常用的8种数字滤波算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用的8种数字滤波算法
摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。
关键词:数字滤波;控制系统;随机干扰;数字滤波算法
1引言
在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。
数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点:
(1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。
(2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。
(3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。
(4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。
2 常用数字滤波算法
数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为:
其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也可以是计算机的输出信号。具有上述关系的数字滤波器的当前输出与现在的和过去的输入、过去的输出有关。由这样的差分方程式组成的滤波器称为递归型数字滤波器。如果将上述差分方程式中bK取0,则可得:
说明输出只和现在的输入和过去的输入有关。这种类型的滤波器称为非递归型数字滤波器。
参数aK、bK的选择不同,可以实现低通、高通、带通、带阻等不同的数字滤波器。
2.1算术平均值滤波
算术平均值滤波是要寻找一个Y,使该值与各采样值X(K)(K=1~N)之间误差的平方和为最小,即:
这时,可满足式(3)。式(4)便是算术平均值滤波的算法。
设第二次测量的测量值包含信号成分Si和噪声成分Ci,则进行N次测量的信号成分之和为:
噪声的强度是用均方根来衡量的,当噪声为随机信号时,进行N次测量的噪声强度之和为:
式(5)和式(6)中,S、C分别表示进行N次测量后信号和噪声的平均幅度。
这样对N次测量进行算术平均后的信噪比为:
其中,S/C是求算术平均值前的信噪比。因此采用算术平均值后,使信噪比提
高了倍。
算术平均值法适用于对一般具有随机干扰的信号进行滤波,这种信号的特点是有一个平均值,信号在某一数值范围附近作上下波动,此时仅取一个采样值作依据显然是不准确的,如压力、流量、液平面等信号的测量。但对脉冲性干扰的平滑作用尚不理想,因此他不适用于脉冲性干扰比较严重的场合。由式(7)可知,算术平均值法对信号的平滑滤波程度完全取决于N。当N较大时,平滑度高,但灵敏度低,即外界信号的变化对测量计算结果Y的影响小;当N较小时,平滑度低,但灵敏度高。应视具体情况选取N,以便既少占用计算时间,又达到最好的效果,如对一般流量测量,可取N=8~16,对压力等测量,可取N=4。
2.2 加权平均值滤波
算术平均值法对每次采样值给出相同的加权系数,即1/N。但有些场合为了改进滤波效果,提高系统对当前所受干扰的灵敏度,需要增加新采样值在平均值中的比重,即将各采样值取不同的比例,然后再相加,此方法称为加权平均值法。一个N项加权平均式为:
常数C1,C2,…,CN的选取是多种多样的,其中常用的是加权系数法,即:
加权平均值法适用于系统纯滞后时间常数τ较大、采样周期较短的过程,他给不同的相对采样时间得到的采样值以不同的权系数,以便能迅速反应系统当前所受干扰的严重程度。但采用加权平均值法需要测试不同过程的纯滞后时间τ,同时要不断计算各权系数,增加了计算量,降低了控制速度,因而他的实际应用不如算术平均值法广泛。
2.3滑动平均值滤波
以上平均滤波算法有一个共同点,即每计算1次有效采样值必须连续采样N次。对于采样速度较慢或要求数据计算速率较高的实时系统,这些方法是无法使用的。例如A/D数据,数据采样速率为每秒10次,而要求每秒输入4次数据时,则N不能大于2。滑动平均值法只采样1次,将本次采样值和以前的N -1次采样值一起求平均,得到当前的有效采样值。
滑动平均值法把N个采样数据看成一个队列,对列的长度固定为N,每进行一次新的采样,把采样结果放入队尾,而扔掉原来队首的一个数据,这样在队列中始终有N个“最新”的数据。计算滤波值时,只要把队列中的N个数据进行平均,就可得到新的滤波值。
滑动平均值法对周期性干扰有良好的抑制作用,平滑度高,灵敏度低;但对偶然出现的脉冲性干扰的抑制作用差,不易消除由于脉冲干扰引起的采样值的偏差。因此他不适用于脉冲干扰比较严重的场合,而适用于高频振荡系统。通过观察不同N值下滑动平均的输出响应来选取N值,以便既少占用时间,又能达到最好的滤波效果。其工程经验值为:流量N取12,压力N取4,液面N取4~12,温度N取1~4。
2.4中值滤波
中值滤波是对某一被测参数连续采样N次(一般N取奇数),然后把N次采样值从小到大,或从大到小排队,再取其中间值作为本次采样值。
中值滤波对于去掉偶然因素引起的波动或采样器不稳定而造成的误差所引起的脉冲干扰比较有效,对温度、液位等变化缓慢的被测参数采用此法能收到良好的滤波效果,但对流量、速度等快速变化的参数一般不易采用。