常用数字滤波算法
数字信号处理中的滤波算法比较
数字信号处理中的滤波算法比较数字信号处理在现代通讯、音频、图像领域被广泛应用,而滤波技术则是数字信号处理中最核心和关键的技术之一。
随着新一代数字信号处理技术的发展,各种高效、高精度的数字滤波算法层出不穷,其中经典的滤波算法有FIR滤波器和IIR 滤波器。
下面将对它们进行比较分析。
一、FIR滤波器FIR滤波器是一种实现数字滤波的常用方法,它采用有限长冲激响应技术进行滤波。
FIR滤波器的主要特点是线性相位和稳定性。
在实际应用中,FIR滤波器常用于低通滤波、高通滤波和带通滤波。
优点:1. 稳定性好。
FIR滤波器没有反馈环,不存在极点,可以保证系统的稳定性。
2. 线性相位。
FIR滤波器的相位响应是线性的,可达到非常严格的线性相位要求。
3. 不会引起振荡。
FIR滤波器的频率响应是光滑的,不会引起振荡。
缺点:1. 会引入延迟。
由于FIR滤波器的冲击响应是有限长的,所以它的输出需要等待整个冲击响应的结束,这就会引入一定的延迟时间,造成信号的延迟。
2. 对于大的滤波器阶数,计算量较大。
二、IIR滤波器IIR滤波器是一种有反馈的数字滤波器,在数字信号处理中得到广泛的应用。
IIR滤波器可以是无限长冲激响应(IIR)或者是有限长冲激响应(FIR)滤波器。
IIR滤波器在实际应用中,可以用于数字滤波、频率分析、系统建模等。
优点:1. 滤波器阶数较低。
IIR滤波器可以用较低的阶数实现同等的滤波效果。
2. 频率响应的切变特性好。
IIR滤波器的特性函数是有极点和零点的,这些极点和零点的位置可以调整滤波器的频率响应,进而控制滤波器的切变特性。
3. 运算速度快。
由于IIR滤波器的计算形式简单,所以在数字信号处理中的运算速度通常比FIR滤波器快。
缺点:1. 稳定性问题。
由于IIR滤波器采用了反馈结构,存在稳定性问题,当滤波器的极点分布位置不合适时,就容易产生不稳定的结果。
2. 失真问题。
与FIR滤波器不同,IIR滤波器的输出会被反馈到滤波器的输入端,这就可能导致失真问题。
常用数字滤波算法
常用数字滤波算法
常用的数字滤波算法包括:
1. 移动平均滤波(Moving Average Filter):通过对一段时间内的
样本值取平均值来减小噪音的影响。
2. 中值滤波(Median Filter):通过将一组样本值按大小排序,然
后选择中间值作为滤波结果,从而去除异常值的影响。
3. 限幅滤波(Clipping Filter):将样本值限制在一个给定范围内,超出范围的值被替换为边界值,从而去除异常值的影响。
4. 卡尔曼滤波(Kalman Filter):基于状态估计的滤波算法,使用
模型预测和观测值校正的方式,适用于动态系统的滤波和估计。
5. 维纳滤波(Wiener Filter):根据信噪比的估计,利用频域的自
相关函数和谱估计对信号进行滤波,适用于去除加性噪声。
6. 自适应滤波(Adaptive Filter):根据输入信号的统计特性不断
更新滤波器参数,以动态调整滤波器的性能,适用于非平稳信号的滤波。
7. 快速傅里叶变换滤波(FFT Filter):通过将时域信号转换为频
域信号,滤除不需要的频率分量,然后再将频域信号转换回时域信号。
这些算法可以根据具体应用的需要选择合适的滤波方法。
数据处理中的几种常用数字滤波算法
数据处理中的几种常用数字滤波算法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!在数据处理中,数字滤波算法是一种常用的技术,用于去除信号中的噪音和干扰,从而得到更加准确和可靠的数据。
常用的8种数字滤波算法
常用的8种数字滤波算法摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。
关键词:数字滤波;控制系统;随机干扰;数字滤波算法1引言在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。
为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。
噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。
所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。
数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点:(1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。
(2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。
(3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。
(4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。
2 常用数字滤波算法数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。
设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为:其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也可以是计算机的输出信号。
具有上述关系的数字滤波器的当前输出与现在的和过去的输入、过去的输出有关。
由这样的差分方程式组成的滤波器称为递归型数字滤波器。
如果将上述差分方程式中bK取0,则可得:说明输出只和现在的输入和过去的输入有关。
十大滤波算法
十大滤波算法滤波算法是信号处理中一种重要的算法,它可以有效地去除信号中的噪声,提高信号的质量。
在现在的技术发展中,滤波算法的应用越来越广泛,它可以用于多媒体信号处理、数据通信、图像处理等领域。
目前,最常用的滤波算法有十种。
首先,最基本的滤波算法就是低通滤波(Low Pass Filter,LPF),它的主要作用是抑制高频信号,使低频信号得以保留。
低通滤波是最常用的滤波算法之一,用于去除信号中的高频噪声。
其次,高通滤波(High Pass Filter,HPF)是低通滤波的反向过程,它的主要作用是抑制低频信号,使高频信号得以保留。
高通滤波也是常用的滤波算法之一,用于去除信号中的低频噪声。
再次,带通滤波(Band Pass Filter,BPF)是低通滤波和高通滤波的结合,它的主要作用是筛选出特定的频率段,使特定频率段的信号得以保留。
带通滤波可以用于信号提取,电路增强或其他应用。
第四,带阻滤波(Band Stop Filter,BSF)是带通滤波的反向过程,它的主要作用是抑制特定的频率段,使特定频率段的信号得以抑制。
它可以用于信号抑制,抑制特定频率段的噪声。
第五,振荡器滤波(Oscillator Filter,OF)是一种由振荡器组成的滤波算法,它的主要作用是产生稳定的低频信号,用于抑制高频噪声。
振荡器滤波器是在电路中比较常用的滤波算法,它用于去除信号中的高频噪声。
第六,改正型滤波(Adaptive Filter,AF)是一种根据输入信号的变化而调整滤波系数的滤波算法,它的主要作用是根据实时输入信号的变化而调整滤波系数,实现鲁棒性滤波。
改正型滤波是一种比较高级的滤波算法,它可以有效地抑制噪声,提高信号的质量。
第七,采样滤波(Sampling Filter,SF)是一种用于数字信号处理的滤波算法,它的主要作用是抑制采样频率之外的频率,使采样频率内的信号得以保留。
采样滤波是在数字信号处理中常用的滤波算法,它可以有效地抑制采样频率外的噪声,提高信号的质量。
数据处理中的几种常用数字滤波算法
加权均值滤波是对采样序列{Ti}\ i = 0—I 中的数 据通过{Ci}\ i = 0—I 序列加权并求和后,再取其平均 值作为结果。如式(5)所示:
I
I
T = 1 / ! Ci·! TiCi
i=0
i=0
5. 众数滤波
(5)
众数是数理统计中常用的一种数据处理办法,
它要求对大量的数据进行处理,以前由于计算机的
1s 的温度数据的时间序列{Ti }I i = 0—n,T0 为第 0s 采集的温度值,Ti 为第 is 采集的温度值。下面介绍 如何应用几种不同滤波算法来计算结果温度 T。
理,去掉原始数据中掺杂的噪声数据,获得最具有代
1. 程序判断滤波
表性的数据集合。
当采样信号由于随机干扰、误检测或变送器不
数据采样是一种通过间接方法取得事物状态的 稳定引起严重失真时,可采用程序判断滤波算法,该
滤波、众数滤波、一阶滞后滤波、移动滤波、复合滤波 等。
在仪表自动化工作中,经常需要对大量的数据
假设我们采用前端仪表采集了一组采样周期为
进行处理,这些数据往往是一个时间序列或空间序 列,这时常会用到数字滤波技术对数据进行预处理。 数字滤波 是 指 利 用 数 学 的 方 法 对 原 始 数 据 进 行 处
的近似值。
T = Tmin +( I - 1)> L +( GI - GI - 1)(/ 2 > GI -
GI - 1 - GI + 1),下限公式
(6)
T = Tmin + I > L -( GI - GI + 1)(/ 2 > GI - GI - 1
- GI + 1),上限公式
数据处理中的几种常用数字滤波算法
数据处理中的几种常用数字滤波算法
在数据处理中,常用的数字滤波算法有以下几种:
1. 移动平均滤波(Moving Average Filter):将一组连续的数据取
平均值作为滤波结果。
该算法简单易实现,可以有效消除噪声,但会引入
一定的延迟。
2. 中值滤波(Median Filter):将一组连续的数据排序,并取中间
值作为滤波结果。
该算法适用于去除周期性干扰或脉冲噪声,但对于快速
变化的信号可能无法有效滤除。
3. 加权移动平均滤波(Weighted Moving Average Filter):给予
不同的数据点不同的权重,并将加权平均值作为滤波结果。
该算法可以根
据需要调整不同数据点的权重,适用于对不同频率成分有不同抑制要求的
情况。
4. 递推平滑滤波(Recursive Smoothing Filter):根据当前输入
数据与上一次滤波结果的关系,通过递推公式计算得到滤波结果。
递推平
滑滤波可以实现实时滤波,但对于快速变化的信号可能会引入较大的误差。
5. 卡尔曼滤波(Kalman Filter):适用于估计具有线性动力学特性
的系统状态,并结合观测值进行滤波。
卡尔曼滤波算法综合考虑了系统模
型和观测模型的不确定性,因此能够提供较好的估计结果。
这些数字滤波算法在实际应用中可以根据需求进行选择和组合,以实
现对信号的有效滤波和噪声抑制。
一阶数字滤波器算法
一阶数字滤波器算法
一阶数字滤波器算法常用的有巴特沃斯滤波器、一阶滑动平均滤波器和一阶指数加权滤波器。
以下是这几种滤波器的算法描述:
1. 巴特沃斯滤波器(Butterworth Filter):
巴特沃斯滤波器是一种常用的无纹波滤波器,其算法如下:
- 设输入信号为x,输出信号为y,滤波器的阶数为n,截止频率为fc。
- 初始化y为0。
- 对于每个输入样本xi,进行以下操作:
- 计算y = (1 / (1 + (xi / fc)^2n)) * (y + xi)。
2. 一阶滑动平均滤波器(First-order Moving Average Filter):
一阶滑动平均滤波器是一种简单的滤波器,其算法如下:
- 设输入信号为x,输出信号为y,滤波器的滑动窗口大小为N。
- 初始化y为0。
- 对于每个输入样本xi,进行以下操作:
- 将xi加入到窗口中,并将最旧的样本移除。
- 计算y = (1 / N) * (y * N - oldest_sample + xi)。
3. 一阶指数加权滤波器(First-order Exponential Weighted Filter):
一阶指数加权滤波器是一种常用的滤波器,其算法如下:
- 设输入信号为x,输出信号为y,滤波器的平滑因子为alpha (范围为0到1)。
- 初始化y为0。
- 对于每个输入样本xi,进行以下操作:
- 计算y = alpha * xi + (1 - alpha) * y。
这些算法适用于数字滤波器的实现,具体使用哪种滤波器,取决于应用的要求和滤波器的特性。
数字信号处理中常见滤波算法详解
数字信号处理中常见滤波算法详解数字信号处理(Digital Signal Processing,DSP)中的滤波算法是处理信号的重要手段之一。
滤波算法可以对信号进行去除噪声、增强信号特征等操作,广泛应用于通信、音频处理、图像处理等领域。
本文将详细介绍数字信号处理中常见的滤波算法,包括FIR滤波器、IIR滤波器、傅里叶变换和小波变换等。
首先,我们来介绍FIR滤波器(Finite Impulse Response Filter)。
FIR滤波器是一种线性相位滤波器,其特点是零相位延迟响应。
FIR滤波器可以通过离散时间域的卷积运算来实现,其滤波系数在有限长时间内保持不变。
常见的FIR滤波器设计方法包括窗函数法、频率采样法等。
其中,窗函数法通过选择适当的窗函数和截断长度来设计滤波器,常见的窗函数有矩形窗、汉宁窗、汉明窗等。
频率采样法则通过在频率域上采样若干离散点并计算出滤波器的频率响应,然后通过反变换得到滤波器的时域响应。
FIR滤波器具有易于实现、稳定性好等优点,在数字信号处理中得到广泛应用。
其次,我们来介绍IIR滤波器(Infinite Impulse Response Filter)。
与FIR滤波器不同,IIR滤波器的系统函数中包含了反馈回路,因此其响应不仅依赖于当前输入样本,还依赖于历史输入样本和输出样本。
IIR滤波器与FIR滤波器相比,具有更高的滤波效率,但也存在着稳定性较差、相位畸变等问题。
常见的IIR滤波器设计方法有脉冲响应不变法、双线性变换法等。
脉冲响应不变法通过将连续时间域的系统函数变换为离散时间域的差分方程来实现,而双线性变换则通过将连续时间域的系统函数变换为离散时间域的差分方程,并在频率响应上进行双线性变换。
IIR滤波器在音频处理、图像增强等领域得到了广泛应用。
傅里叶变换也是数字信号处理中常用的滤波算法。
傅里叶变换将时域信号转换为频域信号,可以实现将信号中的不同频率成分分离出来的目的。
数据滤波算法
数据滤波算法一、引言数据滤波是信号处理中的一个重要步骤,通过滤波算法可以去除信号中的噪声和干扰,使得信号更加清晰、准确。
在工业控制、医学诊断、图像处理等领域都有广泛应用。
本文将介绍常见的数据滤波算法及其原理。
二、低通滤波算法1. 概述低通滤波器是一种能够通过去除高频成分来平滑信号的滤波器。
在信号处理中,低通滤波器被广泛应用于去除噪声和平滑信号。
2. 原理低通滤波器可以看做是一个带通滤波器加上一个带阻滤波器的组合。
它通过截止频率将高频成分去除,使得信号变得平缓。
3. 常见算法(1)移动平均法:将连续n个数据求平均值作为当前数据的值,其中n为窗口大小。
(2)指数平均法:根据当前数据和前一次计算结果进行加权平均计算,权重由α决定。
4. 应用场景低通滤波器适用于需要保留较慢变化的信号,例如温度、压力等传感器信号。
三、高通滤波算法1. 概述高通滤波器是一种能够通过去除低频成分来突出高频成分的滤波器。
在信号处理中,高通滤波器被广泛应用于去除直流分量和平滑信号。
2. 原理高通滤波器可以看做是一个带阻滤波器加上一个带通滤波器的组合。
它通过截止频率将低频成分去除,使得信号变得尖锐。
3. 常见算法(1)一阶差分法:将当前数据与前一次数据进行差分计算。
(2)二阶差分法:将当前数据与前两次数据进行差分计算。
4. 应用场景高通滤波器适用于需要突出较快变化的信号,例如震动、声音等传感器信号。
四、带通/带阻滤波算法1. 概述带通/带阻滤波器是一种能够选择性地通过或者拒绝某些频率范围内的信号的滤波器。
在信号处理中,带通/带阻滤波器被广泛应用于去除特定频率范围内的噪声和干扰。
2. 原理带通/带阻滤波器可以看做是一个低通滤波器和高通滤波器的组合。
它通过选择特定的截止频率来选择性地通过或者拒绝某些频率范围内的信号。
3. 常见算法(1)巴特沃斯滤波法:采用极点归一化方法来设计数字滤波器,可实现带通、带阻、低通、高通等多种滤波器类型。
(2)切比雪夫滤波法:采用等纹图方法来设计数字滤波器,可实现带通、带阻、低通、高通等多种滤波器类型。
数字信号处理中的滤波算法
数字信号处理中的滤波算法在数字信号处理领域中,滤波算法是一种广泛应用的技术,用于处理信号中的噪声、干扰以及其他所需的频率响应调整。
滤波算法通过改变信号的频谱特性,实现信号的增强、去噪和频率分析等功能。
本文将介绍几种常见的数字信号处理中的滤波算法,包括低通滤波、高通滤波、带通滤波和带阻滤波。
一、低通滤波算法低通滤波算法是一种常见的滤波算法,用于去除高频信号成分,保留低频信号。
该算法通过选择适当的截止频率,将高于该频率的信号部分进行衰减。
常见的低通滤波算法有巴特沃斯滤波器、滑动平均滤波器和无限脉冲响应滤波器(IIR)等。
巴特沃斯滤波器是一种常见的无波纹、无相位失真的低通滤波器。
它通过设计适当的传递函数,实现对高频信号的衰减。
巴特沃斯滤波器的特点是具有平滑的频率响应曲线和较好的陡峭度。
滑动平均滤波器是一种简单的低通滤波算法。
它通过取信号一段时间内的平均值,实现对高频成分的平滑处理。
滑动平均滤波器适用于对周期性干扰信号的去噪,以及对信号进行平滑处理的场景。
无限脉冲响应滤波器(IIR)是一种递归滤波器,具有较高的计算效率和频率选择能力。
IIR滤波器通过对输入信号和输出信号进行递推计算,实现对高频信号的衰减和滤除。
然而,在一些特殊应用场景中,IIR滤波器可能会引入稳定性和相位失真等问题。
二、高通滤波算法与低通滤波相反,高通滤波算法用于去除低频信号成分,保留高频信号。
高通滤波算法通常用于信号的边缘检测、图像锐化和音频增强等处理。
常见的高通滤波算法有巴特沃斯滤波器、无限脉冲响应滤波器和基于梯度计算的滤波器等。
巴特沃斯滤波器同样适用于高通滤波。
通过设计适当的传递函数,巴特沃斯滤波器实现对低频信号的衰减,保留高频信号。
巴特沃斯高通滤波器的特点是具有平滑的频率响应曲线和较好的陡峭度。
无限脉冲响应滤波器同样具有高通滤波的功能。
通过对输入信号和输出信号进行递推计算,IIR滤波器实现对低频信号的衰减和滤除。
然而,IIR滤波器在一些特殊应用场景中可能引入稳定性和相位失真等问题。
10种简单的数字滤波算法(C++源程序)
10种简单的数字滤波算法(C++源程序)以下是10种简单的数字滤波算法C++实现示例:1. 均值滤波均值滤波是数字滤波算法的一种常见形式,它可以通过计算一定范围内像素值的平均值来平滑图像。
其C++实现如下:#include <iostream>#include <opencv2/opencv.hpp>using namespace std;using namespace cv;// Function to implement mean filtervoid meanBlur(Mat& img, Mat& result, int k_size){int img_rows = img.rows;int img_cols = img.cols;// Create a same sized blank imageresult.create(img_rows, img_cols, img.type());for(int r=0; r<img_rows; r++){for(int c=0; c<img_cols; c++){// Define the window of radius k_sizeint r_min = max(0, r-k_size/2);int r_max = min(img_rows-1, r+k_size/2);int c_min = max(0, c-k_size/2);int c_max = min(img_cols-1, c+k_size/2);// Calculate the mean valueint sum = 0;int count = 0;for (int i=r_min; i<=r_max; i++){for (int j=c_min; j<=c_max; j++){sum += img.at<uchar>(i,j);count++;}}result.at<uchar>(r,c) = (uchar) (sum/count);}}}int main(int argc, char** argv){// Load the imageMat img = imread("image.jpg", 0);// Check if image is loaded properlyif(!img.data){cout << "Failed to load image" << endl;return -1;}// Define the kernel sizeint k_size = 3;// Apply mean filterMat result;meanBlur(img, result, k_size);// Display the resultnamedWindow("Original Image", WINDOW_NORMAL);namedWindow("Mean Filtered Image", WINDOW_NORMAL);imshow("Original Image", img);imshow("Mean Filtered Image", result);waitKey(0);return 0;}在上述代码中,`meanBlur()` 函数接收一个输入图像`img` 和一个输出图像`result`,以及一个整数参数`k_size`,该参数指定滤波器的大小,即窗口的半径。
10种简单的数字滤波C语言源程序算法
10种简单的数字滤波C语言源程序算法(2009-11-09 10:25:08)假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
matlab11种数字信号滤波去噪算法
matlab11种数字信号滤波去噪算法Matlab是一种强大的数学软件,广泛应用于信号处理领域。
在数字信号处理中,滤波去噪是一个重要的任务,可以提高信号的质量和准确性。
本文将介绍Matlab中的11种数字信号滤波去噪算法。
1. 均值滤波:该算法通过计算信号中一定窗口内的像素平均值来去除噪声。
它适用于高斯噪声和椒盐噪声的去除。
2. 中值滤波:该算法通过计算信号中一定窗口内的像素中值来去除噪声。
它适用于椒盐噪声的去除。
3. 高斯滤波:该算法通过对信号进行高斯模糊来去除噪声。
它适用于高斯噪声的去除。
4. 维纳滤波:该算法通过最小均方误差准则来估计信号的真实值,并去除噪声。
它适用于高斯噪声的去除。
5. 自适应滤波:该算法通过根据信号的局部特性来调整滤波器的参数,从而去除噪声。
它适用于非线性噪声的去除。
6. 小波去噪:该算法通过将信号分解为不同频率的小波系数,并对系数进行阈值处理来去除噪声。
它适用于各种类型的噪声的去除。
7. Kalman滤波:该算法通过对信号进行状态估计和观测更新来去除噪声。
它适用于线性系统的去噪。
8. 粒子滤波:该算法通过使用一组粒子来估计信号的状态,并通过重采样来去除噪声。
它适用于非线性系统的去噪。
9. 线性预测滤波:该算法通过使用线性预测模型来估计信号的未来值,并去除噪声。
它适用于平稳信号的去噪。
10. 自适应线性组合滤波:该算法通过对信号进行线性组合来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
11. 稀疏表示滤波:该算法通过使用稀疏表示模型来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
以上是Matlab中的11种数字信号滤波去噪算法。
每种算法都有其适用的场景和优缺点,根据具体的信号和噪声类型选择合适的算法进行去噪处理。
Matlab提供了丰富的函数和工具箱,可以方便地实现这些算法,并对信号进行滤波去噪。
通过合理选择和组合这些算法,可以有效提高信号的质量和准确性,为后续的信号处理任务提供更好的基础。
十一种通用软件滤波算法
十一种通用软件滤波算法滤波算法是一种常用的信号处理算法,用于去除信号中的噪声、干扰或者其他不需要的成分,以提高信号质量。
通用软件滤波算法主要用于数字信号处理,以下是十一种常见的通用软件滤波算法:1. 均值滤波算法(Mean Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的平均值。
它适用于消除高频噪声。
2. 中值滤波算法(Median Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的中值。
它适用于去除椒盐噪声。
3. 加权平均滤波算法(Weighted Mean Filtering):在均值滤波算法基础上,引入权值对周围样本进行加权平均,以便更好地保留原始信号的特征。
4. 自适应均值滤波算法(Adaptive Mean Filtering):根据信号的每个采样与周围样本的灰度差异,调整均值滤波算法的滤波参数,以提高滤波效果。
5. 高斯滤波算法(Gaussian Filtering):通过计算输入信号的每个采样与其周围邻域内各个样本之间的高斯核函数权重的加权平均来滤波信号。
6. 卡尔曼滤波算法(Kalman Filtering):根据系统状态特性和测量信息,结合时间和测量的线性状态方程,通过最小化预测误差方差来估计和滤波信号。
7. 二阶无限脉冲响应滤波器算法(IIR Filtering):基于差分方程和递归方式运算的滤波算法,具有较好的频率响应,但容易产生数值不稳定和计算复杂度高的问题。
8. 有限脉冲响应滤波器算法(FIR Filtering):基于加权线性组合的方式来滤波信号,具有稳定性好、易于实现的特点。
9. 最小均方滤波算法(Least Mean Square Filtering):通过最小化滤波器的均方误差来更新滤波器权值,以逼近滤波器的最优解。
10. 快速傅里叶变换滤波算法(FFT Filtering):利用快速傅里叶变换将信号从时域转换为频域,并利用频域上的特性进行滤波。
常用滤波算法
常用滤波算法
1 常见的滤波算法
滤波是数字信号处理的一个重要组成部分,它主要被用于降低噪声,消除干扰,增强重要的信号,以及增加信号的分析能力等。
传统
的滤波方法主要有线性滤波法和非线性滤波法,现在主要用线性滤波,线性滤波有内核法和傅立叶变换法。
1.1 内核法
内核法是把信号看作是一个连续函数,利用数学定义的滤波器
(滤波器是一个数学定义的函数)对信号进行滤波处理,典型的滤波
器有高斯滤波和圆形滤波,是最常用的滤波方法。
1.2 傅立叶变换法
傅立叶变换法是把信号看作是一个复数信号,把信号转换到频率域,然后利用低通、带通、高通滤波等进行处理,优点是快速,缺点
是失真较大。
1.3 卷积滤波器
卷积滤波器包括非线性卷积滤波器和线性卷积滤波器,这种方法
直接给定滤波器的权重,然后对信号进行滤波处理,优点是对滤波的
幅度可控,缺点是计算量较大。
1.4 直接归纳滤波
直接归纳滤波法是一种基于模式识别的非线性滤波,用来识别信号中的异常值,例如极端值,然后对信号进行滤波处理,优点是效果好,缺点是容易局部收敛。
1.5 其他滤波方法
除了上述常用的滤波法,还有很多滤波方法,如熵编码滤波、加权组合滤波、逐段滤波、抗苹果滤波等,这些滤波方法都有自己的特点,可以根据实际情况选择合适的滤波方法来进行滤波处理。
结论
以上就是常用的滤波算法,每种滤波算法都有自己的特性和应用场景,需要根据实际情况选择最适合的滤波方法,提高滤波效果。
常用数字滤波算法
已滤波的采样结果: yn 1,yn 2 , yn 1
两次采样值的最大允许误差a.要求准确
估计Vmax和采样周期T。
2.中值滤波法
中值滤波是一种典型的非线性滤波器,它运 算简单,在滤除脉冲噪声的同时可以很好地 保护信号的细节信息。
对某一被测参数连续采样n次(一般n应为奇 数),然后将这些采样值进行排序,选取中 间值为本次采样值。
对温度、液位等缓慢变化的被测参数,采用 中值滤波法一般能收到良好的滤波效果。
设滤波器窗口的宽度为n=2k+1,离散时间信号x (i)的长度为N,(i=1,2,…,N;N>>n),
则当窗口在信号序列上滑动时,一维中值滤波 器的输出:
med[x(i)]=x(k) 表示窗口2k+1内排序的第k
个值,即排序后的中间值。
原始信号
中值滤波后的信号
对不同宽度脉冲滤波效果
3.基于拉依达准则的奇异数据滤波法 (剔除粗大误差)
滑动平均滤波法把N个测量数据看成一 个队列,队列的长度固定为N,每进行 一次新的采样,把测量结果放入队尾, 而去掉原来队首的一个数据,这样在 队列中始终有N个“最新”的数据。
Xn
1 N
N 1
Xni
i0
Xn 为第n次采样经滤波后的输出;
X
n
为未经滤波的第n-i次采样值;
i
N为滑动平均项数。
平滑度高,灵敏度低;但对偶然出现的脉冲 性干扰的抑制作用差。实际应用时,通过观 察不同N值下滑动平均的输出响应来选取N值 以便少占用计算机时间,又能达到最好的滤 波效果。
常用滤波算法的原理及应用
常用滤波算法的原理及应用滤波算法的概述滤波算法是数字信号处理中常用的一种技术,它的主要目的是通过去除或者抑制信号中的噪声,使得信号更加平滑和清晰。
滤波算法可以应用于各个领域,例如音频处理、图像处理、通信系统等。
本文将介绍几种常用的滤波算法的原理及其应用。
1. 均值滤波算法1.1 原理均值滤波算法是一种简单的滤波算法,它的原理是将当前像素点的值替换为周围像素点的平均值。
具体步骤如下: 1. 确定滤波窗口的大小。
2. 将滤波窗口内的所有像素点的值求平均。
3. 用平均值替换当前像素点的值。
1.2 应用均值滤波算法常用于图像处理领域,在图像去噪、平滑处理中表现良好。
同时,均值滤波算法也可以用于数字信号处理领域,去除信号中的噪声,并保持信号的平滑性。
2. 中值滤波算法2.1 原理中值滤波算法是一种非线性滤波算法,它的原理是将当前像素点的值替换为滤波窗口内像素点的中值。
具体步骤如下: 1. 确定滤波窗口的大小。
2. 将滤波窗口内的所有像素点的值排序。
3. 取排序后的中间值作为当前像素点的值。
2.2 应用中值滤波算法适用于去除椒盐噪声或者其他噪声类型的图像处理。
它的优势在于在滤波过程中能够有效地保留图像的边缘和细节信息。
3. 高斯滤波算法3.1 原理高斯滤波算法是一种线性平滑滤波算法,它的原理是通过对滤波窗口内的像素点进行加权平均来获得当前像素点的值。
具体步骤如下: 1. 确定滤波窗口的大小。
2. 计算滤波窗口内每个像素点的权重。
3. 将滤波窗口内的所有像素点的值乘以对应的权重并求和。
4. 用求和值作为当前像素点的值。
3.2 应用高斯滤波算法在图像处理领域中经常用于去噪、平滑处理,特别是对于高斯分布的噪声效果更好。
此外,高斯滤波算法也可以应用于音频处理、通信系统等领域。
4. 快速傅里叶变换滤波算法4.1 原理快速傅里叶变换(FFT)是一种快速计算傅里叶变换的算法,它将时域信号转换为频域信号。
在滤波算法中,FFT可以用于频域滤波,即将信号转换到频域进行滤波处理。
数字信号处理中的滤波算法介绍
数字信号处理中的滤波算法介绍数字信号处理(Digital Signal Processing,简称DSP)是一种重要的信号处理技术,其主要任务是对连续时间的模拟信号进行离散抽样,并通过数字信号处理算法对其进行处理和分析。
而滤波是数字信号处理中最基本、最常用的一种算法。
本文将介绍数字信号处理中常见的滤波算法及其应用。
1. 滤波算法概述滤波算法是指通过改变信号的频率响应来实现信号的处理和改变的一种方法。
滤波算法可以分为两大类:时域滤波和频域滤波。
时域滤波主要通过改变信号的时域分量来实现滤波处理,而频域滤波则是通过改变信号的频域分量来达到滤波的目的。
2. 均值滤波算法均值滤波是一种简单但有效的平滑滤波算法,其主要思想是利用信号邻近点的平均值来代替当前点的值。
均值滤波器的输出是输入信号在滤波器脉冲响应函数下的加权平均值。
均值滤波算法广泛应用于图像处理、声音处理等领域,可以有效地去除信号中的噪声。
3. 中值滤波算法中值滤波是一种非线性滤波算法,其主要思想是用领域内的中值来代替当前点的值。
中值滤波器的输出是采样点样本中排序后的中间值。
中值滤波算法能够有效地去除信号中的椒盐噪声和脉冲噪声,广泛应用于图像处理、语音处理等领域。
4. 低通滤波算法低通滤波是一种常用的频域滤波算法,其主要功能是去除信号中高频成分,使得信号中的低频成分能够得到保留。
低通滤波器的频率响应在某个截止频率之前为1,之后为0。
低通滤波算法广泛应用于语音信号处理、图像处理、音频处理等领域。
5. 高通滤波算法高通滤波是一种常用的频域滤波算法,与低通滤波相反,高通滤波器将信号中的低频成分去除,使得高频成分能够得到保留。
高通滤波器的频率响应在某个截止频率之前为0,之后为1。
高通滤波算法广泛应用于语音信号处理、图像处理等领域。
6. 带通滤波算法带通滤波是一种常用的频域滤波算法,其主要功能是滤除信号中的低频和高频成分,只保留其中一个范围内的频率成分。
带通滤波器的频率响应在某个截止频率范围内为1,之外为0。
10种简单的数字滤波算法(C语言源程序)
10种简单的数字滤波算法(C语言源程序)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差#define A 10char value;char filter(){char new_value;new_value = get_ad();if ( ( new_value - value > A ) || ( value - new_value > A )return value;return new_value;}2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜#define N 11char filter(){char value_buf[N];char count,i,j,temp;for ( count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM#define N 12char filter(){int sum = 0;for ( count=0;count<N;count++){sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=412;温度,N=14B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if ( i == N ) i = 0;for ( count=0;count<N,count++)sum = value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM#define N 12char filter(){char count,i,j;char value_buf[N];int sum=0;for (count=0;count<N;count++) {value_buf[count] = get_ad(); delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ) {temp = value_buf[i];value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++) sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM略参考子程序1、37、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)本次采样值+a上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)value + a new_value;}8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用数字滤波算法第1种方法:限幅滤波法(又称程序判断滤波法)A方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效,如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。
B优点:能有效克服因偶然因素引起的脉冲干扰。
C缺点:无法抑制那种周期性的干扰,平滑度差。
第2种方法:中位值滤波法A方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。
B优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。
C缺点:对流量、速度等快速变化的参数不宜。
第3种方法:算术平均滤波法A方法:连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高。
N值的选取:一般流量,N=12;压力:N=4。
B优点:适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。
C缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM 。
第4种方法:递推平均滤波法(又称滑动平均滤波法)A方法:把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则) 。
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。
B优点:对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统。
C缺点:灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。
第5种方法:中位值平均滤波法(又称防脉冲干扰平均滤波法)A方法:相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。
N值的选取:3~14。
B优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
C缺点:测量速度较慢,和算术平均滤波法一样,比较浪费RAM。
第6种方法:限幅平均滤波法A方法:相当于“限幅滤波法”+“递推平均滤波法”,每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。
B优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
C缺点:比较浪费RAM 。
第7种方法:一阶滞后滤波法A方法:取a=0~1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。
B优点:对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合。
C缺点:相位滞后,灵敏度低,滞后程度取决于a值大小,不能消除滤波频率高于采样频率的1/2的干扰信号。
第8种方法:加权递推平均滤波法A方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权,通常是,越接近现时刻的资料,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。
B优点:适用于有较大纯滞后时间常数的对象和采样周期较短的系统。
C缺点:对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。
第9种方法:消抖滤波法A方法:设置一个滤波计数器,将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零。
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器。
B优点:对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。
C缺点:对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。
第10种方法:限幅消抖滤波法A方法:相当于“限幅滤波法”+“消抖滤波法”,先限幅后消抖。
B优点:继承了“限幅”和“消抖”的优点,改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。
C缺点:对于快速变化的参数不宜。
第11种方法:IIR 数字滤波器A方法:确定信号带宽,滤之。
Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k)。
B优点:高通,低通,带通,带阻任意。
设计简单(用matlab)。
C缺点:运算量大。
部分程序:1、限副滤波/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值*/#define A 10char value;char filter(){char new_value;new_value = get_ad();if ( ( new_value - value > A ) || ( value - new_value > A )return value;return new_value;}2、中位值滤波法/* N值可根据实际情况调整排序采用冒泡法*/#define N 11char filter(){char value_buf[N];char count,i,j,temp;for ( count=0;count<N;count++) {value_buf[count] = get_ad(); delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf>value_buf[i+1] ) {temp = value_buf;value_buf = value_buf[i+1];value_buf[i+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/**/#define N 12char filter(){int sum = 0;for ( count=0;count<N;count++)sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)/**/#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if ( i == N ) i = 0;for ( count=0;count<N,count++)sum = value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)/**/#define N 12char filter(){char count,i,j;char value_buf[N];int sum=0;for (count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++)for (i=0;i<N-j;i++){if ( value_buf>value_buf[i+1] ){temp = value_buf;value_buf = value_buf[i+1];value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++)sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法/**/略参考子程序1、37、一阶滞后滤波法/* 为加快程序处理速度假定基数为100,a=0~100 */#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)*value + a*new_value;}8、加权递推平均滤波法/* coe数组为加权系数表,存在程序存储区。
*/#define N 12char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12; char filter(){char count;char value_buf[N];int sum=0;for (count=0,count<N;count++){value_buf[count] = get_ad();delay();}for (count=0,count<N;count++)sum += value_buf[count]*coe[count];return (char)(sum/sum_coe);}9、消抖滤波法#define N 12char filter(){char count=0;char new_value;new_value = get_ad();while (value !=new_value);{count++;if (count>=N) return new_value;delay();new_value = get_ad();}return value;}10、限幅消抖滤波法/*。