2019版高考物理一轮复习专题九电磁感应第2讲法拉第电磁感应定律自感学案

合集下载

高考物理一轮复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流教案

高考物理一轮复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流教案

第2讲 法拉第电磁感应定律 自感 涡流知识点一 法拉第电磁感应定律 1.感应电动势(1)概念:在 中产生的电动势.(2)产生条件:穿过回路的 发生改变,与电路是否闭合 . (3)方向判断:感应电动势的方向用 或 判断. 2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的 成正比. (2)公式:E =n ΔΦΔt,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵守闭合电路的 定律,即I = . 3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E = . (2)v ∥B 时,E =0.答案:1.(1)电磁感应现象 (2)磁通量 无关 (3)楞次定律 右手定则 2.(1)磁通量的变化率 (3)欧姆ER +r3.(1)Blv知识点二 自感、涡流 1.自感现象(1)概念:由于导体本身的 变化而产生的电磁感应现象称为自感. (2)自感电动势①定义:在自感现象中产生的感应电动势叫做 . ②表达式:E = . (3)自感系数L①相关因素:与线圈的 、形状、 以及是否有铁芯有关. ②单位:亨利(H),1 mH = H,1 μH = H. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生 ,这种电流像水的漩涡所以叫涡流.答案:1.(1)电流 (2)①自感电动势 ②L ΔIΔt (3)①大小 匝数②10-310-62.感应电流(1)磁通量变化越大,产生的感应电动势也越大.( ) (2)磁通量变化越快,产生的感应电动势就越大.( ) (3)磁通量的变化率描述的是磁通量变化的快慢.( ) (4)感应电动势的大小与线圈的匝数无关.( ) (5)线圈中的自感电动势越大,自感系数就越大.( )(6)磁场相对导体棒运动时,导体棒中也能产生感应电动势.( ) (7)对于同一线圈,当电流变化越快时,线圈中的自感电动势越大.( ) (8)自感电动势阻碍电流的变化,但不能阻止电流的变化.( ) 答案:(1) (2)√ (3)√ (4) (5) (6)√ (7)√ (8)√动生电动势和感生电动势当线圈匝数为1时,法拉第电磁感应定律的数学式是E =d Φd t ,E 表示电动势的大小.中学教材中写成E =ΔΦΔt ,既表示平均也表示瞬时.应用时常遇到两种情况,一是S 不变而B 随时间变化,则可用形式E =S ΔB Δt ;二是B 不变而S 变化,则可应用形式E =B ΔSΔt .至于导体棒切割磁感线产生的电动势E =Blv ,教材则是通过一典型模型利用E =B ΔSΔt推出的.我们知道,B 不随时间变化(恒定磁场)而闭合电路的整体或局部在运动,这样产生的感应电动势叫动生电动势,其非静电力是洛伦兹力.B 随时间变化而闭合电路的任一部分都不动,这样产生的感应电动势叫感生电动势,其非静电力是涡旋电场(非静电场)对电荷的作用力.上述两种电动势统称感应电动势,其联系何在?分析磁通量Φ的定义公式Φ=BS 可见Φ与BS 两个变量有关,既然E =d Φd t ,那么根据全导数公式有d Φd t =S ∂B ∂t +B ∂S ∂t ,其中S ∂B∂t 即感生电动势,体现了因B 随时间变化而产生的影响.B ∂S∂t 同样具有电动势的单位,其真面目是什么呢?我们采用和现行中学教材一样的方法,建立一物理模型分析.如图所示,MN 、PQ 是两水平放置的平行光滑金属导轨,其宽度为L ,ab 是导体棒,切割速度为v .设匀强磁场磁感应强度为B ,方向垂直纸面向里.在Δt 时间内,回路面积变化为ΔS =L Δx ,面积的平均变化率ΔS Δt =L Δx Δt .当Δt →0时,Δx Δt →v ,即d S d t =Lv ,d S d t 对应全导数公式中的∂S ∂t ,可见B ∂S ∂t =BLv ,这就是动生电动势,体现了因面积变化而产生的影响.推而广之,线圈在匀强磁场中做收缩、扩张、旋转等改变面积的运动而产生的电动势也是动生电动势.两种电动势可以同时出现.考点一 法拉第电磁感应定律的理解和应用1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)ΔΦΔt 为单匝线圈产生的感应电动势大小.2.法拉第电磁感应定律的两个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB ·S ,E =n ΔBΔt ·S .(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B ·ΔS ,E =nB ΔSΔt.[典例1] (2017·安徽安庆质检)如图甲所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1.在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示(规定图甲中B 的方向为正方向).图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求0~t 1时间内:甲 乙 (1)通过电阻R 1的电流大小和方向;(2)通过电阻R 1的电荷量q 及电阻R 1上产生的热量.[解题指导] (1)B ­t 图象为一条倾斜直线,表示磁场均匀变化,即变化率恒定. (2)本题应区分磁场的面积和线圈的面积.[解析] (1)根据楞次定律可知,通过R 1的电流方向为由b 到a .根据法拉第电磁感应定律得,线圈中的电动势E =n ΔB πr 22Δt =n ·B 0πr 22t 0根据闭合电路欧姆定律得,通过R 1的电流I =E 3R =nB 0πr 223Rt 0. (2)通过R 1的电荷量q =It 1=nB 0πr 22t 13Rt 0R 1上产生的热量Q =I 2R 1t 1=2n 2B 20π2r 42t 19Rt 2. [答案] (1)nB 0πr 223Rt 0方向由b 到a(2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt 2[变式1] 如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt答案:B 解析:磁感应强度的变化率ΔB Δt=2B -B Δt =B Δt ,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔBΔt S ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误. [变式2](2016·北京卷)如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直.磁感应强度B 随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a 和E b .不考虑两圆环间的相互影响.下列说法正确的是( )A.E a ∶E b =4∶1,感应电流均沿逆时针方向B.E a ∶E b =4∶1,感应电流均沿顺时针方向C.E a ∶E b =2∶1,感应电流均沿逆时针方向D.E a ∶E b =2∶1,感应电流均沿顺时针方向答案:B 解析:由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt πr 2,ΔB Δt 为常数,E 与r 2成正比,故E a ∶E b =4∶1.磁感应强度B 随时间均匀增大,故穿过圆环的磁通量增大,由楞次定律知,感应电流产生的磁场方向与原磁场方向相反,垂直纸面向里,由安培定则可知,感应电流均沿顺时针方向,故B 项正确.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均感应电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR. 考点 导体切割磁感线产生感应电动势的计算1.平动切割(1)常用公式:若运动速度v 和磁感线方向垂直,则感应电动势E =BLv .注意:公式E =BLv 要求B ⊥L 、B ⊥v 、L ⊥v ,即B 、L 、v 三者两两垂直,式中的L 应该取与B 、v 均垂直的有效长度(即导体的有效切割长度).(2)有效长度:公式中的L 为有效切割长度,即导体在与v 垂直的方向上的投影长度. (3)相对性:E =BLv 中的速度v 是相对于磁场的速度,若磁场也运动时,应注意速度间的相对关系.2.转动切割在磁感应强度为B 的匀强磁场中,长为L 的导体棒绕一端为轴以角速度ω匀速转动时,此时产生的感应电动势E =BLv 中=12B ωL 2.若转动的是圆盘,则可以把圆盘看成由很多根半径相同的导体杆组合而成的.考向1 导体棒平动切割磁感线[典例2] (2015·安徽卷)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A.电路中感应电动势的大小为Blvsin θB.电路中感应电流的大小为Bv sin θrC.金属杆所受安培力的大小为B 2lv sin θrD.金属杆的热功率为B 2lv 2r sin θ[解题指导] 解答该题要明确以下几点:(1)金属杆切割磁感线的有效长度并不是它的实际长度,而是它的长度沿垂直速度方向的投影长度.(2)金属杆相当于电源,电路中的电流可利用欧姆定律求得. (3)金属杆的热功率可用公式P =I 2R 求得.[解析] 金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E =Blv (l为切割磁感线的有效长度),选项A 错误;电路中感应电流的大小为I =ER =Blv lsin θr=Bv sin θr ,选项B 正确;金属杆所受安培力的大小为F =BIl ′=B ·Bv sin θr ·l sin θ=B 2lvr ,选项C 错误;金属杆的热功率为P =I 2R =B 2v 2sin 2θr 2·lr sin θ=B 2lv 2sin θr,选项D 错误.[答案] B考向2 导体棒旋转切割磁感线[典例3] (多选)1831年,法拉第发明的圆盘发电机(图甲)是利用电磁感应的原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘良好接触,使铜盘转动,电阻R 中就有电流通过.若所加磁场为匀强磁场,方向水平向右,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,下列说法正确的是( )甲 乙A.铜盘转动过程中,穿过铜盘的磁通量不变B.电阻R 中有正弦式交变电流通过C.若不给铜盘施加任何外力,铜盘最终会停下来D.通过R 的电流方向是从a 流向b[解析] 铜盘切割磁感线产生感应电动势,铜盘相当于电源,从而在电路中形成方向不变的电流,内部电流方向是从负极(D 点)到正极(C 点).由于铜盘在运动中受到安培力的阻碍作用,故最终会停下来.故选A 、C.[答案] AC [变式3](2015·新课标全国卷Ⅱ)如图所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿a →b →c →aC.U bc =-12Bl 2ω,金属框中无电流D.U ac =12Bl 2ω,金属框中电流方向沿a →c →b →a答案:C 解析:闭合金属框在匀强磁场中以角速度ω逆时针转动时,穿过金属框的磁通量始终为零,金属框中无电流.由右手定则可知U b =U a <U c ,A 、B 、D 选项错误;b 、c 两点的电势差U bc =-Blv 中=-12Bl 2ω,选项C 正确.公式E =Blv 与E =n ΔΦΔt的比较考点通电自感和断电自感1.对自感现象的理解(1)自感电动势总是阻碍导体中原电流的变化. (2)通过线圈中的电流不能发生突变,只能缓慢变化. (3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题考向1 通电自感[典例4] 如图所示,A 、B 是两个完全相同的灯泡,L 的自感系数较大的线圈,其直流电阻忽略不计.当开关S 闭合时,下列说法正确的是( )A.A 比B 先亮,然后A 熄灭B.B 比A 先亮,然后B 逐渐变暗,A 逐渐变亮C.A、B一起亮,然后A熄灭D.A、B一起亮,然后A逐渐变亮,B的亮度不变[解析] 开关闭合的瞬间,线圈由于自感阻碍电流通过,相当于断路,B灯先亮,之后线圈阻碍作用减弱,相当于电阻减小,则总电阻减小,总电流增大,路端电压减小,B灯所在支路电流减小,B灯变暗,A灯所在支路电流增大,A灯变亮.[答案] B考向2 断电自感[典例5] 如图所示电路中,L是一电阻可忽略不计的电感线圈,a、b为L的左、右两端点,A、B、C为完全相同的三个灯泡,原来开关S是闭合的,三个灯泡均在发光.某时刻将开关S断开,则下列说法正确的是( )A.a点电势高于b点,A灯闪亮后缓慢熄灭B.b点电势高于a点,B、C灯闪亮后缓慢熄灭C.a点电势高于b点,B、C灯闪亮后缓慢熄灭D.b点电势高于a点,B、C灯不会闪亮只是缓慢熄灭[解题指导] (1)断电自感现象中电流方向不改变.(2)L电阻不计,开关闭合时电流满足I A>I B=I C.[解析] 开关S闭合稳定时,电感线圈支路的总电阻较B、C灯支路电阻小,故流过A灯的电流I1大于流过B、C灯的电流I2,且电流方向由a到b,a点电势高于b点.当开关S断开,电感线圈会产生自感现象,相当于电源,b点电势高于a点,阻碍流过A灯电流的减小,瞬间流过B、C灯支路的电流比原来的大,故B、C灯闪亮后再缓慢熄灭,故B正确.[答案] B考向3 自感现象中的图象问题[典例6]在如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过灯泡D1和D2的电流,规定图中箭头所示的方向为电流正方向,选项中能定性描述电流I 随时间t 变化关系的是( )A B C D[解析] 当S 闭合时,D 1、D 2同时亮且通过的电流大小相等,但由于L 的自感作用,D 1被短路,I 1逐渐减小到零,I 2逐渐增大至稳定;当S 再断开时,D 2马上熄灭,D 1与L 组成回路,由于L 的自感作用,D 1慢慢熄灭,电流反向且减小;综上所述知A 正确.[答案] A分析自感现象时的两点注意(1)通电自感线圈中的电流不能发生突变,即通电过程中,电流是逐渐变大的;断电过程中,电流是逐渐变小的,此时线圈可等效为“电源”,该“电源”与其他元件形成回路.(2)断电自感中,灯泡是否闪亮问题的判断 ①通过灯泡的自感电流大于原电流时,灯泡闪亮; ②通过灯泡的自感电流小于等于原电流时,灯泡不会闪亮.1.[公式E =BLv 的应用]如图所示,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为ε′,则ε′ε等于( )A.12B.22C.1D. 2答案:B 解析:设弯折前金属棒切割磁感线的长度为L ,弯折后,金属棒切割磁感线的有效长度为l =22L ,故产生的感应电动势为ε′=Blv =22BLv =22ε,所以ε′ε=22,B 正确.2.⎣⎢⎡⎦⎥⎤公式E =n ΔΦΔt 的应用如图所示为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A.恒为nS (B 2-B 1)t 2-t 1B.从0均匀变化到nS (B 2-B 1)t 2-t 1 C.恒为-nS (B 2-B 1)t 2-t 1D.从0均匀变化到-nS (B 2-B 1)t 2-t 1答案:C 解析:由楞次定律判定,感应电流从a 流向b ,b 点电势高于a 点电势,故φa -φb =-nS B 2-B 1t 2-t 1,因为磁场均匀增加,所以φa -φb 为恒定的,可见C 正确. 3.⎣⎢⎡⎦⎥⎤公式E =12BL 2ω的应用如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速运动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A.由c 到d ,I =Br 2ωRB.由d 到c ,I =Br 2ωRC.由c 到d ,I =Br 2ω2RD.由d 到c ,I =Br 2ω2R答案:D 解析:由右手定则判定通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动E =12Br 2ω,所以通过电阻R 的电流大小是I =Br 2ω2R,选项D 正确. 4.[通电自感与断电自感]在如图所示的电路中,a 、b 为两个完全相同的灯泡,L 为电阻可忽略不计的自感线圈,E 为电源,S 为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( )A.合上开关,a 先亮,b 后亮;断开开关,a 、b 同时熄灭B.合上开关,b 先亮,a 后亮;断开开关,a 先熄灭,b 后熄灭C.合上开关,b 先亮,a 后亮;断开开关,a 、b 同时熄灭D.合上开关,a 、b 同时亮;断开开关,b 先熄灭,a 后熄灭答案:C 解析:由于L 是自感线圈,当合上S 时,自感线圈L 将产生自感电动势,阻碍电流的增加,故有b 灯先亮,a 灯后亮;当S 断开时,L 、a 、b 组成回路,L 产生自感电动势阻碍电流的减弱,由此可知,a 、b 同时熄灭,C 正确.5.公式E =12BL 2ω和E =n ΔΦΔt的应用如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt的大小应为( )A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π答案:C 解析:当导线框匀速转动时,设半径为r ,导线框电阻为R ,在很小的Δt 时间内,转过圆心角Δθ=ωΔt ,由法拉第电磁感应定律及欧姆定律可得感应电流I 1=B 0ΔS R Δt =B 0·πr 2Δθ2πR Δt =B 0r 2ω2R ;当导线框不动,而磁感应强度发生变化时,同理可得感应电流I 2=ΔBS R Δt =ΔB ·πr 22R Δt ,令I 1=I 2,可得ΔB Δt =B 0ωπ,C 对.。

高考物理一轮复习:9.2《法拉第电磁感应定律、自感和涡流》教学案(含答案)

高考物理一轮复习:9.2《法拉第电磁感应定律、自感和涡流》教学案(含答案)

第2讲法拉第电磁感应定律 自感和涡流考纲下载:1.法拉第电磁感应定律(Ⅱ) 2.自感、涡流(Ⅰ)主干知识·练中回扣——忆教材 夯基提能1.法拉第电磁感应定律(1)感应电动势 ①概念:在电磁感应现象中产生的电动势; ②产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关; ③方向判断:感应电动势的方向用楞次定律或右手定则判断。

(2)法拉第电磁感应定律 ①内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比;②公式:E =n ΔΦΔt ,其中n 为线圈匝数,ΔΦΔt 为磁通量的变化率。

(3)导体切割磁感线时的感应电动势①导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;②导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =Blv =12Bl 2ω (平均速度等于中点位置的线速度12l ω)。

2.自感、涡流(1)自感现象 ①概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。

②自感电动势a .定义:在自感现象中产生的感应电动势叫做自感电动势;b .表达式:E =L ΔI Δt; ③自感系数La .相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关;b .单位:亨利(H ),1 mH =10-3 H ,1 μH =10-6 H 。

(2)涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。

巩固小练1.判断正误(1)线圈中磁通量越大,产生的感应电动势越大。

(×)(2)线圈中磁通量变化越大,产生的感应电动势越大。

(×)(3)线圈中磁通量变化越快,产生的感应电动势越大。

(√)(4)线圈中的电流越大,自感系数也越大。

(×)(5)磁场相对导体棒运动时,导体棒中也能产生感应电动势。

(√)(6)对于同一线圈,电流变化越快,线圈中的自感电动势越大。

2019届一轮复习人教版 第九章 第2单元 法拉第电磁感应定律 自感 教案

2019届一轮复习人教版   第九章 第2单元 法拉第电磁感应定律 自感  教案

第九章 第2单元 法拉第电磁感应定律 自感一.区分物理量1、磁通量Φ――穿过某一面积的磁感线的条数2、磁通量的变化量△Φ = Φ2 - Φ13、磁通量的变化率t ∆∆Φ――单位时间内的磁通量的变化二.法拉第电磁感应定律——电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

这就是法拉第电磁感应定律。

tn E ∆∆Φ= 3、△Φ的产生方式:①改变B ,②改变S ,③、改变B 和S 的夹角三、推论把AB 向右移动一段距离,AB 长L ,速度v ,匀强磁场B当B ⊥L ,L ⊥v ,B ⊥v 时有 BLv E t t BLv t S B t E =⇒∆∆=∆∆⨯=∆∆Φ=推广:已知:B ,L ,ω 求:E =?ωθθππ2222122BL E L t B t L B t S B t E =⇒∆=⨯∆⨯=∆∆⨯=∆∆Φ= RB 1、 反映磁通量变化的快慢 (电动势的平均值和瞬时值)例题举例:【例1】如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。

求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力F 大小; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。

解:⑴v Rv L B F BIL F R E I v BL E ∝=∴===22222,,, ⑵22222v R v L B Fv P ∝== ⑶v Rv L L B FL W ∝==12221 ⑷v W Q ∝= ⑸ R t R E t I q ∆Φ==⋅=与v 无关 注意电热Q 和电荷q 的区别,其中Rq ∆Φ=与速度无关!(这个结论以后经常会遇到)。

【例2】如图,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。

磁感应强度为B 的匀强磁场方向垂直于纸面向外。

金属棒ab 的质量为m ,与导轨接触良好,不计摩擦。

第2讲法拉第电磁感应定律自感和涡流导学案

第2讲法拉第电磁感应定律自感和涡流导学案

第2讲法拉第电磁感应定律、白感和涡流导学案B过好双基关回扣挂凋?U识训练根底题目一、法拉第电磁感应定律1. 感应电动势⑴感应电动势:在电磁感应现象中产生的电动势。

(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3) 方向判断:感应电动势的方向用楞次定律或右手定那么判断^2. 法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

― △中.................. .⑵公式:E= n/「,其中n为线圈匝数。

⑶感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =EFU7。

(4) 说明:①当△中仅由B的变化引起时,见J E=门,七S;当△中仅由S的变化引起时,见J E= n B『?S;当△①由B、S的变化同时引△ t起时,那么E=门睑「昭丰n,B;:S②磁通量的变化率窄是中一t△ t △ t △ t图象上某点切线的斜率。

3. 导体切割磁感线时的感应电动势(1)导体垂直切割磁感线时,感应电动势可用E= Blv求出,式中l为导体切割磁感线的有效长度;(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于1磁感线方向匀速转动广生感应电动势E= Bl v = 2BI 3(平均速度等于,,、…,一、1t中点位置的线速度项3 )。

【白测1】将闭合多匝线圈置于仅随时间变化的磁场中,关于线圈中产生的感应电动势和感应电流,以下表述正确的选项是()A. 感应电动势的大小与线圈的匝数无关B. 穿过线圈的磁通量越大,感应电动势越大C. 穿过线圈的磁通量变化越快,感应电动势越大D. 感应电流产生的磁场方向与原磁场方向始终相同答案C二、白感、涡流、电磁阻尼和电磁驱动1. 白感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为白感,由于白感而产生的感应电动势叫做白感电动势。

—工L 。

A I⑵表达式:E= Lgj。

⑶白感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关。

2019版高考物理一轮复习 专题九 电磁感应 第2讲 法拉第电磁感应定律 自感课件

2019版高考物理一轮复习 专题九 电磁感应 第2讲 法拉第电磁感应定律 自感课件
图 9-2-6 (3)相对性:E=Blv 中的速度 v 是导体相对磁场的速度,若 磁场也在运动,应注意速度间的相对关系.
16
2.导体转动切割磁感线: 当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动 动时,产生的感应电动势为 E=Bl v =12Bl2ω,如图 9-2-7 所示.
图 9-2-7
图 9-2-4 A.Ea∶Eb=4∶1,感应电流均沿逆时针方向 B.Ea∶Eb=4∶1,感应电流均沿顺时针方向 C.Ea∶Eb=2∶1,感应电流均沿逆时针方向 D.Ea∶Eb=2∶1,感应电流均沿顺时针方向 答案:B
12
热点 1 法拉第电磁感应定律的简单应用 【典题 1】(2017 年安徽合肥高三检测)在半径为 r、电阻为 R 的圆形导线框内,以直径为界,左右两侧分别存在着方向如 图 9-2-5 甲所示的匀强磁场,以垂直于纸面向外的磁场为正, 两部分磁场的磁感应强度 B 随时间 t 的变化规律分别如图乙所 示.则 0~t0 时间内,导线框中( )
故 A 正确,C 错误;当角速度ω变为原来的 2 倍时,感应电动 势 E=12Bl2ω 变为原来的 2 倍,感应电流 I 变为原来的 2 倍,电
流在 R 上的热功率 P=I2R 变为原来的 4 倍,D 错误. 答案:AB
27
易错提醒:公式 E=Blv 的应用是有条件的,它适用于导体 平动且速度方向垂直于磁感线方向的特殊情况,对于这种导体 棒转动切割磁感线产生感应电动势的情况,导体各部分的速度 不同,本公式不再适用.
2.自感电动势
E=L
ΔI Δt
.
3.自感系数 L 与线圈的__大__小__、形状、___圈__数_以及是否有 铁芯有关,单位是_亨__利__(_H_)_.
4.涡流:块状金属在磁场中运动,或者处在变化的磁场中, 金属块内部会产生感应电流,这种电流在整块金属内部自成闭

高三物理一轮复习第9章第2课时法拉第电磁感应定律、自感和涡流导学案

高三物理一轮复习第9章第2课时法拉第电磁感应定律、自感和涡流导学案

第2课时法拉第电磁感应定律、自感和涡流【考纲解读】1. 能应用法拉第电磁感应定律E= n°①和导线切割磁感线产生电动势公式E= Blv计算感应△ t电动势.2. 会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.【知识要点】.法拉第电磁感应定律的应用1. 感应电动势⑴感应电动势:在_____________ 中产生的电动势.产生感应电动势的那部分导体就相当于____________ ,导体的电阻相当于 ______________ .⑵感应电流与感应电动势的关系:遵循定律,即I = —.R+ r2. 感应电动势大小的决定因素⑴感应电动势的大小由穿过闭合电路的磁通量的变化率爭和线圈的——共同决定, 而与磁通量①、磁通量的变化量△①的大小没有必然联系.A D O⑵当△①仅由B的变化引起时,则E= □△△•;当△①仅由S的变化引起时,则nB^p;当△①由B S的变化同时引起时,则3•磁通量的变化率△①是①-1图象上某点切线的斜率.二•导体切割磁感线产生感应电动势的计算1. ________________________________ 公式E= Blv的使用条件⑴__________ 磁场.(2) B l、v三者相互_________________________⑶如不垂直,用公式E= Blv sin 0求解,0为B与v方向间的夹角.2.“瞬时性”的理解(1)若v为瞬时速度,则E为感应电动势(2)若v为平均速度,则E为感应电动势3.切割的“有效长度”公式中的l为有效切割长度,即导体在与v垂直的方向上的投影长度. 图4中有效长度分别为:X K _______ JX a 字____X X X XXXX £XX X V xp卢X X X XXX乙丙E=甲图:I = cd sin 3 ;乙图:沿V i方向运动时,I =而N;沿V2方向运动时,I = 0.丙图:沿V i方向运动时,I = -2R;沿V2方向运动时,I = 0;沿V3方向运动时,I = R三•自感现象的理解1.自感现象(1) 概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做________________ .(2) 表达式:E= L刍I.A t(3) 自感系数L的影响因素:与线圈的__________ 、形状、________ 以及是否有铁芯有关.2 •自感现象“阻碍”作用的理解(1) 流过线圈的电流增加时,线圈中产生的自感电动势与电流方向_________ ,阻碍电流的_____ 使其缓慢地增加.(2) 流过线圈的电流减小时,线圈中产生的自感电动势与电流方向________ ,阻碍电流的______ 使其缓慢地减小. 线圈就相当于电源,它提供的电流从原来的I L逐渐变小.3. 自感现象的四大特点(1) 自感电动势总是阻碍导体中原电流的变化.(2) 通过线圈中的电流不能发生突变,只能缓慢变化.(3) 电流稳定时,自感线圈就相当于普通导体.(4) 线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.【典型例题】例1.如图所示,匀强磁场中有一矩形闭合线圈abed,线圈平面与磁场垂直.已知线圈的匝数N= 100,边长ab= 1.0 m、be= 0.5 m,电阻r = 2 Q .磁感应强度B在0〜1 s内从零均匀变化到0.2 T .在1〜5 s内从0.2 T均匀变化到一0.2 T,取垂直纸面向里为磁场的正方向.求:(1)0.5 s 时线圈内感应电动势的大小E和感应电流的方向;⑵在1〜5 s内通过线圈的电荷量q;⑶在0〜5s内线圈产生的焦耳热Q X X X X X X X X例2•如图甲所示,一个圆形线圈的匝数 n = 100,线圈面积S = 200 ent 线圈的电阻r = 1 Q, 线圈外接一个阻值 R=4 Q 的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁 感应强度随时间变化规律如图乙所示.下列说法中正确的是 ( )A. 线圈中的感应电流方向为顺时针方向B. 电阻R 两端的电压随时间均匀增大C. 线圈电阻r 消耗的功率为4X 1O 「4 WD. 前4 s 内通过R 的电荷量为4X 10「4 C 例3.如图所示,水平放置的粗糙U 形框架上接一个阻值为 Fb 的电阻,放在垂直纸面向里、磁感应强度大小为 B 的匀强磁场中,一个半径为 L 、质量为m 的半圆形硬导体 AC 在水平向 右的恒定拉力F 作用下,由静止开始运动距离 d 后速度达到v,半圆形硬导体 AC 的电阻为r , 其余电阻不计.下列说法正确的是( )A. 此时AC 两端电压为U A 一 2BLv 2 ^^LvFFB.此时AC 两端电压为U A 一- F 0 + r1 2C.此过程中电路产生的电热为 Q= Fd — q mv例4.如图所示的电路中,L 为一个自感系数很大、直流电阻不计的线圈, D 、D 是两个完全相同的灯泡,E 是一内阻不计的电源.t = 0时刻,闭合开关 S ,经过一段时间后,电路达 到稳定,t 1时刻断开开关 S.I 12分别表示通过灯泡 D 和D 2的电流,规定图中箭头所示的1 . (2014 •江苏• 1)如图所示,一正方形线圈的匝数为 垂直,且一半处在磁场中.在 △ t 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B.在此过程中,线圈中产生的感应电动势为( )2 2 2 2BanBanBa2nBa A.B.C.D.2 △ t2 △ t△ t△ t2. (2014 •安徽• 20)英国物理学家麦克斯韦认为,磁场变化时会在空间激D.此过程中通过电阻R )的电荷量为 2BLdq= F 0+7n ,边长为a ,线圈平面与匀强磁场 方向为电流正方向,以下各图中能定性描述电流I 随时间t 变化关系的是(【拓展训练】发感生电场.如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+ q 的小球,已知磁感应强度 B 随时间均匀增加,其变化率为 k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是(A . 0B .2「2qk2 ■ 2 .C. 2 n r qk D . n r qk3.如图所示,在磁感应强度为 B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为 E ;若磁感应强度增为 2B,其他 条件不变,MN 中产生的感应电动势变为 则通过电阻 R 的电流方向及E 与E 之比E : 6 分别为()A . c T a, 2 : 1B . c, 2 : 1 C. a T c, 1 : 2 D . c T a, 1 : 2A.S 闭合,L 1亮度不变,L 2亮度逐渐变亮,最后两灯一样亮; S 断开,L 2立即熄灭,L 1逐渐变暗B. S 闭合,L 1亮度不变,L 2很亮;S 断开,L 1、L 2立即熄灭C. S 闭合,L 1、L 2同时亮,而后L 1逐渐熄灭,L 2亮度不变;S 断开, L 2立即熄灭,L 1亮一下再熄灭D. S 闭合,L 1、L 2同时亮,而后L 1逐渐熄灭,L 2则逐渐变得更亮; 亮一下再熄灭5.磁场在xOy 平面内的分布如图所示, 其磁感应强度的大小均为 B o ,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为 L o ,整个磁场以速度 v 沿x 轴正方向匀速运动.若在磁场所在区间内 放置一由n 匝线圈组成的矩形线框 abed ,线框的bc = L B 、ab = L , L B 略大于L ),总电阻为 R 线框始终保持静止.求:(1) 线框中产生的总电动势大小和导线中的电流大小; (2) 线框所受安培力的大小和方向.X.4.如图所示,线圈L 的自感系数很大,且其直流电阻可以忽略不计, 同的小灯泡,开关 S 闭合和断开的过程中,灯 L 1、L 2的亮度变化情况是 (灯丝不会断)( )S 断开,L 2立即熄灭,L 1)L 1、L.2是两个完全相Lz奁—E。

2 法拉第电磁感应定律-人教版高中物理选择性必修 第二册(2019版)教案

2 法拉第电磁感应定律-人教版高中物理选择性必修 第二册(2019版)教案

2 法拉第电磁感应定律-人教版高中物理选择性必修第二册(2019版)教案1. 教学目标•掌握法拉第电磁感应定律的概念和表述方式;•掌握方向关系的判断方法;•能够运用法拉第电磁感应定律解决实际问题。

2. 教学重难点分析•法拉第电磁感应定律的表述方式有多种,学生容易混淆;•方向的判断需要画出磁感线和电流线,难度较大。

3. 教学方法•案例引入法,通过实例引出电磁感应的概念;•思维导览法,将电磁感应的过程分为“电场产生”、“磁场感生”、“磁场变化”三个部分,逐一分析;•演示法,通过实验演示法拉第电磁感应定律,并加深学生对信息的理解。

4. 教学步骤步骤一:案例引入通过背包电瓶吸铁石的实验,引出磁感线和电磁感应的概念。

步骤二:理论知识讲解1.电场产生:一个半径为R的圆环导线,通以电流I,它在圆心处的磁场方向竖直向下。

在圆环内侧放置一个导体线圈,绕在圆环中心轴线上并与圆环同一平面内,与导线圆环的轴线成θ角度,如图所示。

当圆环中电流中断或通过电流方向改变时,观察到导体线圈内出现一个电动势和电流,这个现象叫做电磁感应现象。

2.磁场感生:由于导体中的电子受到磁场力的作用,从而发生运动,因此它们在导体内部产生一个电动势,这个电动势称为磁感应电动势,它由主磁场的变化产生。

3.磁场变化:在磁场中存在变化时,其磁通量的变化大小与时间的比值,称为磁通量变化率,它的单位是韦伯/秒。

步骤三:方向的判断1.磁感线的方向与电流线的方向垂直,并且指向匝数增加的方向。

2.通过“右手定则”来判断磁场的方向。

3.当磁场中的磁通量发生变化时,磁场的方向会发生变化。

步骤四:实验演示和应用1.通过实验演示法拉第电磁感应定律的实验过程。

2.运用法拉第电磁感应定律解决实际问题。

5. 教学效果评估通过课堂练习、小组讨论、测试等方式评估,以达到预期教学效果。

6. 教学反思考虑到本节课的难点和理解度,教师在讲解时需要尽可能的多次提及概念解释,并疏通思路,提供经典的实例演示给学生,从而提升学生的理论水平和物理运用能力。

2法拉第电磁感应定律-人教版高中物理选择性必修第二册(2019版)教案

2法拉第电磁感应定律-人教版高中物理选择性必修第二册(2019版)教案

2 法拉第电磁感应定律-人教版高中物理选择性必修第二册(2019版)教案1. 教学目标1.了解电磁感应现象的产生条件和基本特征。

2.掌握法拉第电磁感应定律及其应用。

3.能够解决电路中电感和电阻串联这一类电路的问题。

2. 教学重点和难点重点1.法拉第电磁感应定律及其应用。

2.电感和电阻串联电路的问题解决。

难点1.理解电磁感应中的磁通量变化和电动势的产生。

2.掌握复杂电路中电感、电阻的计算。

3. 教学内容和方法教学内容1.电磁感应现象的基本原理和实验验证。

2.法拉第电磁感应定律的表达式和应用。

3.电感和电阻串联电路的问题解决。

4.电感和电容并联电路的问题解决。

教学方法1.教师讲授和演示结合,讲解电磁感应现象和实验验证。

2.以图像化及简洁直观的方式,介绍法拉第电磁感应定律的表达式和应用,并演示实验。

3.短句概括法拉第电磁感应定律,提高学生记忆和理解能力。

4.针对具有典型结构和性质的电路问题,进行具体的解析和计算练习,以加强学生的练习能力。

4. 教学过程第一步了解电磁感应现象的基本原理和实验验证1.讲解电磁感应的基本原理和实验验证,引入电磁感应定律的概念。

2.通过视频、图片等形式展示电磁感应的实验现象。

3.进行作业:让学生了解如何在实验中验证电磁感应现象。

第二步掌握法拉第电磁感应定律的表达式和应用1.讲解法拉第电磁感应定律的表达式及其应用。

2.提取法拉第电磁感应定律中的关键句式进行强化复习和记忆。

3.演示利用法拉第电磁感应定律解决相关问题。

第三步电感和电阻串联电路的问题解决1.讲解电感和电阻串联电路的基本特点,并演示其导出式子及应用。

2.进行规范化的计算练习,让学生掌握解决电感和电阻串联电路问题的方法。

第四步电感和电容并联电路的问题解决1.讲解电感和电容并联电路的基本特点,并演示其导出式子及应用。

2.进行规范化的计算练习,让学生掌握解决电感和电容并联电路问题的方法。

5. 教学反思1.整个教学过程回归教学目标,由表及里,把握每一个重点和难点,以提高与巩固学生对物理概念和计算方法的掌握程度。

高考物理一轮复习 第九章 电磁感应第二节法拉第电磁感应定律 自感现象教学案 新人教版

高考物理一轮复习 第九章 电磁感应第二节法拉第电磁感应定律 自感现象教学案 新人教版

第二节 法拉第电磁感应定律 自感现象一、法拉第电磁感应定律 1.法拉第电磁感应定律(1)定律内容:电路中感应电动势的大小,跟穿过这一电路的______________成正比。

(2)公式:__________。

2.导体切割磁感线的情形(1)一般情况:若运动速度v 和磁感线方向的夹角为θ,则E =__________。

当运动速度v 和磁感线方向垂直时,则E =______。

(2)导体棒在磁场中转动导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =B l v =________(平均速度等于中点位置的线速度12l ω)。

二、自感和涡流 1.自感现象当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势,这种由于导体本身电流发生变化而产生的电磁感应现象叫自感现象。

2.自感电动势(1)定义:在________中产生的感应电动势。

(2)表达式________。

(3)自感系数L①相关因素:与线圈的______、形状、______以及是否有铁芯有关。

②单位:亨利(H ,1 mH =______H,1μH =______H )。

3.涡流当线圈中的电流发生变化时,由于电磁感应,附近的任何导体中都会产生________,这种电流像水的旋涡,所以叫涡流。

1.穿过闭合回路的磁通量Φ随时间t 变化的图象分别如图甲、乙、丙、丁所示,下列关于回路中产生的感应电动势的论述,正确的是( )A .图甲回路中产生的感应电动势恒定不变B .图乙回路中产生的感应电动势一直在变大C .图丙回路中在0~t 0时间内产生的感应电动势大于在t 0~2t 0时间内产生的感应电动势D .图丁回路中产生的感应电动势可能恒定不变2.关于E =L ΔIΔt的说法,正确的是( )A .自感电动势与电流的变化量成正比B .自感电动势与自感系数成正比C .自感电动势与自感系数、电流的变化量无关D .对同一导体,自感电动势与电流的变化率成正比3.如图所示,平行金属导轨间距为L ,一端跨接电阻R ,匀强磁场磁感应强度为B ,方向垂直平行导轨平面,一根长金属棒与导轨成θ角放置,棒与导轨的电阻不计,当棒沿如图所示的方向以恒定速度v 在导轨上滑行时,通过电阻的电流是( )A .B sin dv RB.Bdv RC.Bdvsin θR D.Bdvcos θR4.(2012·皖南八校联考)有一个匀强磁场,它的边界是MN ,在MN 左侧是无场区,右侧是匀强磁场区域,如图甲所示。

2019年高三物理一轮复习学案设计:法拉第电磁感应定律 自感 涡流(无答案)

2019年高三物理一轮复习学案设计:法拉第电磁感应定律  自感  涡流(无答案)

法拉第电磁感应定律自感涡流一.基础知识回顾1.法拉第电磁感应定律(1)感应电动势Ⅰ.产生条件:穿过回路的发生改变,与电路是否闭合。

Ⅱ.方向判断:感应电动势的方向用楞次定律或右手定则判断。

(2)法拉第电磁感应定律Ⅰ.内容:感应电动势的大小跟穿过这一电路的成正比。

Ⅱ.公式: ,其中n为线圈匝数。

(3)导体切割磁感线的情形Ⅰ.若B、l、v相互垂直,则E=Ⅱ.当v∥B时,E=2.自感、涡流(1)自感现象Ⅰ.概念:由于变化而产生的电磁感应现象称为自感。

Ⅱ.自感电动势a.定义:在自感现象中产生的感应电动势叫作自感电动势。

b.表达式:E=Ⅲ.自感系数La.相关因素:与线圈的大小、形状、圈数,以及是否有铁芯等因素有关。

b.单位:亨利(H),1 mH=1×10-3H,1 μH=1×10-6H。

(2)涡流当线圈中的电流随时间变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的旋涡,所以叫作涡流。

二法拉第电磁感应定律的应用(1)求解感应电动势常见的情况与方法例1 (多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化,下列说法正确的是()。

A.当磁感应强度增加时,线框中的感应电流可能减小B.当磁感应强度增加时,线框中的感应电流一定增大C.当磁感应强度减小时,线框中的感应电流一定增大D.当磁感应强度减小时,线框中的感应电流可能不变(2).利用法拉第电磁感应定律结合逆向推理法分析二次感应问题例2 (2018全国卷Ⅲ,20)(多选)如图甲,在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧。

导线PQ中通有正弦交流电i,i的变化如图乙所示,规定从Q到P 为电流正方向。

导线框R中的感应电动势()。

A.在t=时为零B.在t=时改变方向C.在t=时最大,且沿顺时针方向D.在t=T时最大,且沿顺时针方向(3)电磁感应中的电荷量的求解方法1.公式法:q=n。

注意:(1)使用条件为闭合回路中的电阻R不变,并且只有磁通量变化为电路提供电动势。

高三物理一轮复习《法拉第电磁感应定律 自感》学案讲解

高三物理一轮复习《法拉第电磁感应定律 自感》学案讲解

高三物理一轮复习《法拉第电磁感应定律 自感》复习案【学习目标】1、认识感应电流是由感应电动势产生的。

2、理解法拉第电磁感应定律内容、数学表达式并进行有关的计算。

3、掌握应用导线切割磁感线时的感应电动势公式E=BLv 进行有关的计算。

4、熟练应用右手定则判断感应电流的方向【学习重点和难点】1、应用法拉第电磁感应定律的数学表达式进行有关的计算。

2、应用导线切割磁感线时的感应电动势公式进行有关的计算。

3、右手定则的综合应用【使用说明与学法指导】先通读教材有关内容,进行知识梳理归纳,再认真限时完成课前预习部分内容,并将自己的疑问记下来(写上提示语、标记符号)。

【课前预习案】一、感应电动势1.定义:感应电流是由感应电动势产生的,在 现象中产生的电动势叫做感应电动势。

2.感应电动势与感应电流的关系(1)等效电源:产生 的那部分导体相当于电源。

(2)感应电流强弱的决定因素:由 的大小和闭合电路的 决定。

二、法拉第电磁感应定律1、内容:电路中产生的感应电动势的大小跟穿过这一电路的磁通量的 成正比。

2、法拉第电磁感应定律的表达式:E=_____________,其中n 是___________,ΔΦ是线圈磁通量的________________。

3、磁通量的变化一般有三种情况:(1)当回路面积S 不变而磁场B 变化时, S B ⋅∆=∆φ;E=_____________。

(2)当磁感应强度B 不变而面积S 变化时,SB ∆⋅=∆φ;E=____________。

(3)当回路面积S 和磁感应强度B 都不变,而他们的相对位置发生变化(如转动)的时候,1S B ∆⋅=∆φ(S 1是回路面积S 在与B 垂直方向上的投影的变化量). 三、导线切割磁感线产生的感应电动势1、导体平动切割磁感线:如图所示,导体ab 的长度为L ,当导体ab 以速度v 向右匀速移动时,产生的感应电动势E=____________。

此式只适用于B 、L 、v 三者_________________的情况。

2019年高考物理一轮复习第十章电磁感应第2讲法拉第电磁感应定律自感和涡流学案

2019年高考物理一轮复习第十章电磁感应第2讲法拉第电磁感应定律自感和涡流学案

第2讲 法拉第电磁感应定律 自感和涡流微知识1 法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

①感生电动势:由于磁场的变化而激发出感生电场,由感生电场而产生的感应电动势。

②动生电动势:由于导体在磁场中运动而产生的感应电动势。

(2)条件:无论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就一定有感应电动势。

(3)与感应电流的关系:遵守闭合电路欧姆定律,即I =ER +r。

2.法拉第电磁感应定律(1)定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt 。

其中n 为线圈的匝数。

微知识2 导体切割磁感线产生的感应电动势 导体棒切割磁感线时,可有以下三种情况微知识3 自感和涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势。

(2)表达式:E =L ΔIΔt 。

(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。

②单位:亨利H(1 mH =10-3H,1 μH =10-6H)。

2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的旋涡所以叫做涡流。

(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动。

(2)电磁驱动:如果磁场相对于导体运动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来。

交流感应电动机就是利用电磁驱动的原理工作的。

(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用。

一、思维辨析(判断正误,正确的画“√”,错误的画“×”。

) 1.线圈中的磁通量越大,产生的感应电动势越大。

(×)2.线圈的匝数越多,磁通量越大,产生的感应电动势也越大。

(×) 3.导体在磁场中运动速度越大,产生的感应电动势越大。

[精品]2019高考物理一轮复习 第十章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流学案

[精品]2019高考物理一轮复习 第十章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流学案

第2讲 法拉第电磁感应定律 自感 涡流【基础梳理】一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势.(2)产生:只要穿过回路的磁通量发生变化,就能产生感应电动势,与电路是否闭合无关.(3)方向:产生感应电动势的电路(导体或线圈)相当于电源,电源的正、负极可由右手定则或楞次定律判断. (4)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt ,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin__θ.若v ∥B ,则E =0.二、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动. (2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.【自我诊断】判一判(1)磁场相对导体棒运动时,导体棒中也能产生感应电动势.( ) (2)线圈匝数n 越多,磁通量越大,产生的感应电动势越大.( ) (3)线圈中的电流越大,自感系数也越大.( )(4)自感电动势阻碍电流的变化,但不能阻止电流的变化.( )提示:(1)√ (2)× (3)× (4)√ 做一做在如图所示的电路中,a 、b 为两个完全相同的灯泡,L 为自感系数较大而电阻不能忽略的线圈,E 为电源,S 为开关.关于两灯泡点亮和熄灭的情况下列说法正确的是( )A .合上开关,a 先亮,b 后亮;稳定后a 、b 一样亮B .合上开关,b 先亮,a 后亮;稳定后b 比a 更亮一些C .断开开关,a 逐渐熄灭,b 先变得更亮后再与a 同时熄灭D .断开开关,b 逐渐熄灭,a 先变得更亮后再与b 同时熄灭 提示:B对法拉第电磁感应定律的理解与应用[学生用书P201]【知识提炼】1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt 和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =nS ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt. 2.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.3.求解感应电动势常见的情况与方法(2016·高考全国卷Ⅲ)如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. [审题指导] (1)t 0前只有左侧区域磁通量变化引起感应电动势. (2)t 0后感应电动势由左、右两侧磁通量变化引起.(3)金属棒越过MN 匀速运动,所加外力等于运动过程受到的安培力. [解析] (1)在金属棒未越过MN 之前,t 时刻穿过回路的磁通量为Φ=ktS ①设在从t 时刻到t +Δt 的时间间隔内,回路磁通量的变化量为ΔΦ,流过电阻R 的电荷量为Δq .由法拉第电磁感应定律有E =ΔΦΔt② 由欧姆定律有i =E R③ 由电流的定义有i =ΔqΔt④联立①②③④式得|Δq |=kS RΔt⑤由⑤式得,在t =0到t =t 0的时间间隔内,流过电阻R 的电荷量q 的绝对值为|q |=kt 0SR.⑥ (2)当t >t 0时,金属棒已越过MN ,由于金属棒在MN 右侧做匀速运动,有f =F ⑦式中,f 是外加水平恒力,F 是匀强磁场施加的安培力.设此时回路中的电流为I ,F 的大小为F =B 0lI ⑧ 此时金属棒与MN 之间的距离为s =v 0(t -t 0) ⑨ 匀强磁场穿过回路的磁通量为Φ′=B 0ls ⑩ 回路的总磁通量为Φt =Φ+Φ′⑪式中,Φ仍如①式所示.由①⑨⑩⑪式得,在时刻t (t >t 0)穿过回路的总磁通量为Φt =B 0lv 0(t -t 0)+kSt ⑫ 在t 到t +Δt 的时间间隔内,总磁通量的改变量为 ΔΦt =(B 0lv 0+kS )Δt⑬由法拉第电磁感应定律得,回路感应电动势的大小为E t =ΔΦtΔt ⑭由欧姆定律有I =E tR⑮联立⑦⑧⑬⑭⑮式得f =(B 0lv 0+kS )B 0lR. ⑯[答案] 见解析应用法拉第电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关,与Φ是否均匀变化无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR. 【迁移题组】迁移1 对法拉第电磁感应定律的理解1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同解析:选C.由法拉第电磁感应定律E =n ΔΦΔt 知,感应电动势的大小与线圈匝数有关,A 错误;感应电动势正比于ΔΦΔt,与磁通量的大小无直接关系,B 错误,C 正确;根据楞次定律知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即“增反减同”,D 错误.迁移2 感生电动势E =n ΔΦΔt的应用2.(2016·高考北京卷)如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直.磁感应强度B 随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a 和E b ,不考虑两圆环间的相互影响.下列说法正确的是( )A .E a ∶E b =4∶1,感应电流均沿逆时针方向B .E a ∶E b =4∶1,感应电流均沿顺时针方向C .E a ∶E b =2∶1,感应电流均沿逆时针方向D .E a ∶E b =2∶1,感应电流均沿顺时针方向解析:选B.由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt πr 2,ΔB Δt 为常数,E 与r 2成正比,故E a ∶E b =4∶1.磁感应强度B 随时间均匀增大,故穿过圆环的磁通量增大,由楞次定律知,感应电流产生的磁场方向与原磁场方向相反,垂直纸面向里,由安培定则可知,感应电流均沿顺时针方向,故B 项正确.导体切割磁感线产生感应电动势的计算[学生用书P202]【知识提炼】1.计算(2)磁场为匀强磁场. 2.判断(1)把产生感应电动势的那部分电路或导体当做电源的内电路,那部分导体相当于电源. (2)若电路是不闭合的,则先假设有电流通过,然后应用楞次定律或右手定则判断出电流的方向.(3)电源内部电流的方向是由负极(低电势)流向正极(高电势),外电路顺着电流方向每经过一个电阻电势都要降低.【典题例析】(多选)(2017·高考全国卷Ⅱ)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N[解析] 由题图(b)可知,导线框运动的速度大小v =L t =0.10.2m/s =0.5 m/s ,B 项正确;导线框进入磁场的过程中,cd 边切割磁感线,由E =BLv ,得B =E Lv =0.010.1×0.5T =0.2 T ,A 项错误;由图可知,导线框进入磁场的过程中,感应电流的方向为顺时针方向,根据楞次定律可知,磁感应强度方向垂直纸面向外,C 项正确;在0.4~0.6 s 这段时间内,导线框正在出磁场,回路中的电流大小I =E R =0.010.005A =2 A ,则导线框受到的安培力F =BIL =0.2×2×0.1N =0.04 N ,D 项错误.[答案] BC理解E =Blv 的“五性”(1)正交性:本公式是在一定条件下得出的,除磁场为匀强磁场外,还需B 、l 、v 三者互相垂直. (2)瞬时性:若v 为瞬时速度,则E 为相应的瞬时感应电动势.(3)平均性:导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Blv . (4)有效性:公式中的l 为导体切割磁感线的有效长度.如图中,棒的有效长度为ab 间的距离.(5)相对性:E =Blv 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.【迁移题组】迁移1 导体平动切割磁感线问题1.(2016·高考全国卷Ⅱ)如图,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.解析:(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得ma =F -μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为E =Blv ③联立①②③式可得E =Blt 0⎝ ⎛⎭⎪⎫F m-μg .④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律I =ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为f =BlI ⑥ 因金属杆做匀速运动,由牛顿运动定律得F -μmg -f =0⑦联立④⑤⑥⑦式得R =B 2l 2t 0m.答案:见解析迁移2 导体旋转切割磁感线问题 2.(2015·高考全国卷Ⅱ)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a解析:选C.金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误.转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误.由转动切割产生感应电动势的公式得U bc =-错误!Bl 2ω,选项C 正确.自感 涡流[学生用书P203]【知识提炼】1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加. (2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小. 2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化. (2)通过线圈中的电流不能发生突变,只能缓慢变化. (3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.通电自感和断电自感4.【典题例析】如图所示,线圈L的自感系数很大,且其直流电阻可以忽略不计,L1、L2是两个完全相同的小灯泡.开关S闭合和断开的过程中,灯L1、L2的亮度变化情况是(灯丝不会断)( )A.S闭合,L1亮度不变,L2亮度逐渐变亮,最后两灯一样亮;S断开,L2立即熄灭,L1逐渐变亮B.S闭合,L1不亮,L2很亮;S断开,L1、L2立即熄灭C.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2亮度不变;S断开,L2立即熄灭,L1亮一下才熄灭D.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮;S断开,L2立即熄灭,L1亮一下才熄灭[审题指导] 解此题关键有两点:(1)灯泡和线圈在电路中的连接方式.(2)流过灯泡的原电流的方向及大小.K[解析] 当S闭合,L的自感系数很大,对电流的阻碍作用较大,L1和L2串联后与电源相连,L1和L2同时亮,随着L中电流的增大,因为L的直流电阻不计,则L的分流作用增大,L1中的电流逐渐减小为零,由于总电阻变小,故电路中的总电流变大,L2中的电流增大,L2灯变得更亮;当S断开,L2中无电流,立即熄灭,而线圈L产生自感电动势,试图维持本身的电流不变,L与L1组成闭合电路,L1要亮一下后再熄灭.综上所述,D正确.[答案] D分析自感现象的三点注意、三个技巧【迁移题组】迁移1 对通电自感和断电自感现象的分析1.(2017·高考北京卷)图1和图2是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是( )A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等解析:选C.本题考查自感现象的判断.在题图1中断开S1瞬间,灯A1突然闪亮,说明断开S1前,L1中的电流大于A1中的电流,故L1的阻值小于A1的阻值,A、B选项均错误;在题图2中,闭合S2瞬间,由于L2的自感作用,通过L2的电流很小,D错误;闭合S2后,最终A2与A3亮度相同,说明两支路电流相等,故R与L2的阻值相同,C 项正确.迁移2 电磁阻尼现象的应用2.(2017·高考全国卷Ⅰ)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( )解析:选A.施加磁场来快速衰减STM的微小振动,其原理是电磁阻尼,在振动时通过紫铜薄板的磁通量变化,紫铜薄板中产生感应电动势和感应电流,则其受到安培力作用,该作用阻碍紫铜薄板振动,即促使其振动衰减.方案A中,无论紫铜薄板上下振动还是左右振动,通过它的磁通量都发生变化;方案B中,当紫铜薄板上下振动时,通过它的磁通量可能不变,当紫铜薄板向右振动时,通过它的磁通量不变;方案C中,紫铜薄板上下振动、左右振动时,通过它的磁通量可能不变;方案D中,当紫铜薄板上下振动时,紫铜薄板中磁通量可能不变.综上可知,对于紫铜薄板上下及左右振动的衰减最有效的方案是A.[学生用书P204]1.(2017·高考天津卷)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小解析:选D.本题考查楞次定律、电磁感应定律、闭合电路欧姆定律、安培力、平衡条件.由于通过回路的磁通量向下减小,则根据楞次定律可知ab 中感应电流的方向由a 到b ,A 错误;因ab 不动,回路面积不变;当B 均匀减小时,由E =n ΔΦΔt =n ΔB Δt S 知,产生的感应电动势恒定,回路中感应电流I =ER +r恒定,B 错误;由F =BIL 知,F 随B 减小而减小,C 错误;对ab 由平衡条件有f =F ,故D 正确.2.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值.在t =0时刻闭合开关S ,经过一段时间后,在t =t 1时刻断开S.下列表示A 、B 两点间电压U AB 随时间t 变化的图象中,正确的是( )解析:选B.闭合开关S 后,灯泡D 直接发光,电感L 的电流逐渐增大,电路中的总电流也将逐渐增大,电源内电压增大,则路端电压U AB 逐渐减小;断开开关S 后,灯泡D 中原来的电流突然消失,电感L 与灯泡形成闭合回路,所以灯泡D 中电流将反向,并逐渐减小为零,即U AB 反向逐渐减小为零,故选B.3.如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速运动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A .由c 到d ,I =Br 2ωRB .由d 到c ,I =Br 2ωRC .由c 到d ,I =Br 2ω2RD .由d 到c ,I =Br 2ω2R解析:选D.由右手定则判定通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动E =12Br 2ω,所以通过电阻R 的电流大小是I =Br 2ω2R,选项D 正确.4.(2017·高考江苏卷)如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .解析:本题考查法拉第电磁感应定律、闭合电路欧姆定律、牛顿第二定律. (1)感应电动势E =Bdv 0 感应电流I =E R解得I =Bdv 0R. (2)安培力F =BId 牛顿第二定律F =ma解得a =B 2d 2v 0mR.(3)金属杆切割磁感线的速度v ′=v 0-v ,则 感应电动势E =Bd (v 0-v )电功率P =E 2R解得P =B 2d 2(v 0-v )2R.答案:(1)Bdv 0R (2)B 2d 2v 0mR (3)B 2d 2(v 0-v )2R[学生用书P343(单独成册)] (建议用时:60分钟)一、单项选择题 1.如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒与磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为ε'.则ε'ε等于( )A.12B.22 C .1 D. 2解析:选B.设折弯前导体切割磁感线的长度为L ,折弯后,导体切割磁场的有效长度为l =⎝ ⎛⎭⎪⎫L 22+⎝ ⎛⎭⎪⎫L 22=22L ,故产生的感应电动势为ε'=Blv =B ·22Lv =22ε,所以ε'ε=22,B 正确. 2.英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场,环上套一带电荷量为+q 的小球.已知磁感应强度B 随时间均匀增加,其变化率为k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( )A .0 B.12r 2qkC .2πr 2qk D .πr 2qk解析:选D.变化的磁场使回路中产生的感生电动势E =ΔΦΔt =ΔB Δt ·S =k πr 2,则感生电场对小球的作用力所做的功W =qU =qE =qk πr 2,选项D 正确.3.(2018·长沙模拟)如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( )A .W 1<W 2,q 1<q 2B .W 1<W 2,q 1=q 2C .W 1>W 2,q 1=q 2D .W 1>W 2,q 1>q 2解析:选C.两次拉出的速度之比v 1∶v 2=3∶1.电动势之比E 1∶E 2=3∶1,电流之比I 1∶I 2=3∶1,则电荷量之比q 1∶q 2=(I 1t 1)∶(I 2t 2)=1∶1.安培力之比F 1∶F 2=3∶1,则外力做功之比W 1∶W 2=3∶1,故C 正确.4.如图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A .恒为nS (B 2-B 1)t 2-t 1B .从0均匀变化到nS (B 2-B 1)t 2-t 1C .恒为-nS (B 2-B 1)t 2-t 1D .从0均匀变化到-nS (B 2-B 1)t 2-t 1解析:选C.根据法拉第电磁感应定律得,感应电动势E =n ΔΦΔt =n (B 2-B 1)St 2-t 1,由楞次定律和右手螺旋定则可判断b 点电势高于a 点电势,因磁场均匀变化,所以感应电动势恒定,因此a 、b 两点电势差恒为φa -φb =-n(B 2-B 1)St 2-t 1,选项C 正确.5.如图所示,在光滑绝缘水平面上,有一铝质圆形金属球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场过程中(磁场宽度大于金属球的直径),小球( )A .整个过程匀速运动B .进入磁场过程中球做减速运动,穿出过程做加速运动C .整个过程都做匀减速运动D .穿出时的速度一定小于初速度解析:选D.小球在进出磁场时有涡流产生,要受到阻力. 6.如图所示,A 、B 、C 是三个完全相同的灯泡,L 是一自感系数较大的线圈(直流电阻可忽略不计).则( )A .S 闭合时,A 灯立即亮,然后逐渐熄灭B .S 闭合时,B 灯立即亮,然后逐渐熄灭C .电路接通稳定后,三个灯亮度相同D .电路接通稳定后,S 断开时,C 灯立即熄灭解析:选A.电路中A 灯与线圈并联后与B 灯串联,再与C 灯并联.S 闭合时,三个灯同时立即发光,由于线圈的电阻由大变小,逐渐将A 灯短路,A 灯逐渐熄灭,A 灯的电压逐渐降低,B 灯的电压逐渐增大,B 灯逐渐变亮,故选项A 正确,B 错误;电路接通稳定后,A 灯被线圈短路,完全熄灭.B 、C 并联,电压相同,亮度相同,故选项C 错误.电路接通稳定后,S 断开时,C 灯中原来的电流立即减至零,由于线圈中电流要减小,产生自感电动势,阻碍电流的减小,线圈中电流不会立即消失,这个自感电流通过C 灯,所以C 灯过一会儿熄灭,故选项D 错误.二、多项选择题 7.(2016·高考全国卷Ⅱ)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B 中.圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:选AB.设圆盘的半径为r ,圆盘转动的角速度为ω,则圆盘转动产生的电动势为E =12Br 2ω,可知,若转动的角速度恒定,电动势恒定,电流恒定,A 项正确;根据右手定则可知,从上向下看,圆盘顺时针转动,圆盘中电流由边缘指向圆心,即电流沿a 到b 的方向流动,B 项正确;圆盘转动方向不变,产生的电流方向不变,C 项错误;若圆盘转动的角速度变为原来的2倍,则电动势变为原来的2倍,电流变为原来的2倍,由P =I 2R 可知,电阻R 上的热功率变为原来的4倍,D 项错误.8.如图所示,灯泡A 、B 与定值电阻的阻值均为R ,L 是自感系数较大的线圈,当S 1闭合、S 2断开且电路稳定时,A 、B 两灯亮度相同,再闭合S 2,待电路稳定后将S 1断开,下列说法中正确的是( )A .B 灯立即熄灭B .A 灯将比原来更亮一下后熄灭C .有电流通过B 灯,方向为c →dD .有电流通过A 灯,方向为b →a解析:选AD.S 1闭合、S 2断开且电路稳定时,A 、B 两灯一样亮,说明两个支路中的电流相等,这时线圈L 没有自感作用,可知线圈L 的电阻也为R ,在S 2、S 1都闭合且稳定时,I A =I B ,当S 2闭合、S 1突然断开时,由于线圈的自感作用,流过A 灯的电流方向变为b →a ,但A 灯不会出现比原来更亮一下再熄灭的现象,故选项D 正确,B 错误;由于定值电阻R 没有自感作用,故断开S 1时,B 灯立即熄灭,选项A 正确,C 错误.9.如图,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小解析:选BCD.根据直线电流产生磁场的分布情况知,M 区的磁场方向垂直纸面向外,N 区的磁场方向垂直纸面向里,离导线越远,磁感应强度越小.当导体棒匀速通过M 、N 两区时,感应电流的效果总是反抗引起感应电流的原因,故导体棒在M 、N 两区运动时,受到的安培力均向左,故选项A 错误,选项B 正确;导体棒在M 区运动时,磁感应强度B 变大,根据E =Blv ,I =ER及F =BIl 可知,F M 逐渐变大,故选项C 正确;导体棒在N 区运动时,磁感应强度B 变小,根据E =Blv ,I =E R及F =BIl 可知,F N 逐渐变小,故选项D 正确.10.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则下列说法正确的是( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 法拉第电磁感应定律 自感
一、单项选择题
1.如图K9­2­1所示,长为l 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板,磁场垂直于环面(纸面)向里,磁感应强度以B =B 0+kt (k >0)随时间变化,t =0时,P 、Q 两极板电势相等.两极板间的距离远小于环的半径,则经时间t 电容器P 板( )
图K9­2­1
A .不带电
B .所带电荷量与t 成正比
C .带正电,电荷量是kl 2C

D .带负电,电荷量是
kl 2C

2.如图K9­2­2所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .则下列判断正确的是( )
图K9­2­2
A .U a > U c ,金属框中无电流
B .U b >U c ,金属框中电流方向沿a →b →c →a
C .U bc =-12Bl 2
ω,金属框中无电流
D .U bc =12
Bl 2
ω,金属框中电流方向沿
a →c →
b →a
3.如图K9­2­3所示有A 、B 两个线圈.线圈B 连接一电阻R ,要使流过电阻R 的电流大小恒定,且方向由c 点流经电阻R 到d 点.设线圈A 中电流i 从a 点流入线圈的方向为正方向,则线圈A 中的电流随时间变化的图象是( )
图K9­2­3
A B C D
4.(2017年湖南衡阳八中高三质检)如图K9­2­4所示,电灯的灯丝电阻为2 Ω,电池电动势为2 V ,内阻不计,线圈匝数足够多,其直流电阻为3 Ω.先合上电键K ,过一段时
间突然断开K ,则下列说法正确的是( )
图K9­2­4
A .电灯立即变暗再熄灭,且电灯中电流方向与K 断开前方向相同
B .电灯立即变暗再熄灭,且电灯中电流方向与K 断开前方向相反
C .电灯会突然比原来亮一下再熄灭,且电灯中电流方向与K 断开前方向相同
D .电灯会突然比原来亮一下再熄灭,且电灯中电流方向与K 断开前方向相反
5.(2017年福建龙岩高三质检)如图K9­2­5所示,abcd 为水平放置的平行“”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程金属杆与导轨始终良好接触,金属杆单位长度的电阻为r .则在金属杆转动过程中( )
图K9­2­5
A .M 、N 两点电势相等
B .金属杆中感应电流的方向是由N 流向M
C .电路中感应电流的大小始终为Blω
2r
D .电路中通过的电量为
Bl
2r tan θ
二、多项选择题
6.(2017年湖南株洲高三质检)用导线绕一圆环,环内有一用同样导线折成的内接正方形线框,圆环与线框绝缘,如图K9­2­6所示.把它们放在磁感应强度为B 的匀强磁场中,磁场方向垂直于圆环平面(纸面)向里.当磁场均匀减弱时( )
图K9­2­6
A .圆环和线框中的电流方向都为顺时针
B .圆环和线框中的电流方向都为逆时针
C .圆环和线框中的电流大小之比为 2∶1
D .圆环和线框中的电流大小之比为2∶1
7.(2017年河南郑州第三次质量预测)铁路运输中设计的多种装置都运用了电磁感应原理.有一种电磁装置可以向控制中心传输信号以确定火车的位置和运动状态,装置的原理是:将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图K9­2­7甲所示(俯视图),当它经过安放在两铁轨间的矩形线圈时,线圈便产生一个电信号传输给控制中心.线圈长为l 1,宽为l 2,匝数为n .若匀强磁场只分布在一个矩形区域内,当火车首节车厢通过线圈时,控制中心接收到线圈两端电压u 与时间t 的关系如图乙所示(ab 、cd 均为直线),则在t 1~t 2时间内( )
甲 乙
图K9­2­7
A .火车做匀速直线运动
B .M 点电势低于N 点电势
C .火车加速度大小为u 2-u 1
nBl 2t 2-t 1
D .火车平均速度大小为u 2+u 1
2nBl 1
8.(2016年山东威海高三期末)如图K9­2­8所示,两个同心金属环水平放置,半径分别是r 和2r ,两环间有磁感应强度为B 、方向垂直环面向里的匀强磁场,在两环间连接有一个电容为C 的电容器,a 、b 是电容器的两个极板.长为r 的金属棒AB 沿半径方向放置在两环间且与两环接触良好,并绕圆心以角速度ω做逆时针方向(从垂直环面向里看)的匀速圆周运动.则下列说法正确的是( )
图K9­2­8
A .金属棒中有从
B 到A 的电流 B .电容器a 极板带正电
C .电容器两端电压为3Bωr
2
2
D .电容器所带电荷量为
CBωr 2
2
三、非选择题
9.把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下、磁感应强度为B 的匀强磁场中,如图K9­2­9所示.一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触.当金属棒以恒定速度v 向右移动经过环心O 时,求:
(1)流过金属棒的电流的大小、方向及金属棒两端的电压U MN . (2)在圆环和金属棒上消耗的总热功率.
图K9­2­9
10.如图K9­2­10甲所示,一个横截面积为S=0.10 m2,匝数为120匝的闭合线圈放在平行于线圈轴线的匀强磁场中,线圈的总电阻为R=1.2 Ω.该匀强磁场的磁感应强度B随时间t变化的规律如图乙所示.
(1)从t=0到t=0.3 s时间内,通过该线圈任意一个横截面的电荷量q为多少?
(2)从t=0到t=0.3 s时间内,线圈中产生的电热Q为多少?
图K9­2­10
11.(2017年江苏卷)如图K9­2­11所示,两根间距为d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻.质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下.当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)MN刚扫过金属杆时,杆中感应电流的大小I.
(2)MN刚扫过金属杆时,杆的加速度大小a.
(3)PQ刚要离开金属杆时,感应电流的功率P.
图K9­2­11。

相关文档
最新文档