(完整版)机械设计基础知识点整理

合集下载

机械设计基础知识点整理(PDF52页)

机械设计基础知识点整理(PDF52页)

第0章绪论一、本课程研究的对象和内容1、研究的对象:机械的组成原理、机械运动学和动力学以及机械零件设计理论和计算方法机械:机器和机构的总称(1)机器:是根据某种使用要求而设计的一种人为实物组合的执行机械运动的装置,它可以用来变换或传递能量、物料、信息,以代替或减轻人类的劳动。

三个特征:①人为的实物组合(不是天然形成的);②各实物单元具有确定的相对运动;③能完成有用的机械功或转换机械能,可用来代替或减轻人类的劳动;一般机器包含四个组成部分:动力部分、传动部分、控制部分和执行部分。

(2)机构:能实现预期机械运动的各构件(包括机架)的基本组合体称为机构。

是一个具有相对机械运动的构件系统,用来传递与变换运动和力的可动装置。

它是机器的重要组成部分,具有机器的前两个特征。

分类:连杆机构、凸轮机构、齿轮机构、间歇机构。

机构只是一个构件系统,而机器除构件系统外,还包含电气、液压等其它系统。

构件:是运动的单元。

可以是单一的整体,也可以是由几个零件组成的刚性结构。

零件:是制造的单元。

2、研究内容:是研究机械的组成原理、运动学和动力学以及组成机械的零件(通用零件)设计等一般方法的学科。

第一章平面机构及其自由度一、运动副及其分类1、运动副:两个构件直接接触形成的一种可动联接。

(1)高副:点、线接触,应力高。

一个约束、相对自由度等于2。

(2)低副:面接触,应力低。

两个约束,一个自由度。

低副有转动副和移动副。

二、平面机构运动简图1、机构运动简图:用简单线条和规定的符号来表示构件和运动副,并按比例表示各运动副的相对位置。

用以说明机构中各构件之间的相对运动关系的简单图形。

机构示意图:仅以构件和运动副的符号表示机构而不按精确比例绘制的简图。

2、构件的分类:固定件、原动件、从动件3、绘制机构运动简图(1)应满足条件:①构件数目与实际相同;②运动副的性质、数目与实际相符;③运动副之间的相对位置以及构件尺寸与实际机构成比例(2)步骤:①分析清楚所要绘制机械的结构和动作原理;②从原动件开始,按照运动传递的顺序,仔细分析各构件相对运动的性质,确定运动副的类型和数目;③合理选择视图平面,通常选择与大多数构件的运动平面相平行的平面为视图平面;④选取适当的长度比例尺,按一定的顺序进行绘图,并将比例尺标注图上。

50个机械设计基础知识点

50个机械设计基础知识点

50个机械设计基础知识点1.刚体力学:研究物体在作用力下的平衡和运动。

2.静力学:研究物体在静止状态下的力学性质。

3.动力学:研究物体在运动状态下的力学性质。

4.运动学:研究物体的运动特性,如速度、加速度和位移。

5.力学系统:由若干物体组成,并且相互作用,受到外界力的作用。

6.力的合成:通过矢量相加的方法计算多个力的合力。

7.力的分解:将一个力分解为多个力的合力。

8.平衡:物体受到的合力和合力矩均为零。

9.功:力在物体上产生的位移所做的功。

10.能量:物体的能力做功的量度。

11.弹性力:物体受到变形后,恢复原状的力。

12.摩擦力:物体在运动或静止时受到的阻力。

13.运动学链:由多个刚体连接而成的机构,用来进行运动传递和转换。

14.齿轮传动:利用齿轮的互相啮合实现运动传递和转换。

15.杠杆机构:利用杠杆的原理实现力的放大或缩小的机构。

16.曲柄连杆机构:利用曲柄和连杆的结构实现运动转换。

17.铰链机构:通过铰链连接物体的机构,实现固定、旋转或滑动。

18.滑块机构:由滑块和导轨构成的机构,实现直线运动。

19.传动比:用来衡量运动传递的效率。

20.齿轮比:齿轮传动中两个齿轮的旋转速度比值。

21.离合器:用来连接或分离两个旋转物体的装置。

22.制动器:用来减速、停止或固定运动物体的装置。

23.轴承:用来支撑和减小机械运动中的摩擦力的装置。

24.轴线:用来连接和支撑旋转物体的直线。

25.键连接:通过键连接来实现轴线和轴承的固定。

26.螺纹连接:通过螺纹连接实现两个物体的拧紧或松开。

27.轴承间隙:轴承内外圈之间的间隙,用来调整摩擦力和轴承的转动。

28.轴向力:作用于轴线方向上的力。

29.径向力:作用于轴线垂直方向上的力。

30.弹簧:用来储存和释放能量的装置。

31.拉伸强度:材料抵抗拉伸破坏的能力。

32.压缩强度:材料抵抗压缩破坏的能力。

33.硬度:材料抵抗划伤或穿透的能力。

34.拉伸试验:测试材料的拉伸性能和强度。

(完整word版)《机械设计基础》知识点汇总.

(完整word版)《机械设计基础》知识点汇总.

机械设计基础》知识点汇总1、具有以下三个特征的实物组合体称为机器。

(1)都是人为的各种实物的组合。

(2)组成机器的各种实物间具有确定的相对运动。

(3)可代替或减轻人的劳动,完成有用的机械功或转换机械能。

2、机构主要用来传递和变换运动。

机器主要用来传递和变换能量。

3、零件是组成机器的最小单元,也是机器的制造单元,机器是由若干个不同的零件组装而成的。

各种机器经常用到的零件称为通用零件。

特定的机器中用到的零件称为专用零件。

4、构件是机器的运动单元,一般由若干个零件刚性联接而成,也可以是单一的零件。

若从运动的角度来讲,可以认为机器是由若干个构件组装而成的。

根据功能的不同,一部完整的机器由以下四部分组成:1. 原动部分:机器的动力来源。

2. 工作部分:完成工作任务的部分。

3. 传动部分:把原动机的运动和动力传递给工作机。

4. 控制部分:使机器的原动部分、传动部分、工作部分按一定的顺序和规律运动,完成给定的工作循环。

5、物体间机械作用的形式是多种多样的,力对物体的效应取决于力的大小、方向和作用点,这三者被称为力的三要素。

公理1 二力平衡公理作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。

对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。

公理2 加减平衡力系公理在已知力系上加上或者减去任意平衡力系,并不改变原力系对刚体的作用。

推论1 力的可传性原理作用在刚体上某点的力,可以沿着它的作用线移动到刚体内任意一点,并不改变该力对刚体的作用效应。

公理 3 力的平行四边形公理作用在刚体上同一点的两个力,可以合成为一个合力。

合力的作用点也在该点,合力的大小、方向,由这两个力为边构成的平行四边形的对角线确定。

推论2 三力平衡汇交原理:作用在刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线通过汇交点。

公理4 作用与反作用公理两物体间的作用力与反作用力总是同时存在,且大小相等、方向相反、沿同一条直线,分别作用在这两个物体上。

机械设计基础知识概述全

机械设计基础知识概述全

机械设计基础知识概述全机械设计是一种将机械理论和实践应用于机械制造的专业。

它涉及到机械部件的设计、制造和测试等方面,是现代机械行业发展的基础。

机械设计包括许多基础知识,下面我们将对其中的关键知识进行概述。

一、材料力学材料力学是机械设计的基础,它研究的是物体受力下的应力和应变变化规律。

任何机械部件都必须在特定的负载和环境条件下进行设计和制造。

因此,了解材料的物理和力学特性是非常重要的。

材料的强度、韧性、疲劳寿命以及其它性质的测试是材料力学中重要的主题。

二、机械制造工艺机械制造工艺是机械设计中至关重要的一环。

它涉及到零件的成型、加工和装配等各个方面,包括铸造、锻造、注塑、机加工等。

如果选择合适的制造工艺,则可以保证产品具有高的质量和性能,同时减少制造成本。

三、CAD/CAM计算机辅助设计和制造技术(CAD/CAM)也是机械设计的重要组成部分。

CAD/CAM软件可以帮助设计师进行绘图、设计和建模等工作,同时还可以进行自动化加工和控制,提高生产效率和成本效益。

四、机构学与运动学机械设计中机构学和运动学也非常重要。

机构学是机械学科中的分支,它研究的是机械结构的运动学原理、结构功能和工作原理等。

在机器的设计之前,一定要对机件的运动学进行深入了解。

五、机械设计的基本法则机械设计的基本法则是几乎所有机械设计人员都应该深入掌握的知识点。

其内容包括力学、结构原理、材料力学及其它基本理论知识。

机械设计师必须选择最适合机器设计和应用的材料、零件和构件,并合理地设计和配合它们。

以上是机械设计基础知识的概述,机械设计师需要在日常工作中掌握和应用这些知识,才能设计出具有高质量、高可靠性的机器产品。

机械设计知识点大全

机械设计知识点大全

机械设计知识点大全在机械设计领域,有许多重要的知识点需要掌握。

这些知识点包括机械设计的基础原理、设计过程中需要考虑的因素、常见的机械元件和系统等。

本文将为您详细介绍机械设计的各个方面知识点,以帮助您更好地理解和运用机械设计技术。

一、机械设计基础原理1. 牛顿力学原理:涉及质点、刚体的平衡与运动问题,用于分析力学系统。

2. 静力学和动力学:用于分析物体受力平衡和运动的原理和方法。

3.材料力学:研究材料的强度、刚度、韧性等力学性能,为机械设计提供基础。

4.热力学:研究热与功、能量转换及热力学循环等问题,在机械设计中用于分析热机工作原理。

5.流体力学:研究流体在力的作用下的运动规律,常用于设计气体和液体传动系统。

二、机械设计的过程与方法1.产品规划与概念设计:明确产品的功能、性能需求及设计目标,并进行初步设计。

2.结构设计:根据产品功能、布局及成本要求设计出合理的结构。

3.零部件设计:设计各个零部件的形状、尺寸和参数,满足产品要求。

4.装配设计:设计零部件的相互位置、配合关系和装配工艺,以保证整体的质量和性能。

5.材料选择与加工工艺:选择适当的材料,确定加工工艺,确保产品的质量和可制造性。

6.试验验证与优化:通过试验和仿真验证设计方案,针对问题进行调整和优化。

三、常见机械元件1.轴:用于传递力和转动运动的零件。

2.齿轮与传动:用于传递动力和运动的装置,提供不同速度和扭矩的转动。

3.联轴器:用于连接轴与轴之间,传递转矩和运动。

4.连接件:如螺栓、螺母、销等,用于连接零部件。

5.轴承:用于支撑和定位转动轴的零件。

6.弹簧:用于存储和释放弹性势能,实现缓冲和减震的作用。

7.气动元件:如气缸、阀门等,用于控制气体流动和压力的元件。

四、机械系统1.机械传动系统:包括齿轮传动、带传动、链传动等,用于传递运动和动力。

2.液压传动系统:利用液体传递压力和能量,实现力的放大和控制。

3.气动传动系统:利用气体传递压力和能量,实现力的放大和控制。

(完整版)机械设计基础知识点整理

(完整版)机械设计基础知识点整理

1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230—450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。

最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。

特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形.确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀.疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。

疲劳点蚀使齿轮。

滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。

机械设计基础常识50条

机械设计基础常识50条

机械设计基础常识50条1、机器由原动机部分、传动部分、执行部分、控制部分组成。

2、带传动的主要失效形式:带的疲劳损坏和打滑。

3、机械设计中贯彻标准化、系列化、通用化的意义:①、减轻设计工作量;②、标准零部件是由专业工厂大规模生产的,效率高,成本低、质量可靠;③、便于维护使用,便于更换维修,④、三化是设计应贯彻的原则,也是国家的一项技术政策。

4、联接可分为可拆联接和不可拆联接。

5、螺纹联接又可分为:螺栓联接、双头螺柱联接、螺钉联接。

6、螺纹联接的防松措施:摩擦防松、机械防松、永久防松。

7、销联接分类:定位销、联接销、安全销。

8、键联接分为:平键联接、半圆键联接、花键联接。

9、轴功用分类:传动轴、心轴、转轴。

10、联轴器分两大类:刚性联轴器和挠性联轴器。

11、轴承有:滑动轴承和滚动轴承;滑动轴承按承受载荷分为:向心轴承和推力轴承。

12、①含油轴承定义:一般将青铜、铁或铝等金属粉末与石墨调匀,压形成轴瓦,经高温烧结,即得到类似陶瓷结构的非致密、多孔性轴瓦,把它在润滑油中充分侵润后,微孔中充满了润滑油,故称为含油轴承。

含油轴承用粉末冶金材料制成。

②含油轴承特点:强度较低、不耐冲击,结构简单、价格便宜。

13、滚动轴承: 优点:①、摩擦阻力小,起动灵敏,效率高,发热少温升低;②、轴向尺寸有利于整机机构的紧凑和简化;③、径向间隙小,并且可以用预紧方法调整间隙,因此旋转精度高;④、润滑简单,耗油量小,维护保养方便;⑤、标准件,大批量生产供应市场,性价比高,使用更换也方便。

缺点:径向尺寸较大,承受冲击载荷的能力不高,高速运转时声响较大,工作寿命不长。

14、滚动轴承的组成:外圈、内圈、滚动体和保持架。

15、a、滚动轴承的代号:由前置代号、基本代号、后置代号;b、基本代号由轴承类型代号、尺寸系列代号、内径代号组成。

16、滚动轴承结构形式:双支点单向固定支承、单支点双向固定支承、双支点游动支承。

17、润滑剂分为:润滑油和润滑脂。

《机械设计基础》重点总结

《机械设计基础》重点总结

《机械设计基础》重点总结机械设计基础是一门研究机械中常用机构和通用零部件工作原理、结构特点、设计方法以及机械传动系统设计的学科。

它是机械工程类专业的重要基础课程,对于我们理解和掌握机械系统的设计与应用具有重要意义。

下面我将为大家总结这门课程的重点内容。

一、平面机构的结构分析1、运动副及其分类运动副是指两构件直接接触并能产生相对运动的活动连接。

根据接触形式的不同,运动副分为低副和高副。

低副包括转动副和移动副,高副则包括齿轮副、凸轮副等。

2、平面机构的运动简图用简单的线条和符号来表示机构的组成和运动情况的图形称为机构运动简图。

绘制机构运动简图时,要准确表示出各构件之间的相对运动关系和运动副的类型。

3、平面机构的自由度计算自由度是指机构具有独立运动的数目。

平面机构的自由度计算公式为:F = 3n 2PL PH,其中 n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。

机构具有确定运动的条件是自由度等于原动件的数目。

二、平面连杆机构1、铰链四杆机构的基本类型铰链四杆机构包括曲柄摇杆机构、双曲柄机构和双摇杆机构。

其类型取决于各杆的长度关系和机架的选择。

2、铰链四杆机构的演化形式通过改变构件的形状、相对长度以及运动副的尺寸等,可以将铰链四杆机构演化成曲柄滑块机构、导杆机构、摇块机构和定块机构等。

3、平面连杆机构的运动特性包括急回特性、压力角和传动角等。

急回特性可以提高工作效率,压力角越小、传动角越大,机构的传动性能越好。

三、凸轮机构1、凸轮机构的类型按凸轮的形状可分为盘形凸轮、移动凸轮和圆柱凸轮;按从动件的端部形状可分为尖顶从动件、滚子从动件和平底从动件。

2、凸轮机构的运动规律常用的运动规律有等速运动规律、等加速等减速运动规律、余弦加速度运动规律和正弦加速度运动规律等。

不同的运动规律适用于不同的工作场合。

3、凸轮机构的设计设计凸轮机构时,需要根据工作要求确定凸轮的基圆半径、滚子半径、从动件的行程和运动规律等参数。

机械设计基础笔记知识点

机械设计基础笔记知识点

机械设计基础笔记知识点一、机械设计概论1. 机械设计的定义和作用机械设计是指以人工制作的机械装置为研究对象,通过综合运用机械学、工程力学等知识,进行构思、设计和分析等工作,以满足特定的技术要求和经济要求。

2. 机械设计的基本原则和设计流程机械设计的基本原则包括适应性原则、合理性原则、先进性原则等,并按照设计流程依次进行项目论证、需求分析、方案设计、详细设计、制造和试验等阶段。

二、材料力学基础1. 材料的力学性能指标材料的力学性能指标主要包括强度、刚度、韧性、疲劳性能等。

其中强度是材料在受力时所能承受的最大应力,刚度是材料在受力时所表现出来的抗变形能力,韧性是材料在发生破坏前能吸收的能量,疲劳性能是材料在循环受力下出现破坏的抗性。

2. 应力和应变材料受到外力作用时,内部会产生相应的应力和应变。

应力是单位面积上的力的大小,应变是材料单位长度的变形量。

常见的应力形式包括拉应力、压应力、剪应力等。

三、机械零件设计1. 连接零件的设计连接零件是机械装置中起连接部件间传递力和传递运动的作用。

常见的连接方式有螺栓连接、销连接、键连接等。

在连接零件设计中,需要考虑连接强度、刚度、可拆卸性和工艺性等因素。

2. 轴的设计轴是机械装置上用来传递动力和转动运动的零件。

轴的设计需要考虑强度、刚度、平衡性和传递功率等因素。

轴的材料一般选用高强度的合金钢。

3. 螺纹的设计螺纹是机械装置中常用的连接方式之一。

螺纹的设计需要确定螺纹规格、螺纹传递力、螺纹疲劳寿命和螺纹的配合等参数。

四、机械传动设计1. 齿轮传动的设计齿轮传动是机械装置中常用的传动方式之一。

齿轮传动设计需要确定齿轮的模数、齿轮的参数、齿轮的传动比和齿轮的轴向力等。

2. 带传动的设计带传动是利用带传递动力和运动的方式。

带传动设计需要确定带的类型、传动比和带轮的尺寸等。

3. 链传动的设计链传动是一种静止的链条将动力传递给另一部分。

链传动设计需要确定链条的参数、链轮的尺寸等。

机械设计基础复习资料(综合整理)

机械设计基础复习资料(综合整理)

机械设计基础复习资料一、基础知识0、零件(独立的机械制造单元)组成(无相对运动)构件(一个或多个零件、是刚体;独立的运动单元)组成(动连接)机构(构件组合体);两构件直接接触的可动连接称为运动副;运动副要素(点、线、面);平面运动副、空间运动副;转动副、移动副、高副(滚动副);点接触或线接触的运动副称为高副(两个自由度、一个约束)、面接触的运动副称为低副(一个自由度、两个约束,如转动副和移动副)0.1曲柄存在的必要条件:最短杆与最长杆长度之和小于其余两杆长度之和。

连架杆和机架中必有一杆是最短杆。

0.2在四杆机构中,不满足曲柄存在条件的为双摇杆机构,满足后,若以最短杆为机架,则为双曲柄机构;若以最短杆相对的杆为机架则为双摇杆机构;若以最短杆的两邻杆之一为机架,则为曲柄摇杆机构0.3 凸轮从动件作等速运动规律时,速度会突变,在速度突变处有刚性冲击,只能适用于低速凸轮机构;从动件作等加等减速运动规律时,有柔性冲击,适用于中、低速凸轮机构;从动件作简谐运动时,在始末位置加速度也会变化,也有柔性冲击,之适用于中速凸轮,只有当从动件做无停程的升降升连续往复运动时,才可以得到连续的加速度曲线(正弦加速度运动规律),无冲击,可适用于高速传动。

0.4凸轮基圆半径和凸轮机构压力角有关,当基圆半径减小时,压力角增大;反之,当基圆半径增大时,压力角减小。

设计时应适当增大基圆半径,以减小压力角,改善凸轮受力情况。

0.5.机械零件良好的结构工艺性表现为便于生产的性能便于装配的性能制造成本低1.按照工作条件,齿轮传动可分为开式传动两种。

1.1.在一般工作条件下,齿面硬度HB≤350的闭式齿轮传动,通常的主要失效形式为【齿面疲劳点蚀】1.2对于闭式软齿面来说,齿面点蚀,轮齿折断和胶合是主要失效形式,应先按齿面接触疲劳强度进行设计计算,确定齿轮的主要参数和尺寸,然后再按齿面弯曲疲劳强度进行校核。

1.3闭式齿轮传动中的轴承常用的润滑方式为飞溅润滑1.4. 直齿圆锥齿轮的标准模数规定在_大_端的分度圆上。

机械设计基础知识概述(全)要点

机械设计基础知识概述(全)要点

机械设计基础知识概述机械设计基础知识概述第一章金属材料的有关问题(一)金属材料的机械性能金属零件受一定外力作用时,对金属材料有一定的破坏作用。

因此要求金属材料具有抵抗外力的作用而不被破坏的性能,这种性能称为机械性能。

金属材料的机械性能主要包括:强度、塑性、硬度、冲击韧性和疲劳强度等。

它们的具体数值是在专门的试验机上测定出来的。

1、金属材料的变形和应力金属材料受外力作用时引起的形状改变称为变形。

变形分为弹性变形(当外力取消后,变形消失并恢复到原来形状)和塑性变形(当外力除去后,不能恢复到原来形状,保留一部分残余形变)。

当金属材料受外力作用时,其内部还将产生一个与外力相对抗的内力,它的大小与外力相等,方向相反。

单位截面上的内力称为应力。

在拉伸和压缩时应力用符号σ表示。

σ=P/F式中:σ —应力,MPa;P —拉伸外力,N;F —试样的横截面积,mm2。

2、强度强度是金属材料抵抗塑性变形或断裂的能力。

强度可通过拉力试验来测定。

将图(a)所示标准样安装在拉力试验机上,对其施加一个平稳而无冲击逐渐递增的轴向拉力,随着拉力的增加试样产生形变如图(B)直到断裂如图(C)。

以试样的受拉力P为纵坐标,伸长值⊿L为横坐标,给制出拉伸曲线。

第 1 页共 54 页机械设计基础知识概述OE段:负荷与伸长成线性关系,是材料的弹性变形阶段。

金属材料由弹性变形过渡到塑性变形时的应力称为弹性极限,用σe表示。

σe=Pe/Fo式中:σe —弹性极限,MPa;Pe —材料开始塑性变形时的负荷,N;Fo —试样原横截面积,㎜2 。

当负荷超过E点,试样开始产生塑性变形,这一段曲线几乎呈水平,表明试样在拉伸过程中,负荷不增加甚至有降低,试样继续塑性形变,材料丧失了抵抗变形的能力。

这种现象称为屈服。

产生现象时的应力称为屈服点,用σs表示。

σs=Ps/Fo式中:σs —屈服点,Mpa ;Ps —材料产生明显形变时的负荷,N;Fo —试样原横截面积,㎜2 。

机械设计基础知识点整理[52页]

机械设计基础知识点整理[52页]

机械设计基础知识点整理[52页]
一、材料力学
1.应力、应变、杨氏模量、泊松比、屈服强度、延伸率、硬度、断裂韧性等基本概念;
2.各种材料的特性、选材原则;
3.杆件、轴件、皮带悬挂、齿轮传动等常见零部件的强度计算。

二、机械传动
1.基本传动链、链轮、链条等概念;
2.齿轮传动的计算、设计、选型、装配;
3.皮带传动的计算、设计、选型、使用及维护。

三、机械零件
1.机械连接件的种类、用途及计算;
2.机械弹簧的种类、原理、选用及计算;
3.机械密封件的种类、原理及选用;
4.机械减振器的原理、种类及计算。

四、机械制图
1.机械制图的基本知识、图形符号、图形语言和表达方法;
2.机械零件的精度和公差、公差设计原则;
3.常用机械零件的标准化、规范化和统一化图纸的编绘。

五、机械设计基础
1.机械设计的原则、方法、步骤、标准;
2.机械设计中的力学、材料、动力学、工艺、制造等基础知识;
3.机械设计的应用领域、发展趋势和展望。

六、机械加工工艺
1.机械加工工艺的基本概念、种类及基本加工方法;
2.机械加工工艺在机械设计制造中的应用;
3.计算加工余量、过切量、切削速度等加工参数。

以上为机械设计的基础知识点整理,对于学习和掌握机械设计的同学们来说,这些知识点是必须要掌握的基础知识,只有在掌握这些基础知识的基础上,才能够更好地进行机械设计、制造和使用。

机械设计基础知识点总结

机械设计基础知识点总结

机械设计基础知识点总结1.构件:独立的运动单元/零件:独立的制造单元机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架(1个)+原动件(≥1个)+从动件(若干))机器:包含一个或者多个机构的系统注:从力的角度看机构和机器并无差别,故将机构和机器统称为机械1. 机构运动简图的要点:1)构件数目与实际数目相同2)运动副的种类和数目与实际数目相同3)运动副之间的相对位置以及构件尺寸与实际机构成比例(该项机构示意图不需要)2. 运动副(两构件组成运动副):1)高副(两构件点或线接触)2)低副(两构件面接触组成),例如转动副、移动副3. 自由度(F )=原动件数目,自由度计算公式:为高副数目)(为低副数目)(为活动构件数目)(H H L L P P P P n n F --=23 求解自由度时需要考虑以下问题:1)复合铰链2)局部自由度3)虚约束4. 杆长条件:最短杆+最长杆≤其它两杆之和(满足杆长条件则机构中存在整转副)I )满足杆长条件,若最短杆为机架,则为双曲柄机构 II )满足杆长条件,若最短杆为机架的邻边,则为曲柄摇杆机构III )满足杆长条件,若最短杆为机架的对边,则为双摇杆机构IV )不满足杆长条件,则为双摇杆机构5. 急回特性:摇杆转过角度均为摆角(摇杆左右极限位置的夹角)的大小,而曲柄转过角度不同,例如:牛头刨床、往复式输送机急回特性可用行程速度变化系数(或称行程速比系数)K 表示 11180180180//21211221+-?=?-?+?=====K K t t t t Kθθθ??ψψωω θ为极位夹角(连杆与曲柄两次共线时,两线之间的夹角)6. 压力角:作用力F 方向与作用点绝对速度c v 方向的夹角α7. 从动件压力角α=90°(传动角γ=0°)时产生死点,可用飞轮或者构件本身惯性消除8. 凸轮机构的分类及其特点:I)按凸轮形状分:盘形、移动、圆柱凸轮(端面)II )按推杆形状分:1)尖顶——构造简单,易磨损,用于仪表机构(只用于受力不大的低速机构)2)滚子——磨损小,应用广3)平底——受力好,润滑好,用于高速转动,效率高,但是无法进入凹面III )按推杆运动分:直动(对心、偏置)、摆动IV)按保持接触方式分:力封闭(重力、弹簧等)、几何形状封闭(凹槽、等宽、等径、主回凸轮)9. 凸轮机构的压力角:从动件运动方向与凸轮给从动件的力的方向之间所夹的锐角α(凸轮给从动件的力的方向沿接触点的法线方向)压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角α越大(当压力角过大时可以考虑增大基圆的半径)10. 凸轮给从动件的力F和使从动件压紧导路的有害分力F ’’(F ’’=F ’11. 凸轮机构的自锁现象:在α角增大的同时,F 摩擦力大于有用分力F ’即发生自锁,【α】在摆动凸轮机构中建议35°-45°,【α】在直动凸轮机构中建议30°,【α】在回程凸轮机构中建议70°-80°12. 凸轮机构的运动规律与冲击的关系:I )多项式运动规律:1)等速运动(一次多项式)运动规律——刚性冲击2)等加等减速(二次多项式)运动规律——柔性冲击3)五次多项式运动规律——无冲击(适用于高速凸轮机构)II )三角函数运动规律:1)余弦加速度(简谐)运动规律——柔性冲击2)正弦加速度(摆线)运动规律——无冲击 III )改进型运动规律:将集中运动规律组合,以改善运动特性13. 凸轮滚子机构半径的确定:为滚子半径、为理论轮廓的曲率半径、为工作轮廓的曲率半径T a r ρρI )轮廓内凹时:T a r +=ρρ II )轮廓外凸时:T a r -=ρρ(当0=-=T a r ρρ时,轮廓变尖,出现失真现象,所以要使机构正常工作,对于外凸轮廓要使T r >min ρ)注:平底推杆凸轮机构也会出现失真现象,可以增大凸轮的基圆半径来解决问题14. 齿轮啮合基本定律:设P 为两啮合齿轮的相对瞬心(啮合齿轮公法线与齿轮连心线21O O 交点),12122112b b r r P O P O i ===ωω(传动比需要恒定,即需要P O P O 12为常数) 15. 齿轮渐开线(口诀):弧长等于发生线,基圆切线是法线,曲线形状随基圆,基圆内无渐开线啮合线:两啮合齿轮基圆的内公切线啮合角:节圆公切线与啮合线之间的夹角α’(即节圆的压力角)16. 齿轮的基本参数:(弧长)弧长)齿槽宽齿厚、——齿根圆、——齿顶圆kk f f a a e s d r d r ( 基圆上的弧长)法向齿距(周节)齿距(周节):(b n k k k p p e s p =+= f a h h 高度)齿根高(分度圆到齿根高度)齿顶高(分度圆到齿顶分度圆:人为规定(标准齿轮中分度圆与节圆重合),分度圆参数用r 、d 、e 、s 、p=e+s 表示(无下标)B h h h f a )齿宽(轮齿轴向的厚度全齿高+= 轮齿的齿数为zmz r mz d p m p zp d zp d m 21,,///====?==有故定义只能取某些简单的值,,人为规定:分度圆的周长模数ππππ齿轮各项参数的计算公式:mz d =)短齿制正常齿齿顶高系数.80,1(****===a a a a a h h h m h h).3025.0()(*****==+=c c c m c h h a f 短齿制正常齿顶隙系数m c h h h h a f a )2(**+=+=m h z h d d a a a )2(2*+=+= m c h z h d d a f f )22(2**--=-=17. 分度圆压力角α=arcos (b r /r )(b r 为基圆半径,r 为分度圆半径)所以ααco s cos mz d d b == 所以ααπαππcos cos cos p m z mz z d p p bb n =====18. 齿轮重合度:表示同时参加啮合的轮齿的对数,用ε(ε≥1才能连续传动)表示,ε越大,轮齿平均受力越小,传动越平稳19. m c c c e s *21,00==-为标准值即顶隙即理论上齿侧间隙为标准安装时的中心距2121r r r c r a f a +?=++=20. 渐开线齿轮的加工方法:1)成形法(用渐开线齿形的成形刀具直接切出齿形,例如盘铣刀和指状铣刀),成形法的优点:方法简单,不需要专用机床;缺点:生产效率低,精度差,仅适用于单件生产及精度要求不高的齿轮加工2)范成法(利用一对齿轮(或者齿轮与齿条)互相啮合时,其共轭齿阔互为包络线的原理来切齿的),常见的刀具例如齿轮插刀(刀具顶部比正常齿高出m c *,以便切出顶隙部分,刀具模拟啮合旋转并轴向运动,缺点:只能间断地切削、生产效率低)、齿条插刀(顶部比传动用的齿条高出m c *,刀具进行轴向运动,切出的齿轮分度圆齿厚和分度圆齿槽宽相等,缺点:只能间断地切削、生产效率低)、齿轮滚刀(其在工作面上的投影为一齿条,能够进行连续切削)21. 最少齿数和根切(根切会削弱齿轮的抗弯强度、使重合度ε下降):对于α=20°和*a h =1的正常齿制标准渐开线齿轮,当用齿条加工时,其最小齿数为17(若允许略有根切,正常齿标准齿轮的实际最小齿数可取14)如何解决根切?变位齿轮可以制成齿数少于最少齿数而无根切的齿轮,可以实现非标准中心距的无侧隙传动,可以使大小齿轮的抗弯能力比较接近,还可以增大齿厚,提高轮齿的抗弯强度(以切削标准齿轮时的位置为基准,刀具移动的距离xm 称为变位量,x 称为变为系数,并规定远离轮坯中心时x 为正值,称为正变位,反之为负值,称为负变位)22. 轮系的分类:定轴轮系(轴线固定)、周转轮系(轴有公转)、复合轮系(两者混合)一对定轴齿轮的传动比公式:ab b a b a ab z z n n i ===ωω 对于(定轴)齿轮系,设输入轴的角速度为1ω,输出轴的角速度为m ω,所有主动轮齿数的乘积所有从动轮齿数的乘积==m m i ωω11 齿轮系中齿轮转向判断(用箭头表示):两齿轮外啮合时,箭头方向相反,同时指向或者背离啮合点,即头头相对或者尾尾相对;两齿轮内啮合时,箭头方向相同蜗轮蜗杆判断涡轮的转动方向:判断蜗杆的螺纹是左旋还是右旋,左旋用左手,右旋用右手,用手顺着蜗杆的旋转方向把握蜗杆,拇指指向即为涡轮的旋转方向周转轮系(包括只需要一个原动件的行星轮系和需要两个原动件的差动轮系)的传动比:所有主动轮齿数的乘积至转化轮系从所有从动轮齿数的乘积至转化轮系从)(K G K G nn n n n n i H H K H H G H K H G HGK ±=--== 注:不能忘记减去行星架的转速,此外,判断G 与K 两轮的转向是否相同,如果转向相同,则最后的结果符号取“+”,如果转向相反,则结果的符号取“-”复合轮系的传动比计算,关键在于找出周转轮系,剩下的均为定轴轮系,计算时要先名明确传递的路线是从哪一个轮传向下一个轮23. (周期性)速度波动:当外力作用(周期性)变化时,机械主轴的角速度也作(周期性的)变化,机械的这种(有规律的、周期性的)速度变化称为(周期性)速度波动(在一个整周期中,驱动力所做的输入功和阻力所作的输出功是相等的,这是周期性速度波动的重要特征)24. 调节周期性速度波动的常用方法是在机械中加上一个转动惯量很大的回转件——飞轮(选择飞轮的优势在于不仅可以避免机械运转速度发生过大的波动,而且可以选择功率较小的原动机)对于非周期性的速度波动,我们可以采用调速器进行调节(机械式离心调速器,结构简单,成本低廉,但是它的体积庞大,灵敏度低,近代机器多采用电子调速装置)26.飞轮转动惯量的选择:δω2max m A J =注:1)δωωω22min 2max min max max )(21m J J E E A =-=-=(max A 为最大功亏,即飞轮的动能极限差值,max A 的确定方法可以参照书本99页)2)2min max ωωω+=m (m ω为主轴转动角速度的算数平均值) 3)mωωωδmin max -=(δ为不均匀系数) 27.(刚性)回转件的平衡:目的是使回转件工作时离心力达到平衡,以消除附加动压力,尽可能减轻有害的机械振动。

机械设计基础知识大全

机械设计基础知识大全

机械设计基础知识大全1. 材料力学材料力学是机械设计的基础知识,主要包括材料的弹性、塑性、断裂、疲劳等力学性质。

了解材料的力学性质,有助于选取适宜的材料和确定材料的可靠强度。

2. 静力学静力学是机械设计的重要基础,它包括平面力学、三维力学、力的合成分解、重心和力矩等重要内容。

静力学的应用广泛,可用于设计机械结构和判断结构的稳定性。

3. 动力学动力学是机械设计中不可忽视的重要知识,它包括牛顿定律、功和能量、动量守恒等内容。

了解机械系统的动力学特性,可以帮助设计机械运动控制系统。

4. 机械制图机械制图是机械设计的重要环节,它用于描述机械装配的结构、功能和零件之间的关系。

掌握机械制图的基本要素,有助于绘制出高质量的图纸。

5. 液压传动液压传动是机械设计中广泛应用的技术,它利用液体传递压力和能量,在机械运动控制、能量转换和电控系统中发挥着重要作用。

了解液压控制系统的原理和组成,有助于设计出高效可靠的液压系统。

6. 传动系统传动系统是机械运动和动力传递的重要环节,它包括齿轮传动、皮带传动、链传动等多种形式。

了解每种传动系统的优缺点和适用场合,可以选择适宜的传动方式,优化机械结构。

7. 机械加工机械加工是机械设计中不可或缺的环节,它包括加工工艺、刀具选择和加工精度等内容。

了解机械加工的基本原理和方法,可以提高机械零件的制造精度和质量。

8. 机械设计软件机械设计软件是机械设计中必不可少的工具,它包括CAD、CAM、CAE 等多种类型。

了解常用的机械设计软件的功能和应用,可以提高机械设计的效率和质量。

9. 机械标准机械标准是机械设计的重要参考依据,它规定了机械零件的尺寸、形状、公差和材料等方面的标准化要求。

了解机械标准的内容和应用,可以避免设计中出现不合规范的问题,提高机械产品的质量。

10. 机械维修机械维修是机械设计的延伸,它包括机械设备的故障检测、维修和保养等方面。

了解机械维修的基本原理和方法,可以保持机械设备的正常运转,延长机械产品的使用寿命。

机械设计基础复习总结

机械设计基础复习总结

机械设计基础复习总结一、机械制图1.制图常用符号的掌握:如螺纹、齿轮、轴等常用制图符号的画法和要求。

2.视图投影方法的理解:了解各种视图的画法和画布方法,如三视图、正投影、斜投影等。

3.尺寸标注的要求:尺寸标注要精确、清晰、规范,要避免尺寸标注冲突和歧义。

对于特殊形状的零件,还要会选择合适的标注方法。

4.配合标准的理解:掌握基本配合的命名方法和要求,如紧配、松配、过盈配等。

二、机械零件设计1.零件结构设计要求:对于需求提出明确的机械零件,要合理确定零件的结构,满足机械设计的要求,如强度、刚度、耐磨等。

2.零件的材料选择:对于确定了零件的结构后,要根据其工作条件和其它要求选择合适的材料。

3.零件的加工工艺设计:掌握零件加工的基本工艺,如车削、切割、焊接等,了解加工的工序和工艺要求。

4.零件的装配设计:装配设计要保证零件之间的配合精度,避免干涉和间隙过大。

三、机械装配设计1.装配方式的选择:根据机械装置和结构的要求,选择合适的装配方式,如销销装配、螺纹连接等。

2.装配工艺的设计:了解装配的基本工艺,掌握工序和工艺要求。

要注意装配过程中可能出现的问题和解决方法。

3.装配误差和公差的控制:了解装配过程中可能产生的误差和公差的控制要求,明确各零件之间的配合公差。

四、机械设计的重要原则和方法1.机械设计的公差控制原则:明确设计目标,根据设计要求制定合理的公差控制方案,保证产品性能和质量。

2.材料选择的原则:根据机械设计的工作条件、载荷要求和耐磨性等要求,选择合适的材料。

3.设计的创新性和可实施性:要求不只是复制现有的设计,而是要有一定的创新意识,设计出能够实施的方案。

五、机械设计基础常见错误和解决方法1.标注错误:在机械制图中,尺寸标注错误是一种常见问题。

解决方法是仔细检查标注的准确性,并根据标准进行修正。

2.装配设计错误:装配设计中常常会遇到零件干涉、配合间隙过大等问题。

解决方法是进行合理的配合分析和设计,查找并排除问题。

机械基础知识点总结机械设计基础知识点归纳

机械基础知识点总结机械设计基础知识点归纳

机械基础知识点总结机械设计基础知识点归纳1.材料力学(1)杨氏模量:是材料弹性变形与应力的比值,反映材料的刚度。

(2)应力应变关系:弹性应力应变关系是描述材料在弹性范围内,应变与应力之间的关系。

(3)塑性应变:指材料在一定应力下发生塑性变形的应变。

(4)蠕变:指材料在长时间作用下,温度较高的条件下发生的塑性变形。

(5)疲劳:指在循环应力作用下,材料会发生很小的变形或破裂的现象。

(6)冲击:指材料在突然受到较大应力作用时发生的短暂的变形或破坏。

2.制图和标志(1)有关制图:包括机械零件的投影方法、剖视图、断面图等内容。

(2)机械标志:包括尺寸标注、公差标注等。

3.运动学(1)运动分析:机械运动的分析与描述,包括速度、加速度等。

(2)运动关系:包括直线运动、转动运动的关系,如位移、速度、加速度的计算与关系。

4.动力学(1)动力学分析:机械系统的力学分析方法,包括受力分析、运动方程的建立等。

(2)牛顿定律:牛顿的三大运动定律,描述了物体运动与受力之间的关系。

5.机械设计与结构(1)机械设计:包括机械元件的设计、机械系统的设计等。

(2)机构设计:描述机械元件之间的相对运动关系的设计。

(3)结构设计:机械元件的外形设计、支撑方式、安装方式等。

6.机械零件与加工工艺(1)机械零件:包括轴、轴套、齿轮、联轴器等。

(2)零件加工工艺:包括车削、铣削、磨削、冲压等。

7.机械传动与控制(1)机械传动:包括齿轮传动、带传动、链传动等。

(2)机械控制:包括摇杆、凸轮、连杆机构等。

8.液压与气动传动(1)液压传动:液体作为传动介质的传动方式,包括液压缸、液压马达等。

(2)气动传动:气体作为传动介质的传动方式,包括气缸、气动阀等。

9.机械制造工艺(1)机械制造:包括铸造、锻造、焊接、热处理等。

(2)数控加工:数控机床的操作、编程与加工工艺。

以上是机械设计的一些基础知识点的总结和归纳,对于机械设计师来说,掌握这些知识点是非常重要的基础。

(完整版)机械设计基础知识点详解

(完整版)机械设计基础知识点详解

机械设计基础知识点详解绪论1、机器的特征:(1)它是人为的实物组合;(2)各实物间具有确定的相对运动;(3)能代替或减轻人类的劳动去完成有效的机械功或转换机械能。

第一章平面机构的自由度和速度分析要求:握机构的自由度计算公式,理解的基础上掌握机构确定性运动的条件,熟练掌握机构速度瞬心数的求法。

1、基本概念运动副:凡两个构件直接接触而又能产生一定相对运动的联接称为运动副。

低副:两构件通过面接触组成的运动副称为低副。

高副:两构件通过点或线接触组成的运动副称为高副。

复合较链:两个以上的构件同时在一处用回转副相联构成的回转副。

局部自由度:机构中常出现的一种与输出构件运动无关的自由度,称为局部自由度或多余自由度。

虚约束:对机构运动不起限制作用的重复约束称为虚约束或称消极约束。

瞬心:任一刚体相对另一刚体作平面运动时,具相对运动可看作是绕某一重合点的转动,该重合点称为瞬时回转中心或速度瞬心,简称瞬心。

如果两个刚体都是运动的,则其瞬心称为相对速度瞬心;如果两个刚体之一是静止的,则其瞬心称为绝对速度瞬心。

2、平面机构自由度计算作平面运动的自由构件具有三个自由度,每个低副引入两个约束,即使构件失去两个自由度;每个高副引入一个约束,使构件失去一个自由度。

计算平面机构自由度的公式:F=3n-2P L-P H机构要具有确定的运动,则机构自由度数必须与机构的原动件数目相等。

即, 机构具有确定运动的条件是F>0,且F等于原动件个数。

3、复合校链、局部自由度和虚约束(a)K个构件汇交而成的复合较链应具有(K-1)个回转副。

(b)局部自由度虽然不影响整个机构的运动,但滚子可使高副接触处的滑动摩擦变成滚动摩擦,减少磨损,所以实际机械中常有局部自由度出现。

(c)虚约束对机构运动虽不起作用,但是可以增加构件的刚性和使构件受力均衡,所以实际机械中虚约束随处可见。

4、速度瞬心如果一个机构由K个构件组成,则瞬心数目为N=K(K-1)/2瞬心位置的确定:(a)已知两重合点相对速度方向,则该两相对速度向量垂线的交点便是两构件的瞬心。

机械设计基础知识点总结

机械设计基础知识点总结

机械设计基础知识点总结机械设计是指根据物体的用途和需求,利用力学、材料学等相关知识,设计出能够满足要求的机械产品或设备。

下面将从机械设计的基本原理、机械零件的设计、机械动力传动等方面进行总结。

1.机械设计基本原理(1)静力学基本原理:包括平衡状态、力的作用点、力的合成与分解、力的分布等。

(2)运动学基本原理:包括平面运动与空间运动、速度与加速度、几何运动与连续运动等。

(3)动力学基本原理:包括质点的运动方程、惯性力、作用力与反作用力、能量守恒定律、动量守恒定律等。

2.机械零件的设计(1)轴的设计:根据承载工况、传动功率和转速等要求确定轴的材料、直径和长度等。

(2)联接件的设计:包括轴承、齿轮、键、销、螺纹等。

设计时要考虑力的传递效果、零件的寿命和可维修性等。

(3)阀门的设计:根据流体的特性和工作条件,选择适当的阀门类型和材料,以确保流体的控制效果。

(4)弹簧的设计:根据所受载荷、工作环境和弹簧材料等因素,确定弹簧的直径、圈数、螺距和螺纹等参数。

(5)联轴器的设计:根据传动功率、转速和工作环境等要求,选择适当的联轴器类型和材料,以确保传动效果和可靠性。

3.机械动力传动(1)带传动:包括平带传动、V带传动、齿轮带传动等。

设计时要考虑传动效率、速比、中心距等因素。

(2)齿轮传动:根据传动功率、转速比和工作环境等要求,选择适当的齿轮类型和材料,以确保传动效果和可靠性。

常见的齿轮有直齿轮、斜齿轮、蜗杆等。

(3)链传动:包括链条传动、滚子链传动等。

设计时要考虑链条选择、链轮选择和传动效果等因素。

(4)轴承:包括滚动轴承和滑动轴承。

设计时要考虑承载能力、摩擦和磨损等因素。

4.机械工程材料(1)常用金属材料:如钢、铝、铜等。

要根据机械设计的要求,选择合适的材料进行设计。

(2)非金属材料:如塑料、橡胶、陶瓷等。

要根据工作条件和使用要求选择合适的材料。

(3)复合材料:是由两个或多个不同材料按一定比例组合而成。

设计时要考虑材料的强度、重量和成本等因素。

机械设计基础知识

机械设计基础知识

机械设计基础知识第一篇:机械设计基础知识(上)机械设计是一门综合性很强的学科,需要掌握一定的基础知识才能进行设计工作。

下面将介绍常用的机械设计基础知识。

一、工程制图工程制图是机械设计的基本工具。

常用的制图方法有三视图法和投影法。

在进行绘图时,需要掌握常用符号和标准尺寸,以便制作准确的图纸。

二、材料力学材料力学是机械设计中必不可少的基础学科。

了解材料的强度、刚度、韧度等基本力学性质,能够帮助设计师选择合适的材料,并确保设计结果符合要求。

三、机械设计基础几何机械设计基础几何是指三维几何、曲面理论、偏微分方程、向量分析等数学工具在机械设计与分析中的应用。

掌握这些基础几何知识可对不同形式的工程模型进行研究。

四、机械原理机械原理是机械设计的基础。

掌握机械原理可以帮助设计师确定机构的运动形式、转换效率、主要设计参数等。

五、工程实验工程实验是机械设计不可或缺的一环,通过实验可以验证和改进设计方案。

在进行工程实验时需要注意安全措施,遵守实验规范。

以上就是常用的机械设计基础知识,对于机械设计工作者来说这些知识都是必须具备的。

当然,还有许多其他的知识,例如机械动力学、传动系统、液压传动等领域,如果想要成为一名优秀的机械设计工作者,需要不断学习和积累。

第二篇:机械设计基础知识(下)机械设计是一项非常重要的工作,涉及到许多学科领域,想要成为一名优秀的机械设计师需要掌握更多的基础知识。

下面将继续介绍机械设计基础知识。

六、数值计算方法数值计算方法是进行工程分析和设计中必需的一种手段。

掌握数值计算方法可以帮助解决大量的复杂数学问题。

七、机械制造工艺机械制造工艺是机械设计成功的关键之一。

只有理解基本的制造工艺流程,才能为设计提供合适的方案,避免在制造时遇到不必要的困难。

八、机械加工工具机械加工工具是机械设计中不可或缺的一环。

对于不同的材料和加工要求会选取不同的机械工具进行加工,因此了解不同类型的机械加工工具及其性能对于有效地选择合适的加工工具具有很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230-450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。

最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。

特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形。

确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀。

疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。

疲劳点蚀使齿轮。

滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。

在d2和P一定的情况下,锁着螺纹线数n的增加,λ将增大,传动效率也相应增大。

因此,要提高传动效率,可采用多线螺旋传动13、螺旋机构的类型及应用:①变回转运动为直线运动,传力螺旋(千斤顶、压力机、台虎钳)、传导螺旋(车窗进给螺旋机构)、调整螺旋(测微计、分度机构、调整机构、道具进给量的微调机构)②变直线运动为回转运动14、螺旋机构的特点:具有大的减速比;具有大的里的增益;反行程可以自锁;传动平稳,噪声小,工作可靠;各种不同螺旋机构的机械效率差别很大(具有自锁能力的的螺旋副效率低于50%)15、连杆机构广泛应用的原因:能实现多种运动形式的转换;连杆机构中各运动副均为低副,压强小、磨损轻、便于润滑、寿命长;其接触表面是圆柱面或平面,制造比较简易,易于获得较高的制造精度16、曲柄存在条件:①最短杆长度+最长杆长度≤其他两杆之和②最短杆为连架杆或机架。

17、凸轮运动规律及冲击特性:①等速:刚性冲击、低速轻载②等加速等减速:柔性冲击、中速轻载③余弦加速度:柔性冲击、中速中载④正弦加速度:无冲击、高速轻载18、凸轮机构压力角与基圆半径关系:r0=v2/(ωtanα)-s,其中r0为基圆半径,s为推杆位移量19、滚子半径选择:ρa=ρ-r,当ρ=r时,在凸轮实际轮廓上出现尖点,即变尖现象,尖点很容易被磨损;当ρ<r时,实际廓线发生相交,交叉线的上面部分在实际加工中被切掉,使得推杆在这一部分的运动规律无法实现,即运动失真;所以应保证ρ>r,通常取r≤0.8ρ,一般可增大基圆半径以使ρ增大20、齿轮传动的优缺点:①优点:适用的圆周速度和功率范围广;传动比精确;机械效率高;工作可靠;寿命长;可实现平行轴、相交轴交错轴之间的传动;结构紧凑;②缺点:要求有较高的制造和安装精度,成本较高;不适宜于远距离的两轴之间的传动21、渐开线的特性:①发生线在基圆上滚过的一段长度等于基圆上被滚过的弧长;②渐开线上任一点的法线必与基圆相切,且N点位渐开线在K点的曲率中心,线段NK为其曲率半径;③cosαk=ON/OK=r b/r k渐开线上各点的压力角不等,向径rk越大,其压力角越大,基圆上压力角为零;④渐开线的形状取决于基圆大小,随着基圆半径增大,渐开线上对应点的曲率半径也增大,当基圆无限大时,渐开线成为直线,故渐开线齿条的齿廓为直线;⑤基圆以内无渐开线22、齿轮啮合条件:必须保证处于啮合线上的各对齿轮都能正确的进入啮合状态,m1=m2=m;α1=α2=α即模数和压力角都相等;斜齿轮还要求两轮螺旋角必须大小相等,旋向相反;锥齿轮还要求两轮的锥距相等;涡轮蜗杆要求蜗杆的导程角与涡轮的螺旋角大小相等,旋向相同23、轮齿的连续传动条件:重合度ε=B1B2/ρb>1(实际啮合线段B1B2的长度大于轮齿的法向齿距)124、齿廓啮合基本定律:作平面啮合的一对齿廓,它们的瞬时接触点的公法线,必于两齿轮的连心线交于相应的节点C,该节点将齿轮的连心线所分的两个线段的与齿轮的角速成反比。

25、根切:①产生原因:用齿条型刀具(或齿轮型刀具)加工齿轮时。

若被加工齿轮的齿数过少,道具的齿顶线就会超过轮坯的啮合极限点,这时会出现刀刃把齿轮根部的渐开线齿廓切去一部分的现象,即根切;②后果:使得齿轮根部被削弱,齿轮的抗弯能力降低,重合度减小;③解决方法:正变位齿轮26、正变位齿轮优点:可以加工出齿数小于Zmin而不发生根切的齿轮,使齿轮传动结构尺寸减小;选择适当变位量来满足实际中心距得的要求;提高小齿轮的抗弯能力,从而提高一对齿轮传动的总体强度27、齿轮的失效形式:齿轮折断、齿面点蚀、齿面胶合、齿面磨损;开式齿轮主要失效形式为齿轮磨损和轮齿折断;闭式齿轮主要是齿面点蚀和轮齿折断;蜗杆传动的失效形式为轮齿的胶合、点蚀和磨损28、齿轮设计准则:对于一般使用的齿轮传动,通常只按保证齿面接触疲劳强度及保证齿根弯曲疲劳强度进行计算29、参数选择:①齿数:保持分度圆直径不变,增加齿数能增大重合度,改善传动的平稳性,节省制造费用,故在满足齿根弯曲疲劳强度的条件下,齿数多一些好;闭式z=20~40开式z=17~20;②齿宽系数:大齿轮齿宽b2=b;小齿轮b1=b2+(2~10)mm;③齿数比:直齿u≤5;斜齿u≤6~7;开式齿轮或手动齿轮u可取到8~1230、直齿轮传动平稳性差,冲击和噪声大;斜齿轮传动平稳,冲击和噪声小,适合于高速传动31、轮系的功用:获得大的传动比(减速器);实现变速、变向传动(汽车变速箱);实现运动的合成与分解(差速器、汽车后桥);实现结构紧凑的大功率传动(发动机主减速器、行星减速器)32、带传动优缺点:①优点:具有良好的弹性,能缓冲吸振,尤其是V带没有接头,传动较平稳,噪声小;过载时带在带轮上打滑,可以防止其他器件损坏;结构简单,制造和维护方便,成本低;适用于中心距较大的传动;②缺点:工作中有弹性滑动,使传动效率降低,不能准确的保持主动轴和从动轴的转速比关系;传动的外廓尺寸较大;由于需要张紧,使轴上受力较大;带传动可能因摩擦起电,产生火花,故不能用于易燃易爆的场合33、影响带传动承载能力的因素:初拉力Fo包角a 摩擦系数f 带的单位长度质量q 速度v34、带传动的主要失效形式:打滑和疲劳破坏;设计准则:在不打滑的前提下,具有一定的疲劳强度和寿命。

35、弹性滑动与打滑:打滑:由于超载所引起的带在带轮上的全面滑动,可以避免;弹性滑动:由于带的弹性变形而引起的带在带轮上的滑动,不可避免36、螺纹连接的基本类型:螺栓连接(普通螺栓连接、铰制孔用螺栓连接)、双头螺柱连接、螺钉连接、紧螺钉连接37、螺纹连接的防松:摩擦防松(弹簧垫圈、双螺母、椭圆口自锁螺母、横向切口螺母)、机械防松(开口销与槽形螺母、止动垫圈、圆螺母止动垫圈、串连钢丝)、永久防松(冲点法、端焊法、黏结法)38、提高螺栓连接强度的方法:避免产生附加弯曲应力;减少应力集中39、键连接类型:平键连接(侧面)、半圆键连接(侧面)、楔键连接(上下面)、花键连接(侧面)40、平键的剖面尺寸确定:键的截面尺寸b×h(键宽×键高)以及键长L41、联轴器与离合器区别:连这都是用来连接两轴(或轴与轴上的回转零件),使它们一起旋转并传递扭矩的器件,用联轴器连接的两根轴,只有在停止运转后用拆卸的方法才能将他们分离;离合器则可在工作过程中根据工作需要不必停转随时将两轴接合或分离42、联轴器分类:刚性联轴器(无补偿能力)和挠性联轴器(有补偿能力)43、联轴器类型的选择:对于低速、刚性大的短轴可选用刚性联轴器;对于低速、刚性小的长轴可选用无弹性元件的挠性联轴器;对传递转矩较大的重型机械可选用齿式联轴器;对于高速、有振动和冲击的机械可选用有弹性元件的挠性联轴器;对于轴线位置有较大变动的两轴,则应选用十字轴万向联轴器44、轴承摩擦状态:干摩擦状态、边界摩擦状态、液体摩擦状态、混合摩擦状态;边界和混合摩擦统称为非液体摩擦45、验算轴承压强p:控制其单位面积的压力,防止轴瓦的过度磨损;演算pv:控制单位时间内单位面积的摩擦功耗fpv,防止轴承工作时产生过多的热量而导致摩擦面的胶合破坏;演算v:当压力比较小时,p和pv的演算均合格的轴承,由于滑动速度过高,也会发生因磨损过快而报废,因此需要保证v≤[v]46、非液体摩擦滑动轴承的主要失效形式为磨损和胶合47、轴的分类:心轴(转动心轴、固定心轴;只承受弯矩不承受扭矩)、转轴(即承受弯矩又承受扭矩)、传动轴(主要承受扭矩,不承受或承受很小弯矩)48、轴的计算注意:①轴上有键槽时,放大轴径:一个键槽3°--5°;两个键槽7°--10°②式中弯曲应力为对称循环变应力,当扭转切应力为静应力时,取α=0.3;当扭转切应力为脉动循环变应力时,取α=0.6;若扭转切应力为对称循环变应力时,取α=1 (α为折合系数)49、轴结构设计一般原则:轴的受力合理,有利于满足轴的强度条件;轴和轴上的零件要可靠的固定在准确的工作位置上;轴应便于加工;轴上的零件要便于拆装和调整;尽量减少应力集中等50、滚动轴承类型选择影响因素:转速高低、受轴向力还是径向力、载荷大小、安装尺寸的要求等51、机械速度波动:①原因:原动机的驱动力和工作机的阻抗力都是变化的,若两者不能时时相适应,就会引起机械速度的波动。

当驱动功大于阻抗功时,机器出现盈功,机器的动能增加,角速度增大,反之相反。

相关文档
最新文档