略梁的竖向变形和柱子轴向变形,因此网架(网壳)支座竖向位移为零,网架(网壳)支座水平变形应考虑下部结构共同工作。
在周边支承网架(网壳)支座的径向应将下部支承结构作为网架(网壳)结构的弹性约束,而点支承网架(网壳)支座的边界条件应考虑水平X和Y两个方向的弹性约束。
网架结构构造设计
浅析网架结构的构造设计摘要:网架结构的主要尺寸有网格尺寸(指上弦网格尺寸)和网架高度。
确定这些尺寸时应考虑跨度大小、柱网尺寸、屋面材料以及构造要求和建筑功能等因素.关键词:网架结构网格尺寸跨度大小中图分类号: tu356 文献标识码: a 文章编号:一网格尺寸1 屋面材料当屋面采用无檩体系(钢筋混凝土屋面板、钢丝网水泥板)时,网格尺寸一般为2~4m。
若网格尺寸过大,屋面板重量大,不但增加了网架所受的荷载,还会使屋面板的吊装发生困难。
当采用钢檩条屋面体系时,檩条长度不宜超过6m。
网格尺寸应与上述屋面材料相适应。
当网格尺寸大于6m时,斜腹杆应再分,此时应注意保证杆件的稳定性。
2 网格尺寸与网架高度的比例关系通常应使斜腹杆与弦杆的夹角为45º~60º,这样节点构造不致发生困难。
3 材料规格采用合理的钢管做网架时,网格尺寸可以大些;采用角钢杆件或只有较小规格钢材时,网格尺寸应小些.二网架高度网架高度越大,弦杆所受力就越小,弦杆用钢量减少;但此时腹杆长度加大,腹杆用钢量就增加。
反之,网架高度越小,腹杆用钢量减少;弦杆用钢量增加。
因此网架需要选择一个合理的高度,使得用钢量达到最少;同时还应当考虑刚度要求等。
合理的网架高度可根据表2-2 中的跨高比来确定。
确定网架高度时主要应考虑以下几个因素表2-2 网架的上弦网格数和跨高比网架形式钢筋混凝土屋面体系钢檩条屋面体系网格数跨高比网格数跨高比两向正交正放网架正放四角锥网架正放抽空四角锥网 (2~4)+0.2l10~14(6~8)+0.07l2(13~17) -0.03l2两向正交斜放网架棋盘形四角锥网架斜放四角锥网架星形四角锥网架 (6~8) +0.08l1.网架的平面形状当平面形状为圆形、正方形或接近正方形的矩形时,网架高度可取得小些。
当矩形平面网架狭长时,单向作用就明显,其刚度就越小些,故此时网架高度应取得大些。
2.网架的支承条件周边支承时,网架高度可取得小些;点支承时,网架高度应取得大些3.节点构造形式网架的节点构造形式很多,国内常用的有焊接空心球节点和螺栓球节点。
《网架结构设计》课件
总结词
适用场景
结构简单、受力明确、稳定性高、经济性好。
优势
适用于各种类型的建筑空间,如体育场馆、工业厂房 、高层建筑等。
四边形网架
总结词
详细描述
适用场景
优势
四边形网架是一种常见的网架 结构形式,具有较好的稳定性 和适应性。
四边形网架由多个四边形单元 组成,通过节点连接形成完整 的网架结构。它具有较好的稳 定性和适应性,能够适应不同 的建筑空间和跨度要求。
网架结构适用于各种工业厂房的建设,如机械制造、化工、电力等行业的厂房。
公共设施
网架结构还广泛应用于公共设施,如机场、火车站、汽车站等大型交通枢纽的屋 顶和站台雨棚。
感谢您的观看
THANKS
通过实验测试网架结构的性能,包括 静载实验、动载实验等。实验法可以 获得较为准确的数据,但成本较高。
网架结构优化设计
尺寸优化
通过调整网架杆件的截 面尺寸和节点形式,使 结构更加合理和经济。
形状优化
改变网架杆件的形状, 以改善结构的受力性能
和减小用钢量。
拓扑优化
在满足一定条件下,重 新排列或减少某些杆件 ,以达到更好的经济性
适用于各种类型的建筑空间, 如展览馆、会议中心、工业厂 房等。
结构简单、受力明确、稳定性 好、适应性强。
六面体网架
总结词
六面体网架是一种复杂的网架结构形式,具有较 高的承载能力和稳定性。
适用场景
适用于大跨度、大空间的建筑空间,如大型体育 场馆、会展中心等。
详细描述
六面体网架由多个六面体单元组成,通过节点连 接形成完整的网架结构。它具有较高的承载能力 和稳定性,适用于承受较大荷载和跨度的建筑空 间。
设备要求较低。
空间网架结构设计
07
空间网架结构应用案例分享
典型案例分析:成功案例剖析
案例一
某大型体育场馆网架结构设计。该案例采用了大跨度空间网架结构,通过优化节点设计和材料选择, 实现了结构的安全性和经济性。同时,设计中充分考虑了建筑功能需求和美学要求,使得整个结构既 实用又具有观赏性。
案例二
某会展中心网架结构设计。该案例采用了复杂的空间网架结构形式,通过精细化建模和分析,确保了 结构的稳定性和承载能力。设计中还注重了与建筑、机电等专业的协同配合,实现了多专业之间的无 缝对接。
要点三
注重细节设计
空间网架结构的细节设计对于整体结 构的性能表现至关重要。在设计中应 注重节点连接、构造措施等细节问题 的处理,确保结构的整体性和耐久性 。同时,还应关注施工可行性和经济 性等方面的考虑,提高设计的综合效 益。
感谢观看
THANKS
刚度
材料的刚度影响网架结构的变 形和振动特性。
耐腐蚀性
材料的耐腐蚀性对网架结构的 使用寿命和维护成本具有重要 影响。
加工性能
材料的加工性能决定了网架结 构的制造难度和成本。
材料选用建议和注意事项
01
02
03
04
根据网架结构的跨度、荷载和 使用环境等因素,选择合适的
材料类型。
在满足强度、刚度等基本要求 的前提下,尽量选用质量轻、 耐腐蚀性好、加工性能优良的
验收程序
网架结构验收应按以下程序进行:施工单位自检合格→提交验收申请报告→监理单位组织初验→建设单位组织正式验 收→办理竣工验收手续。
文件要求
网架结构验收应提交以下文件资料:原材料和构配件的质量证明文件和检验报告;网架加工制作的质量 检验记录和合格证明;网架安装的质量检验记录和合格证明;网架结构测量记录和偏差处理记录;其他 必要的文件和资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量和构造情况以及支承结构的刚度,确定合理的边界约束条件
。支座节点的边界约束条件,对于网架应按实际构造采用两向 或一向可侧移、无侧移的铰接支座或弹性支座。
空间网格结构的支承条件对结构的计算结果有较大的影响,支 座节点在哪些方向有约束或为弹性约束应根据支承结构的刚度 和支座节点的连接构造来确定。
寸过大要合并的数据文件名; 网架屋面排水找坡可采用下列方式:
➢ 上弦节点设置小立柱找坡 ➢ 网架变高度 ➢ 网架结构起坡
容许挠度:
➢ 网架为屋盖短向跨度的1/250
三、结构计算
结构计算 网架结构整体以承受弯曲内力为主,支承条件应提供竖向约束 (结构计算时水平约束可以放松,只是应加局部水平约束处理 以保证不出现刚体位移,或直接采用下部结构的水平刚度), 网架计算时节点可采用铰接模型,并在网架设计与制作中可采 用接近铰接的螺栓球节点。
支座
支座
支座假定:
可滑动铰支座节点、板式橡胶支座节点可按有侧移铰支座计算。常用压 力支座节点可按相对于节点球体中心的铰接支座计算,但应考虑下部 结构的侧向刚度。
支座 支座节点的设计与构造应符合下列规定: ➢ 支座竖向支承板中心线应与竖向反力作用线一致,并与支座节点连接 的杆件汇交于节点中心;
网架设计按满应力设计,将会造成沿受力方向相邻杆件规格
过于悬殊,而造成杆件截面刚度的突变,故从构造要求考虑
,其受力方向相连续的杆件截面面积之比不宜超过1.8倍。 (相邻杆件相差悬殊应人工加以调整,以内力重分布) 对于低应力、小规格的受拉杆件其长细比宜按受压杆件控制
节焊接点空心设球节计点 与构造
空间网格结构的外荷载可按静力等效原则将节点所辖区域内的 荷载集中作用在该节点上。当杆件上作用有局部荷载时,应另 行考虑局部弯曲内力的影响。
大跨度结构中风荷载往往非常关键,特别强调风荷载作用下的 计算。
结构计算 空间网格结构分析时,应考虑上部空间网格结构与下部支承结 构的相互影响。空间网格结构的协同分析可把下部支承结构折 算等效刚度和等效质量作为上部空间网格结构分析时的条件; 也可把上部空间网格结构折算等效刚度和等效质量作为下部支 承结构分析时的条件;也可将上、下部结构整体分析。
结构计算 在抗震分析时,应考虑支承体系对空间网格结构受力的影响 。此时宜将空间网格结构与支承体系共同考虑,按整体分析 模型计算;亦可把支承体系简化为空间网格结构的弹性支座 ,按弹性支承模型进行计算
在进行结构地震效应分析时,对于周边落地的空间网格结构
,阻尼比值可取0.02;对设有混凝土结构支承体系的空间网 格结构,阻尼比可取0.03.
空间网格结构应经过位移、内力计算后进行杆件截面设计,如 杆件截面需要调整应重新进行计算,使其满足设计要求。空间 网格结构设计后,杆件不宜替换,如必须替换时,应根据截面 及刚度等效的原则进行
结构计算 当网架结构符合下列条件之一时,可不考虑温度而引起的内力 :
➢ 支座节点的构造允许网架侧移,且允许侧移值大于或等于网架结构 的温度变形值;
➢ 网架周边支承、验算方向的跨度小于40m,且支承结构为独立柱; ➢ 在单位力作用下,柱顶水平位移大于或等于下式的计算值
结构计算 对用作屋盖的网架结构,其抗震验算应符合下列规定: ➢ 在抗震设防烈度为8度的地区,对于周边支承的中小跨度网架结构 应进行竖向抗震验算,对于其他网架结构均应进行竖向和水平抗 震验算;
四、节点设计与构造
节点设计与构造 确定杆件的长细比时,其计算长度
➢ 注:l为杆件的几何长度(即节点中心间距离)
杆件的长细比要求
节点设计与构造 空间网格结构杆件分布应保证刚度的连续性,受力方向相邻 的弦杆其杆件截面面积之比不宜超过1.8倍,多点支承的网架 结构其反弯点处的上、下弦杆宜按构造要求加大截面。
五、支座
边界条件:与支座节点和支承结构的刚度有关 (当支承结构刚度很大可忽略其变形时,边界 条件完全取决于支座构造)
支座 空间网格结构的支座节点应根据其主要受力特点,分别选用 压力支座节点、拉力支座节点、可滑移与转动的弹性支座节 点以及兼受轴力、弯矩与剪力的刚性支座节点。
பைடு நூலகம்
支座
支座
支座
能较好地承受水平力又能自由转动,比较不符合不动球铰支承的约束条 件且有利于抗震。但构造复杂,一般用于多点支承的大跨度空间网格结 构
➢ 支座球节点底部至支座底板间的距离应满足支座斜腹杆与柱或边梁不 相碰的要求
结构计算 网架结构一般下部为独立柱或框架柱支承,柱的水平侧向刚度 较小,并由于网架受力为类似于板的弯曲型,因此对于网架支 座的约束可采用两向或一向可侧移铰接支座或弹性支座
空间网格结构施工安装阶段与使用阶段支承情况不一致时,应 区别不同支承条件分析计算施工安装阶段和使用阶段在相应荷 载作用下的结构位移和内力
➢ 在抗震设防烈度为9度的地区,对各种网架结构应进行竖向和水平 抗震验算
《抗规》10.2.6 下列屋盖结构可不进行地震作用计算,但应符 合本节有关的抗震措施要求:
➢ 7度时,矢跨比小于1/5的单向平面桁架和单向立体桁架结构可不进 行沿桁架的水平向以及竖向地震作用计算;
➢ 7度时,网架可不进行地震作用计算。
➢国内大跨度结构中采用较多,设计简单,规格 不需统一,球加工制作也简单,有优越性, ➢不足之处:现场工作量大,质量检验工作量大。 国内人工便宜尚有市场,而螺栓球节点内力受到 限制,因此尚有一定的使用价值
节点设计与构造
螺栓球节点
➢ 越来越为工程师接受,发展迅速 ➢ 节点精度高,工厂化生产,现场安装方便,工作量小,速度快 ➢ 高强螺栓质量的重要性
网架结构设计总结
目录
➢网架选型 ➢ 基本规定 ➢ 结构计算 ➢ 节点计算与构造 ➢支座
一、网架选型
交叉桁架体系
四角锥体系
三角锥体系
二、基本规定
基本规定 网架的最优高跨比则主要取决于屋面体系(采用钢筋混凝土屋 面时为1/10~1/14,采用轻屋面时为1/13~1/18) 网架二相邻杆件间夹角不宜小于30度,以免杆件相碰或节点尺