镍氢电池知识解析答疑

合集下载

镍氢电池为什么耐过充和耐过放电

镍氢电池为什么耐过充和耐过放电

镍氢电池为什么耐过充和耐过放电NiMH(NiCd)是由镍镉电池(NiCd)改进而成。

其电容比镍镉电池更大,记忆效果不明显,而且成本也不高(不含镉Cd),而且还能降低环境污染。

人们称之为最环保的电池。

但与锂离子电池相比,记忆效应更强,自放电反应也更强。

镍氢化物电池适用于高能耗产品,如数码相机,而镍镉电池则适用于需要高放电率的设备。

镍氢充电电池耐过充在快速充电时,可透过充电器内部的微电脑来避免电池过充。

现在的镍氢电池包含一个催化剂,它可以及时解除由于过充而产生的危险。

刚买回来的或者是没用过很久的镍氢电池,需要一个“激活”的时间才能恢复电量。

所以,有些新的镍氢电池需要经过几个充放电循环,才能达到其规定的电量。

在过充和过放电过程中,由于储氢合金粉的催化作用,可以消耗正极产生的氧气和氢气,从而使镍氢电池具有耐过充过放电的能力。

在充电末期和过充电时,正极上析出的O2可以通过隔膜扩散到负极表面与氢复合,还原为H2O和OH-进入电解液,从而避免或减轻了电池内部压力积累升高的现象。

否则,在电池过充时,MH电极又会产生大量氢气,造成电池内压上升;而在过放电时,正极上析出的H2通过隔膜扩散到负极表面可以被MH迅速吸收,否则,在电池过放电时,MH电极上会析出O2,从而使MH合金被氧化。

镍氢电池耐放电;此外,在使用电池时也必须小心。

对几个电池串联在一起(例如数码相机中的4个AA电池通常是这样安排的),要避免电池完全耗尽电力,然后进行“反向充电”(Reversechar ging)。

这样将对电池造成无法弥补的损失。

但是,通常这些设备(如前面提到的数码相机)能够检测出串联电池的放电电压,当电压下降到一定程度时,就会自动关机保护电池。

单个电池没有上述危险,只是在电压0之前持续放电,以避免上述情况发生。

这种方式并没有损坏电池,事实上,定期充电之后,定期充电有利于保持电池的容量和质量。

镍氢化物电池的自放电反应很大,每月约有30%以上。

《镍氢电池知识》课件

《镍氢电池知识》课件

镍氢电池的应用领域
镍氢电池广泛应用于无线通信、电动车辆、太阳能储能和便携式电子设备等领域。 其高能量密度和长寿命使其成为许多应用场景的理想选择。
镍氢电池的优势和劣势
1 优势
1. 高能量密度 2. 长寿命 3. 环保
2 劣势
1. 较高的成本 2. 相对较大的体积和重量 3. 充电时间较长
镍氢电池的发展历程
Hale Waihona Puke 11980年代镍氢电池应用于无线通信设备
2
1990年代
广泛应用于便携式电子设备和小型电动车辆
3
2000年代
逐渐应用于电动汽车和储能系统
镍氢电池的未来前景
随着可再生能源和电动交通的发展,镍氢电池有望在储能和交通领域发挥更 重要的作用。 持续的研发和创新将进一步提高镍氢电池的性能和可靠性。
总结及问题解答
《镍氢电池知识》PPT课件
本课件将介绍镍氢电池的概述、工作原理、应用领域、优势和劣势、发展历 程、未来前景,以及总结和问题解答。
镍氢电池概述
镍氢电池是一种流行的次级电池,采用氢化镍和氧化镍作为电极材料,并具 有高能量密度和长寿命的特点。
镍氢电池的工作原理
镍氢电池通过电化学反应将氢和氧化镍之间的氢化物转化为水,并将周围环境中的氢气与氧化镍之间的氧化物 还原为水。 这个过程实现了能量的转化,产生了电流和电压。
通过本课件的学习,我们了解了镍氢电池的概述、工作原理、应用领域、优 势和劣势、发展历程以及未来前景。 现在,我将回答您可能有的任何问题。

镍氢电池的优势与劣势动力电池产品分析

镍氢电池的优势与劣势动力电池产品分析

镍氢电池的优势与劣势动力电池产品分析动力电池是指用于储存并释放电能以为电动机提供动力的电池。

镍氢电池作为一种常见的动力电池,具有其独特的优势和劣势。

本文将对镍氢电池的优势和劣势进行分析,并与其他类型的动力电池进行比较。

一、镍氢电池的优势1. 高能量密度:相比于铅酸电池和镍镉电池,镍氢电池具有较高的能量密度。

这意味着在相同体积或重量下,镍氢电池可以存储更多的电能,从而提供更长的续航里程。

2. 长寿命:镍氢电池具有较长的寿命,并且能够进行更多的充放电循环。

相比之下,镍镉电池的寿命更短,并且铅酸电池需要更频繁的维护和更换。

3. 环保友好:镍氢电池不含有对环境有害的重金属,如镉和铅。

相比之下,镍镉电池中的镉是一种有毒金属,对环境和人体健康构成潜在威胁。

4. 快速充电:镍氢电池具有快速充电的能力。

相比于其他类型的动力电池,镍氢电池可以在较短的时间内完成充电过程,提供便捷的使用体验。

5. 安全性高:镍氢电池相对较安全,不会像锂电池那样容易引发火灾或爆炸。

这使得镍氢电池在很多关键领域,如航空航天领域,得到广泛应用。

二、镍氢电池的劣势1. 重量较大:镍氢电池相对较重,这对于一些需要追求轻量化设计的应用来说,可能会带来一定的不便。

2. 低电压平台:镍氢电池的电压平台较低,这对于某些高电压需求的电子设备可能不适用。

3. 存储容量衰减:随着使用时间的增加,镍氢电池的存储容量会逐渐下降。

这意味着一段时间后,电池需要更频繁地充电,以维持其正常使用。

4. 价格较高:相比于铅酸电池,镍氢电池的价格较高。

这增加了产品成本,并可能限制其在大规模应用中的普及程度。

三、镍氢电池与其他动力电池的比较分析与铅酸电池相比,镍氢电池具有更高的能量密度、更长的寿命和更好的环保性能。

然而,铅酸电池的成本较低,并且在一些传统的动力电池应用中仍然具有一定的竞争力。

与镍镉电池相比,镍氢电池具有更好的环保性能和更长的寿命。

镍镉电池虽然具有较高的能量密度,但铁镍电池在环保性能上更具优势,逐渐减少了镍镉电池在市场上的份额。

第四讲镍氢二次电池材料分解

第四讲镍氢二次电池材料分解

产品特性
• • • • • 广泛性:适用于任何地方、任何装置 长寿电池:循环使用1000周期以上 即用性:本身带电几乎等于干电池 可长期保存:理想的“待机王” 卓越性能:5倍于普通干电池
2.3 Ni/MH电池的应用
笔记本电脑与镍氢电池
混合动力车与镍氢电池
混合动力车与镍氢电池
三、镍氢电池的结构与原理
2019/2/19
39
四、镍氢电池结构材料
民用的镍氢电池属于低压镍-氢电池,以Ni(OH)2 作为正极,以贮氢合金作为负极,氢氧化钾碱性水溶 液为电解液。 正极材料:氢氧化镍; 负极材料: 贮氢合金; 电解质:主要采用氢氧化钾。 其它材料:还有一些相关高分子材料,比如电池隔膜 材料、密封材料、粘结剂等,这些材料的优劣对电池 的自放电、充放电循环性能和使用寿命、电池的稳定 性等也起着至关重要的作用。
二、 镍氢(Ni/MH)电池
2.1、常用镍氢电池的种类
镍氢扣式充电电池系列
镍氢方形电池可充电电池系列
20
常 用 小 型 镍 氢 电 池
2019/2/19
13
镍氢可充电池组系列
镍氢9V可充电池系列
动力型镍氢电池(组)
2019/2/19 14
2.2 Ni/MH电池的概况 镍氢电池是由贮氢合金负极,镍正 极,氢氧化钾电解液以及隔板等组成 的可充电电池,它与镍镉电池的本质 区别只是在于负极材料的不同。这种 电池的电压和镍镉电池完全相同,为 1.2伏,因此它可以直接用在使用镍 镉电池的器件上。镍氢电池的设想在 七十年代开始有人提及,大量的研究 集中在八十年代,工业化生产从九十 年代初期开始。
二次电池简介
一次电池或原电池:电池能放电,当电池电力用尽时无 法再充电的电池。 市场卖的碱性电池,锰锌电池,水银电池,都是一 次性电池。一次电池又称原电池,只能用来放电且在放 电后,不能用一般的充电方法获得复原的电池,它只能 将化学能一次性地转化为电能,不能将电能还原回化学 能。

镍氢电池是否安全可靠?

镍氢电池是否安全可靠?

镍氢电池是否安全可靠?一、镍氢电池的基本原理及特点镍氢电池是一种以镍、氢为电极材料的二次电池。

其工作原理是在充放电过程中,镍氢电池通过化学反应将氢气储存在负极材料中,从而实现能量的储存与释放。

相比其他电池,镍氢电池具有以下特点:1. 高能量密度:镍氢电池的能量密度相对较高,可以存储更多的能量,使得电池的使用时间更长。

2. 长循环寿命:镍氢电池的循环寿命通常可以达到数千次,可以更加经久耐用,减少更换电池的频率。

3. 环保无污染:镍氢电池作为一种绿色能源,不含有重金属等有害物质,对环境友好,并且可以通过回收再利用,减少资源的浪费。

二、镍氢电池的安全性问题1. 过充与过放问题:由于充电过程中电池会产生氢气,过充或过放会加速氢气的产生和释放,可能引发火灾或爆炸的风险。

因此,镍氢电池需要配备过充保护电路,以确保在充电过程中能够及时停止充电,避免电池过热。

2. 温度过高问题:过高的温度会对电池产生负面影响,可能引发电池损坏甚至着火的风险。

因此,镍氢电池通常需要在使用和储存过程中避免过高的温度。

3. 外界物理损伤和短路问题:镍氢电池外壳较薄,如果受到外力撞击或短路等异常情况,可能会导致电池破裂或内部短路,进而引发火灾或爆炸等安全威胁。

三、如何安全使用镍氢电池1. 购买正规品牌电池:选择正规品牌的镍氢电池,并在可信赖的商家购买。

正规品牌通常会具备更完善的安全措施和质量保证。

2. 避免过度充放电:在充放电过程中,合理控制电池的充放电电流和充放电时间,避免过度充放电引发安全风险。

3. 避免高温环境:在储存和使用镍氢电池时,尽量避免将电池暴露在高温环境中,避免过热引发问题。

4. 注意外界物理损伤:使用镍氢电池时,应该谨慎对待电池,避免受到外界物理损伤,避免电池破裂或内部短路。

5. 注意电池寿命和更换周期:及时更换老化的电池,避免因电池老化引发的安全问题。

结语:总的来说,镍氢电池作为一种高性能的电池,其安全性和可靠性是可以得到保证的。

镍氢电池安全使用要求标准

镍氢电池安全使用要求标准

镍氢电池安全使用要求标准一、镍氢电池基础知识普及1.1 啥是镍氢电池啊?镍氢电池啊,就是一种能反复充电放电的电池,里面装有金属镍和金属氢化物。

它跟咱们平时用的干电池不一样,干电池用完就得扔,而镍氢电池用完还能充电再用,环保又省钱。

1.2 镍氢电池的好处镍氢电池的好处可不少呢。

它容量大,能用挺长时间;重量轻,带着方便;还没有记忆效应,就是说,不管电池剩下多少电,充满就行,不用担心充不满影响以后使用。

而且啊,它还挺安全的,不像有些电池那么容易爆炸啥的。

二、镍氢电池的安全使用要求2.1 正确的充电方式给镍氢电池充电,得用专门的充电器,不能用那些乱七八糟的充电线或者充电宝啥的。

充电的时候,得看好电池和充电器的匹配度,别充错了。

还有啊,得按照说明书上的指示来,别充太久也别充太短,不然对电池不好。

2.2 使用环境要注意镍氢电池怕高温也怕低温,所以你得找个合适的地方放它。

别把它放在太阳底下晒,也别放在暖气旁边烤,更别放在冰箱里冻。

还有啊,别让电池受潮,也别让它受到挤压啥的,不然电池容易坏。

2.3 存放方法要得当如果你长时间不用镍氢电池,得把它充到一半的电再存放。

别让它完全没电或者满电放着,这样电池容易坏。

还有啊,存放的时候,得找个干燥通风的地方,别让它受潮或者受热啥的。

三、镍氢电池的安全使用实例3.1 我家的镍氢电池我家就有好几个镍氢电池,平时用来给手电筒、遥控器啥的供电。

每次用完,我都会把它们拿出来充电,充好了再放回去。

我还特意买了个专门放电池的盒子,把电池分类放好,这样就不会搞混了。

3.2 邻居的教训有一次,我邻居家的孩子不小心把镍氢电池放进了水里,结果电池就坏了。

他还用不合格的充电器给电池充电,结果把充电器也给烧坏了。

这事儿给了我们一个教训,就是得好好对待镍氢电池,按照要求来使用它。

四、总结你看啊,镍氢电池虽然好用,但是也得咱们好好对待它。

得按照说明书上的要求来充电、使用和存放,这样才能保证它的安全性和使用寿命。

镍氢电池的电池充放电过程中是否会产生氧气和氢气?

镍氢电池的电池充放电过程中是否会产生氧气和氢气?

镍氢电池的电池充放电过程中是否会产生氧气和氢气?众所周知,镍氢电池是一种常用的可充电电池。

在使用过程中,人们常常对电池充放电过程中是否会产生氧气和氢气这个问题感到困惑。

下面,我们将解开这个谜团,并对镍氢电池的电池充放电过程进行科普。

一、充电过程中氧气和氢气的生成情况充电是指将已经耗尽电量的镍氢电池通过外部电源进行补充电量的过程。

在充电过程中,镍氢电池发生了一系列的化学反应。

首先,正极的氢氧化镍和负极的氢氧化钴和氧化镉在电解质的存在下分解成离子。

而当电流通过电解液时,氢离子和氧离子在正负极之间进行迁移,负极上的氢离子变为氢气,而正极上的氧离子变为氧气。

因此,在充电过程中,镍氢电池会产生氢气和氧气。

二、放电过程中氧气和氢气的生成情况放电是指镍氢电池的负极和正极之间自发地进行化学反应,释放储存的电能的过程。

在放电过程中,反应的产物是氢氧化镍、氢氧化钴和氧化镉,而不产生氧气和氢气。

这是因为在放电反应中,氧气和氢气有较高的氧化还原电位,不能被直接还原或氧化。

因此,在镍氢电池的放电过程中,不会产生氧气和氢气。

三、有关氧气和氢气的安全问题尽管在充电过程中会产生氧气和氢气,但是一般情况下,这些气体并不会造成安全隐患。

因为镍氢电池通常会采取设计措施,使产生的气体能够安全地释放。

同时,镍氢电池的外壳也具有一定的密封性,可以有效防止气体泄漏。

此外,合理使用和充电镍氢电池,能够避免过度充放电引发的安全隐患。

综上所述,镍氢电池的电池充放电过程中会产生氧气和氢气。

充电过程中,电解液中的氢离子和氧离子在正负极之间进行迁移,并在正负极上释放成氢气和氧气。

而在放电过程中,反应产物不会产生氧气和氢气。

然而,尽管会有气体产生,但合理使用和充放电均不会造成安全隐患。

因此,我们可以放心使用镍氢电池,享受其带来的便利和高效能量储存。

镍氢充电电池的相关知识

镍氢充电电池的相关知识

镍氢充电电池的相关知识⒈镍氢充电电池的记忆效应:镍氢充电电池和其他电池一样都有记忆效应,但是要远小于其他电池。

所以没有必要每次充电都进行放电操作(因为操作不当会损害电池),只需三个月一次完全充放电以缓解记忆效应。

⒉镍氢充电电池的自放电率:镍氢电池的自放电率为最大,而锂电池与其他两类电池相比放电率极低。

⒊镍氢充电电池的充电方式:镍氢电池和锂电池都不能耐过充电。

因此,镍氢电池以定电流充电的PICK CUT控制方式在充电电压达到最高时,停止继续充电为最好的充电方式。

而锂电池则使用定电流、定电压方式充电最好,若以镍镉电池的充电器-DV控制方式进行充电的话对镍氢电池和锂电池会造成使用寿命的影响。

⒋镍氢充电电池容量不是越高越好:不同型号的电池,容量越高,使用的时间越长。

抛开体积和重量的因素,当然容量越高越好。

但是同样的电池型号,标称容量也相同,实际测的初始容量不同,实际情况可能是容量高的是因为电极材料中多了增加初始容量的东西,而减少了电极稳定用的东西,其结果就是循环使用几十次以后,容量高的电池迅速容量衰竭,而容量低的电池却依然坚挺.提高容量的代价就是牺牲循环寿命。

5、镍氢充电电池充电方法:科学的充电方法可以延长镍氢电池的使用寿命。

①一般情况下,新的镍氢电池只有很少的电量,首次使用前后要先进行充电然后再使用。

但如果电池使用时间短,电量很足,推荐先使用再充电。

新的镍氢电池一般要经过3-4次的充电和使用,性能才能发挥到最佳状态。

②镍氢充电电池的记忆效应虽然小,最好还是每次使用完再充电,并且是一次性充满,不要充一会用一会然后再充。

③充电的时候,要注意充电器周围的散热。

不用的时候要保持电池清洁,尤其是两端的触点,必要时使用柔软的干布轻擦。

长时间不用的话,要把电池从电池仓中取出,置于干燥的环境中。

④镍氢充电电池在存放几个月后,会进入一种“休眠”状态,电池寿命大大降低。

如果镍氢充电电池已经放置了很长时间,应先用慢充进行充电为宜。

镍氢充电知识点总结

镍氢充电知识点总结

镍氢充电知识点总结一、镍氢电池的基本原理镍氢电池是一种环保的可充电电池,它采用了镍氢化物和氢氧化镍作为正负极材料,使用了一种碱性电解液。

镍氢电池的工作原理是在充放电过程中,正极的氢氧化镍和负极的镍氢化合物之间进行氧化还原反应,通过电化学反应来储存和释放电能。

二、镍氢电池的特点1. 高能量密度:镍氢电池的能量密度比铅酸电池和镍镉电池高,能够提供更长的续航里程。

2. 长寿命:镍氢电池具有长寿命,能够充放电数千次。

3. 环保:镍氢电池不含有铅和镉等有毒元素,对环境友好。

4. 安全性好:镍氢电池不会发生“记忆效应”,也不会因深度放电而损坏。

三、镍氢电池的充电特点1. 充电电压范围:镍氢电池的标称工作电压为1.2V,充电电压范围为1.41V~1.56V。

2. 充电过程:在正常充电过程中,电流逐渐减小,直至充电完全停止。

3. 充电时间:镍氢电池的充电时间根据电流的大小不同,充电时间也不同。

四、镍氢电池的充电方法1. 恒定电压充电:恒定电压充电是一种常用的充电方法,适用于镍氢电池的大容量充电时。

2. 恒流充电:在恒流充电过程中,电压逐渐增加,直至镍氢电池充满。

五、镍氢电池的充电注意事项1. 使用合适的充电器:应使用专门设计的镍氢电池充电器,以避免过充或过放。

2. 适当的充电模式:根据电池的实际情况,选择合适的充电模式。

3. 避免过充:充电时应注意控制电压和电流,避免过充,以免发生安全事故。

4. 避免过放:充电过程中应及时停止充电,避免过放,以免影响电池的使用寿命。

六、镍氢电池的充电管理系统镍氢电池的充电管理系统主要包括充电控制器、电池管理模块、充电接口等部件。

充电管理系统能够实现对电池的全面监控和管理,保证电池的安全充电和使用。

七、镍氢电池的充电技术发展趋势1. 高速充电技术:随着科技的不断发展,镍氢电池的充电速度也在不断提高,未来将会出现更高速的充电技术。

2. 高能量密度技术:目前,科研人员正在致力于提高镍氢电池的能量密度,以满足电动汽车等高功率需求。

镍氢动力电池基础知识讲座资料

镍氢动力电池基础知识讲座资料

Power density:功率密度; In Volumetric,体积功率密度 In Gravimetric,重量功率密度 C-rate:倍率充放电; HT/LT-charge/discharge performance: 高低温充电/放电能力; Cycling:循环; Self-discharge:自放电; Over-charge:过充电; Short Circuit:短路。 Pulse-charge/discharge:脉冲充电/放电
3.2,镍氢电池构成及特点: 3.2.1, 镍氢电池主要由五部分构成: (1),氢氧化镍以及辅助材料构成正极; (2),储氢合金以及辅助材料构成负极; (3),电池隔膜;(4),电解液;(5),电池外壳。
电池太极示意图
3.2.2,电池基本组成部分及作用: 正极片构成:活性材料为氢氧化镍,导电添加剂为Co类 材料,粘接剂,泡沫镍等; 负极片构成:AB5型储氢合金为活性材料,导电添加剂为 Ni类材料,粘接剂,泡沫镍或镀镍钢带等; 电池隔膜:阻止正负极之间直接电子导电,吸收电解液使 得正负极之间形成离子导电通道; 电解液:主要是强碱性水溶液,腐蚀性强,在正负极之间 提供荷电粒子,在电极表面荷电粒子得失电子而 发生电化学反应,产生电流。 电池外壳:常用金属壳和塑料壳两种。需要耐碱腐蚀,易 于加工等
自放电:镍氢电池具有比铅酸、锂离子电池更大的自 放电。
4.1,镍氢电池充放电原理
Discharge process: 正极:NiOOH + H2O+e Ni(OH)2 + OH负极:MH + OH--e M + H2O 电池反应:MH + NiOOH M+Ni(OH)2
Charge process: 正极:Ni(OH)2 + OH--e NiOOH + H2O 负极:M + H2O+e MH + OH电池反应:M + Ni(OH)2 MH + NiOOH

镍氢电池知识

镍氢电池知识

镍氢电池基本知识及特点简介一:镍氢电池的特点和二次电池的简介镍氢电池是以镍氧化物作为正极,储氢金属作为负极,碱液主要为氢氧化钾作为电解液制成的电池;这种电池是早期镍镉电池的替代产品,相对于镍镉电池来说,镍氢电池具有更加引人注目的优势;它大大减少了镍镉电池中存在的“记忆效应”,这使镍氢电池的使用更加方便,循环使用寿命更加长久;此外,镍氢电池还具有电容量高、放电深度大、耐过充和过度放电、充电时间短等明显的优点;下面列出目前使用的四种可充电池化学反应式;电池标称电压:电池标称电压:电池标称电压:电池标称电压:上述电池中,铅酸电池的电解液为硫酸H2SO4,镍镉与镍氢电池的电解液均为氢氧化钾KOH,锂离子电池的电解液则为含有锂盐的有机液体或固态高分子电解质;镍镉与镍氢电池使用相同的正电极,即氧化镍的氢氧化物NiOOH;镍氢电池的负极为镧系元素A与镍B形成的储氢材料,有AB5和AB2两种化学物;镍氢电池的充放电反应可视为氢离子H+在正、负电极间的来回运动;锂离子电池的正电极材料在上面反应式中以锂钴氧化物LixCoO2为例的,事实上,这类材料的发展方兴未艾,包括锂锰、锂镍、锂锡及锂钒等氧化物,而锂离子电池的充放电反应则是锂离子Li+在正、负电极间的来回运动;总言之,二次电池均靠氧化还原反应来实现,在充电时将电能储存为化学能,然后在放电时将化学能转换为电能;二、影响镍氢电池性能的几个因素影响镍氢电池性能的因素有很多,包括正/负极板的基材,贮氢合金的种类,活性物质的颗粒度,添加剂的类别和数量,以及制作工艺、电解液、隔膜、化成工艺等许多方面;下面就添加剂Co、电解液、隔膜以及化成工艺等对电池性能的影响这几方面进行一下简要的探讨;1、正极添加CoO对电极性能的影响将钴添加到NiOH2电极中,主要是以形成高导电性之CoOOH,在活化阶段充电过程中,被氧化成CoOOH,从而提高极片的导电性,由于此反应不可逆,因此添加Co对电极的容量并无贡献;在NiOH2电极中添加钴能增加其质子导电性和电子导电性,从而提高正极活性物质的利用率,改善充放电性能和增大析氧过电位,从而降低充电电压提高充电效率;但是过量的钴添加不但导致电池成本增加,还将降低放电电位;添加量对正极利用率的影响:添加极少量的2Wt%表面未经预氧化的CoO 即可获得较高的正极活性物质利用率,在5Wt%-10Wt%范围内可获得最佳的效果;在加入量高于10Wt%后,电池容量反而有所下降,这是由于添加量太高,减少了活性物质的填充量,则电池容量不可能提高,而且亦加大正极制作成本;钴加入量对电池大电流放电性能的影响:钴的加入对改善电池大电流放电性能具有很好的效果,加入量越多,大电流放电性能越好,但加入量过多,成本亦升高越多,且电池容量下降,合适的比例为5Wt%-10Wt%;钴在电活化期间第一次充电,由于CoOH2的氧化电位比NiOH2的氧化电位低,这导致在Ni OH2转化为NiOOH之前便形成稳定的CoOOH,既大大降低了颗粒之间的接触电阻,也大大提高了颗粒与基体的导电性;如果放电结束后电压不明显低于,则CoOOH不再参与电池后续反应,这样负极就获得了对应于提供的这一总电荷的预先充电;如果随后放电使正极的可用容量已耗尽,但由于预先充电的缘故,负极仍然有放电储备,它在一定程度上可以避免电池充电末期负极大量析氢,并保证氢气复合效率;电解液对电池性能的影响电解液作为电池的重要组成部分,它的组成、浓度、数量的多少以及杂质的种类和数量都将对电池的性能产生至关重要的影响;它直接影响电池的容电量、内阻、循环寿命、内压等性能;通过对比发现,电解液一般采用大约7mol/l的KOH溶液也有以一定NaOH 代替KOH的,当然电解液中也有加入少量其他成分如LiOH等的,但对一些杂质诸如碳酸盐、氯化物、硫化物等均要求较高;电池的正、负极片只有在电解液中才能发生电化学反应;对于一颗封口的成品电池来说,其中的空间是一定的;若电解液太多,会造成封口气室空间变小而使电池在充放电过程中的内压上升;另一方面,电解液太多造成堵塞隔膜孔,阻止了氧气的传导,不利氢气迅速复合,也会使电池的内压上升并可能氧化极片致使极片钝化容量下降,内压的上升可能造成电池漏液、爬碱、使得电池失效;但若电解液太少,会使得极片不能完全浸渍到电解液,从而电化学反应不完全或者说极片的某些部分不能发生电化学反应,使得电池容量达不到设计要求,内阻变大,循环寿命变短;应该注意电解液的浓度,以减少浓差电阻;为何电池在贮存和使用过程中循环会出现内阻升高和放电容量降低以及充电效率降低呢原因是多方面的:首先,添加剂Co在贮存和使用过程中会往极片的深层扩散或者说迁移,从而导致极片表面的Co含量降低,从而使得极片表面的接触电阻增大表现为内阻上升,从而降低充电效率和析氧过电位,最终导致放电容量下降;其次,在循环过程中,极片被电解液腐蚀,导致极片粉末松散、脱落或者说接触不好粒子与粒子、粒子与基材之间导致内阻升高,以及过度充/放电致使极片受到损伤;其三,可能是由于极片膨胀,把隔膜中的电解液挤干和吸出,由于电化学反应总是从表面开始进行而后再向深层发展,因此导致电化学反应不完全,导致放电容量下降;并由于电解液的匮乏,致使内阻升高浓差电阻和离子传导电阻/迁移电阻升高,充电电位升高,放电电位下降;其四,可能是由于电解液中的水份在循环或储存一段时间之后,以某种目前尚不清楚的形式存在,如结晶水、被范德华力束缚、被氢键等力所束缚,而不能参与电化学反应即升高了电解液的浓度,致使电化学过程中离子传导困难,内阻升高,充电电位升高,放电电位下降,最终导致放电容量下降;最后,也可能是由于电池在循环或储存过程中,电解液被重新分配、扩散和渗透到极片的深层中去,致使电极表面的电解液量下降,而电化学反应总是从表面开始进行而后再向深层发展,因此导致电化学反应不完全从而出现一系列的问题;当然,电池在使用过程中过度充/放电,致使电池洩压,氢气/氧气在洩出的同时带出电解液,从而使得电解液干涸,也是重要原因之一;解剖开贮存和使用过的电池,会发现电池内部的极板和隔膜纸干燥目视,也许是以上所述原因之一或几个因素共同作用的结果;隔膜对电池性能的影响隔膜作为电池的正、负极之间的隔离板,首先其必须具备良好的电绝缘性,其次由于它于电解液中处于浸湿状态,其必须具备良好的耐碱性;并且要有良好的透气性等;因此我们应当选用在较宽广温度范围内-55℃-85℃保持电子稳定性、体积稳定性和化学稳定性,对电子呈高阻,对离子呈低阻,便于气体扩散尽量薄的隔离板;隔膜性能的好坏在很大程度上将影响电池的循环寿命和自放电状况;隔膜在循环过程中逐渐干涸是电池早期性能衰退的主要原因;隔膜的吸碱量、保液能力和透气性是影响电池的循环寿命的关键因素;隔膜的亲水性可保证良好的吸碱量和保液能力;而憎水性可提高隔膜的透气性;隔膜变干与下列因素有关:1)隔膜本身性质的变化如:吸液速度和保液能力变差;2)极片在充放电过程中发生膨胀将隔膜中电解液挤出和吸出;3)电极表面活性和气体复合能力变差,电池过充时正极产生的氧气未能快速复合掉,造成电池内压升高,达到一定压力后从安全阀洩压而造成电解液损失;电池的自放电也与隔膜有关;有人认为:镍氢电池中镍电极的活性物质与氢气发生反应是MH-Ni电池自放电的主要原因微短路也是原因之一:NiOOH+1/2H2→NiOH2其中的氢气是由于过充电静置后,储氢合金释放出其中的部分氢原子复合而成,因此我们需要有较好透气性的隔膜板,此处的透气性并不是指通透气体而是指能通透协带氢或氧原子的离子的透气性;电池不过充或不充饱可降低漏电率,目前不少厂商的电池充饱电后静置30天持电率可超过70%常温常压状态;当然,隔膜纸除了以上所述的条件外,还应当具有足够的机械强度和韧性,以保证电池在卷绕和极片膨胀时不至于断裂;热和电活化对电池性能的影响采用封口化成工艺的镍氢电池在活化初期及大倍率充电时内压过高,造成电池漏液爬碱,容量下降,寿命缩短,安全性能变差,而且化成时间较长;对封口的镍氢电池进行热处理即热活化,可以对其性能进行改善,尤其是对内压的改善;其本质原因是:热处理的过程中,负极中的贮氢合金表面在强碱性电解液的作用下,较快地偏析出大量的镍原子族即形成富镍层,镍原子族均匀分散在其它疏松金属氧化物和氢氧化物或其水合物中,在镍原子族的催化作用下,过充时正极所产生的氧扩散到负极表面,并与贮氢合金中的氢反应,重新化合成水,改善贮氢合金的消氧机能,降低电池内压;另外,热处理时可降低电解液的表面张力,促成电解液的均匀分布,有利于电化学反应的均匀进行;热活化的时间、温度不同对电池性能的影响也不同,时间太短达不到预期效果;时间太长则浪费时间,效率太低;温度太低反应速度过慢,温度太高可能会导致电池短路,极片膨胀厉害,影响电池性能;一般以50-80℃为宜,2-8小时比较合适;电活化过程初期,首先发生的反应是CoO+OH-=CoOOH此反应为不可逆反应,由此使得正极片的导电性大大增强因NiOH2基本不导电而且NiOOH的导电性也较差,从而降低电池的内阻和充电电压,提高充电效率和放电容量;因此可以让负极预先充电,具有充电储备;而后期的电活化只是对电极进行充放电即NiOH2与NiOOH之间来回转化,通过这种来回转化晶型转换,在极片表面不断产生新鲜表面,使得电化学不断反应进行下去;在后期的电活化中,只要电池电压不低于,钴就不参与反应;为提高化成效率,一般以三个充/放电循环为好,充/放电电流应由小逐渐变大为佳;三、镍氢电池内压高与自放电的分析镍氢电池内压高原因分析镍氢电池内压高是指电池在充电过程中尤以大电流快充电时明显电池内部产生很多气体,造成电池内部压力升高;内压高会引起很多不好结果出现;比如:漏液气、爬碱、隔膜干枯、电池寿命缩短;镍氢电池在充电时的电化学反应为:正极:6NiOH2 –6e + 6OH-→ 6NiOOH + 6H2O ①负极:LaNi5 + 6H++6e→ L aNi5H6②正极在充电过程中到充电末期会发生析氧的反应2H2O+ 4e → O2+4H+ ③产生的游离氧透过隔膜与负极的LaNi5H6发生水合反应2LaNi5H6 + 3O2+6e → 2LaNi5+ 6H2O ④这样正极产生的氧气被负极复合成水,电池内部总的气压不会上升,维持平衡;为防止电池充电过程中内压升高,有利于反应④式有效进行,在设计电池时一般将负极容量设计成正极的倍,同时在正极中添加5 Wt %~10 Wt %的CoO粉,达到维持电池内压均衡的目的;尽管如此,由于追求高容量和大功率等性能,电池设计时不可避免的尽量在有限的空间内填充过多的活性物质,使多孔电极的孔隙率不同程度的降低,影响隔膜的透气性能,使氧气不能快速的透过隔膜与负极复合,因而电池内压升高;负极的合金粉材料也是影响镍氢电池内压的一个主要因素;主要原因是MH 合金的压力平台不穩定,需調整組分及P-C-T曲線;镍氢电池的自放电分析自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力;一般而言,自放电主要受制造工艺、材料、储存条件的影响,自放电是衡量电池性能的主要参数之一;通常电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用; 一般地说,常规电池要求储存温度范围为-20至45℃;电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象;IEC标准规定的镍镉及镍氢电池的自放电检测方法为,将充满电的电池在温度为20±5℃,湿度为65±20%条件下,开路搁置28天后,以电流放电到只,其放电容量与电池容量的比值即为荷电保持率电池自放电的基本类型:1、物理自放电;2、化学自放电;1、物理自放电:指由物理原因引起的自放电,电池发生自放电时,电子从电池负极流向电池正极形成电子电流与电解液中的离子电流形成电流回路;物理自放电的特点:①受温度影响小;②能导致电池最终开路电压为零;2、化学自放电:指由化学原因引起的自放电,电池发生自放电时,在电池的正极和负极之间没有电流形成;化学自放电的特点:①受温度影响较大;②受电池荷电状态影响较大;③化学自放电不能导致电池电压为零;引起电池自放电的原因及其特点1、隔膜①隔膜的隔离性能差●抗拉强度差●均匀性差②电子绝缘性能差③隔膜自放电的特点●物理自放电或化学自放电●整批出现●自放电程度接近2、极片①极片掉粉●极片掉粉自放电的特点A、物理自放电B、整批出现C、自放电程度接近D、拆开电池脱粉明显②卷绕错位3、集流体①集流体有毛刺②极耳焊接处有批锋③集流体自放电特点●物理自放电●个别出现●自放电程度严重●出现短路电池●拆开电池现象不明显4、杂质①电解液中杂质②极片活性物质中有杂质●正极活性物质自分解●负极活性物质自分解●极片活性物质自放电特点A、化学自放电B、整批出现C、自放电程度与荷电态有关③隔膜溶出物④杂质自放电特点●化学自放电●整批出现●自放电程度接近●拆开电池现象不明显5、其它原因①外部微短路②隔膜沉积导电物质自放电的危害1、自放电导致电池使用时间缩短;2、自放电导致电池寿命的提前终止3、自放电导致电池组内部各电池荷电量不等,对电池组的使用寿命极为不利五、MH-Ni电池的主要性能参数的定义额定容量:指在一定放电条件下,电池放电至终止电压时放出的电量;IEC 标准规定MH-Ni电池在20±5℃环境下,以充电16小时后以放电至时所放出的电量为电池的额定容量;倍率:指电池以1个单位额定容量下的电流为基准,当用某一个电流进行充电或放电时,与之对应的电流比值,我们就叫这个电流为XC;例如:AA2000mAh电池,1个单位额定容量下的电流是2000mA, 当用400mA、2000mA、4000mA进行充电或放电时,与之对应的电流比值为、1、2,我们就叫这个电流为C、1 C、2C;内阻:指电池充放电时,电池遇到的来自电池内部的阻抗;电池的内阻包括欧姆内阻和极化电阻;欧姆内阻是各组成部分的电子导电阻力,离子导电阻力及接触阻力,与电极结构和装配工艺有关;极化电阻是电极反应形成的,与电极反应的本质及电池材料有关;电池的内阻越小,电池工作输出电流时,造成电池内部的压降就越小,电池将输出较高的工作电压和较大的电流,输出能量和容量就越多;自放电:电池充足电后,在放置一段时间未使用的情况下,容量降低或损失的现象叫做“自放电”;循环寿命:充电电池经历一次充电和放电过程,称为一个循环或叫一个周期,在一定的充放电制度下,电池容量下降到某一规定值之前,电池所能耐受的循环次数,称之为充电电池的循环寿命;六、电池生产、使用的注意事项及问答1、电池充电:一般在0°C至40°C的环境温度下进行电池充电;充电过程的环境温度会影响电池的充电效率,所以在20°C至30°C下充电会达到最好的充电效率;在低于0°C下充电时,电池内的气体吸收反应将不正常,结果导致电池内压升高,这会促使电池排气阀启动释放出碱性气体,最终致使电池性能不断下降;在高于40°C下充电时,电池充电效率将下降,电池充电不完全并会缩短电池工作时间,而且会导致电池漏碱;严禁对电池进行反向充电对电池进行反向充电会引起电池内部气压急剧上升,这会促使电池排气阀启动释放碱性电解液,导致电池性能快速下降,还会出现电池膨胀和电池破裂的现象;应避免过充电,反复的过充电会导致电池性能下降;过充电是指对是已经充満电的电池再继续充电;2、电池放电:电池放电应在0°C至45°C的环境温度下;放电电流的大小将影响电池的放电效率,电池在至2CmA范围内电池的放电效率会比较理想;在温度低于0°C和高于45°C时,电池的放电容量将会下降,容量的下降会导致电池性能降低;应避免过放电,因为过放电深度放电会损坏电池的特性,所以在放电过程中要记住关闭电源开关,同时要避免电池长期与用电设备连接,在运输过程中不要将电池放入设备中一起运输;3、电池贮存:电池应贮存在干燥、低湿度、没有腐蚀性气体和温度在-20°C 至45°C的地方;当电池贮存在高湿度、温度低于-20°C或高于45°C的地方时,电池的金属部件会被侵蚀,电池还会因内部有机部件的膨胀和收缩导致碱液泄漏;因为长期贮存会加速电池的自放电和降低反应活性,所以长期贮存温度还应严格控制在10°C至30°C比较适合长期贮存;当在长期贮存后对电池进行第一次充电时,由于电池内部反应活性的降低会导致电池电压偏高和容量减少;为了使电池回复原始容量,应对这种情况下的电池进行反复多次的小电流充电和放电;当电池需要贮存一年以上时,要保证至少每一年对电池进行一次充放电,这样可防止电池漏碱和因电池自放电而导致的电池性能下降;4、不同容量的电池组合在一起使用会出现什么问题如果将不同容量或新旧电池混在一起使用,有可能出现漏液,零电压等现象;这是由于充电过程中,容量差异导致充电时有些电池被过充,有些电池未充满电,放电时有容量高的电池未放完电,而容量低的则被过放;如此恶性循环,电池受到损害而漏液或低零电压;5、电池出现零电压或低电压的可能原因是什么1) 电池遭受外部短路或过充,反充强制过放;2) 电池受高倍率大电流连续过充,导致电池极芯膨胀,正极直接接触短路;3) 电池内部短路,或微短路,如:正负极片有毛刺穿透隔膜纸接触短路,正负极片放置不当,造成极片接触短路,或正极片接触钢壳短路,负极掉料进隔膜纸,隔膜纸本身有缺陷,正极极耳接触负极片短路;6、电池对环境有什么影响现今几乎所有电池均不含汞,但重金属仍然是汞电池,可充电镍镉电池,铅酸电池的必要组成部分;如果处置不当,且数量较多的话,这些重金属将对环境产生有害的影响;7、电池鼓底凸肚甚至漏液的可能原因时什么1) 电池被过充,特别是高倍率大电流连续过充2) 电池被强制过放8、电池使用时有哪些注意事项1) 仔细阅读电池说明书,使用所推荐的电池;2) 检查电器及电池的接触件是否清洁,必要时用湿布擦干净,干燥后按正确极性方向装入;3) 无成人监护时,不要让儿童更换电池,小型电池如AAA应放在儿童不能拿到的地方;4) 不要将新,旧电池或不同型号电池混用;5) 不要试图用加热,充电或其它方法使一次电池再生;6) 不要将电池短路;7) 不要加热电池或将电池丢入水中;8) 不要拆卸电池;9) 用电器使用后应断开开关;10) 应当从长期不使用的用电器具中取出电池;11) 电池应保存在阴凉,干燥无阳光直射处;9、环境温度对电池性能有何影响在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏;如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降;如果温度上升则相反,即电池输出功率会上升,温度也影响电解液的传送速度温度上升则加快,传送温度下降,传送减慢,电池充放电性能也会受到影响;但温度太高,超过45,会破坏电池内的化学平衡,导致副反应;镍镉镍氢电池的放电效率在低温会有显著的降低如低于-15,而在-20时,碱液达到起凝固点,电池充电速度也将大大降低;在低温充电低于0会增大电池内压并可能时安全阀开启;为了有效充电,环境温度范围应在530之间,一般充电效率会随温度的升高而升高,但当温度升到45以上,高温下充电电池材料的性能会退化,电池的循环寿命也将大大缩短;10、什么是短路,对电池性能有何影响11、12、电池外两端连接在任何导体上都会造成外部短路,电池类型不同,短路有可能带来不同严重程度的后果;如:电解液温度升,内部气压升高,等气压值如果超过电池盖帽耐压值,电池将漏液;这种情况严重损坏电池;如果安全阀失效,甚至会引起爆炸;因此切勿将电池外部短路;。

镍氢电池知识

镍氢电池知识
镍氢电池知识
目录
第一章 电池原理、
第二章、常用术语 第三章、充电方式、充电效率与控制措施 第四章、常见问题与分析 第五章、组合电池知识 第六章、倍特力旳产品与特点
注:本文中附图皆为倍特力之产品。
第一章、电池原理
❖ 1、什么是电池 ❖ 2、电池旳分类 ❖ 3、一次电池与二次电池旳异同点 ❖ 4、镍氢电池旳电化学原理 ❖ 5、镍氢电池旳主要构造构成
❖ 电池容量C=It,单位有Ah, mAh(1Ah=1000mAh)。
2、放电与放电率
❖ 放电指电池向外电路输送电流旳过程
❖ 放电率指放电时旳速率。最常用倍率(若干C) 表达,其数值上等于额定容量旳倍数。 如:容量C=600mAh电池,用0.2C放电,则 放电电流为I=0.2*600=120mA。
7、自放电
❖ 电池在荷电或贮存状态下,因为多种原因而引起 旳容量损失旳现象。
第三章 充电方式、充电效率、控制措施
❖ 1、电池常见旳充电方式 ❖ 2、镍氢电池旳原则充电 ❖ 3、急速充电对电池性能影响 ❖ 4、脉冲充电及对其电池性能影响 ❖ 5、涓流充电 ❖ 6、充电效率 ❖ 7、充电旳控制措施
1、电池常见旳充电方式
❖ 一般,温度越高,充电电压越低、自放电越大; 相反,温度越低,充电电压越高、自放电越小。
❖ 当温度过高或过低时,对电池容量和内阻也有一 定影响,尤其在低温下,容量偏低、内阻增高。
3、什么是过充电?对电池性能有何影响?
❖ 过充电是指电池经一定充电过程充斥电后,再继 续充电旳行为。
❖ 假如充电电流过大,或充电时间过长,产生旳氧 气来不及被消耗,就可能造成内压升高,电池变 形,漏液等不良现象。同步,其电性能也会明显 降低。
9、电池电池组无法放电旳原因

镍氢电池基本知识培训

镍氢电池基本知识培训
与铅酸电池比较
06
CHAPTER
镍氢电池的充电与使用注意事项
充电方式
镍氢电池的充电方式主要有恒流充电、恒压充电和脉冲充电等。
充电注意事项
充电时应注意控制充电电流和充电时间,避免过充或欠充;充电时电池温度不宜过高。
使用环境
镍氢电池应在干燥、通风良好、无阳光直射的环境下使用。
使用注意事项
避免在过高或过低的温度环境下使用;避免在充满灰尘、油烟等污染物的环境下使用。
自放电率较高
镍氢电池在高温环境下性能较差,可能会影响电池寿命。
高温性能差
相较于一些其他类型电池,镍氢电池的成本较高。
成本较高
锂离子电池具有更高的能量密度和更快的充电速度,但镍氢电池在安全性方面表现较好。
与锂离子电池比较
铅酸电池具有较低的成本和较高的耐高温性能,但镍氢电池具有更高的能量密度和更快的充电速度。
镍氢电池基本知识培训
目录
镍氢电池简介镍氢电池工作原理镍氢电池的构造与材料镍氢电池的性能参数镍氢电池的优缺点分析镍氢电池的充电与使用注意事项
01
CHAPTER
镍氢电池简介
镍氢电池是一种使用金属镍和氢作为活性物质的二次电池。
定义
具有较高的能量密度、环保、无记忆效应等优点,但充电时间和充电电流相对有限。
在备用电源领域,镍氢电池因其长寿命和稳定性而被广泛应用。
03
02
01
02
CHAPTER
镍氢电池工作原理
镍氢电池利用电化学反应将化学能转化为电能。在反应中,正极材料(镍氧化物)和负极材料(金属氢化物)通过电解质发生氧化还原反应,产生电流。
充电时,正极上的电子通过外部电路传递给负极,同时正极上发生氧化反应,负极上发生还原反应。放电时,电子从负极通过外部电路传递回正极,发生还原反应和氧化反应。

镍氢电池基本知识

镍氢电池基本知识

镍氢电池简单知识,以下谈论的相关技术特点都参照YTYJ理发器所用比亚迪NiMH Battery–H_AAA60OB(600Mah,2.4V)相关技术标准.1.基本知识:镍氢电池是有氢离子和金属镍合成,电量储备比镍镉电池多30%,比镍镉电池更轻,使用寿命也更长,并且对环境无污染。

镍氢电池的缺点是价格比镍镉电池要贵好多,性能比锂电池要差。

镍氢电池中的“金属”部分实际上是金属互化物,电池充电时,氢氧化钾(KOH)电解液中的氢离子(H+)会被释放出来,由这些化合物将它吸收,避免形成氢气(H2),以保持电池内部的压力和体积。

当电池放电时,这些氢离子便会经由相反的过程而回到原来的地方。

以每一个单元电池的电压来看,镍氢与镍镉都是1.2V,而锂电池确为3.6V,锂电池的电压是其他两者的3倍。

并且同型电池的重量锂电池与镍镉电池几乎相等,而镍氢电池却比较重。

可知,每一个电池本身重量不同,但锂电池因 3.6V 高电压,在输出同等电压的情况下使的单个电池组合时数目可减少3分之1而使成型后的电池重量和体积减小。

2. 充电管理:一般镍氢电池在充电前,电压在1.2V以下,充满后正常电压在1.45V左右。

镍氢电池主要用的是-DELTAV检测电池电压来判断电池是否充满。

电池充电时的电压曲线和放电时有点相似,开始时是比较快的上升,之后缓慢上升,等到充好的时候,电压又开始快速下降,只是下降的幅度不是很大。

充电的具体实施分为以下几个阶段(可以根据实际情况来组合进行充电全过程):1)充电电流小于0.1C时,我们称为涓流充电。

顾名思义,是指电流很小。

一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。

2)充电电流在0.1C-0.2C之间时,我们称为慢速充电。

3)充电电流大于0.2C,小于0.8C则是快速充电。

4)而当充电电流大于0.8C时,我们称之为超高速充电。

镍氢电池和电池充电器问答

镍氢电池和电池充电器问答

镍氢电池和电池充电器问答1. 镍氢电池和镍镉电池的优缺点是什么?对于大多数电子设备来说使用镍氢电池比镍镉电池更好。

镍镉电池使用了毒性很高的重金属镉,如果处理不当会对环镜造成损害。

(镍镉电池不能丢弃应该被回收),现代的镍氢电池比相同尺寸大小的镍镉电池容量更高。

一些人认为镍镉电池比镍氢电池放电更迅速,输出功率更高。

在特定条件下这种观点可能是正确的,比如作为高扭矩电批的电源时,使用镍镉电池更好,如果作为像数码相机或便携式音乐播放器的电源时,两者没有什么差别,镍氢电池的充电器比通常所用的镍镉电池的充电器更复杂。

现在智能化充电器,特别是镍氢电池的智能化充电器很容易找到。

2. 镍氢电池有记忆效应吗?技术上讲,镍氢电池没有记忆效应,但严格来讲镍镉电池也没有,然而镍氢电池会有电压损耗,也叫电压衰落,同镍镉电池类似,但通常这种效应不明显,为了完全消除镍氢电池的这种电压损耗效应的可能性,制造商建议偶尔或不定时地对电池进行一次完全的充放电。

过充和储存不当也会损坏镍氢电池。

大多数镍氢电池的使用者没有考虑这种电压损耗效应,但是如果你使用如闪光灯,收音机,数码相机等设备时,每天使用很短一段时间,而在每天晚上充电,那么你就需要偶尔让你的镍氢电池完全放电(用完)。

3.镍氢电池的保存期限是多长(贮藏寿命)?你可能会问:镍氢电池的自身放电率是多少?任何电池的自身放电率都是由储存它们的温度决定的。

在20摄氏度的储存条件下,镍氢电池会在1个月内损失掉相当于40%的充电电量。

如果储存在更高温度下,自身放电率会更高,相反则更低。

4.可充电电池的充电次数是多少?我通常回答这个问题只是简单地说"几百次",这样说的原因是:这是一个比看上去复杂得多的问题。

充电次数是由你怎样使用电池来决定的,有时用这样一个比喻,把一节充电电池比作一条面包,有人会问,这条面包能切多少片?当然,这要看切片的厚度。

如果切片非常薄,则可多切许多片。

对充电池也是一样的道理。

镍氢电池深度全面培训

镍氢电池深度全面培训

隔膜 1.PP材质,多空结构,可以离子通过,但是电子不能通过,耐强碱液腐蚀; 2. 高性能的有磺化处理,接枝处理,提高自放电。
钢壳 1. CPCEN钢材,内外壳镀镍,耐强碱液腐蚀; 2. 柔韧性好,耐深冲。 3. 耐腐蚀,不生锈; 4. 圆柱形,一端开口,厚度0.2mm;
镍氢电池材料-盖帽、密封圈
航模 电动自行车 电动汽车
个人护理系列
电推剪 剃须刀
灯具电池
矿灯 应急灯 网标灯
灯具电池
手电筒 草坪灯
无绳电话、 民用系列
无绳电话 民用高容量 民用低自放电 高低温电池
ROHS指令
名词解释 RoHS是由欧盟立法制定的一项强制性标准,它的全称是《关于限制在电子电器设备中使用某些有害成分的指令》(Restriction of Hazardous Substances)。该标准已于2006年7月1日开始正式实施,主要用于规范电子电气产品的材料及工艺标准,使之更加有利于人体健康及环境保护。该标准的目的在于消除电机电子产品中的铅、汞、镉、六价铬、多溴联苯和多溴联苯醚共6项物质,并重点规定了铅的含量不能超过0.1%。
镍氢电池电化学反应机理
镍氢电池特点
高能量密度 可快速充放 大电流放电特性 长循环寿命 电化学特性稳定 无污染,环保 无记忆效应
应用领域
动力电池系列 个人护理系列 灯具系列 无绳电话系列 仪表 民用电池系列 医疗器械
动力电池系列
电工工具 吸尘器 园林工具
动力电池系列
镍氢电池结构图
镍氢电池结构——正极
正极基体:发泡镍(约1.6--1.7mm厚),或冲孔镀镍钢带(0.06--0.08mm厚)
正极物质:球镍+亚钴+PTFE

镍氢电池知识(二)

镍氢电池知识(二)

镍氢电池知识第一章.认识电池1.1 什么叫电池?电池(Batteries)是一种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能。

1.2 一次电池与二次电池的有哪些异同点?1.2.1. 一次电池只能放电一次,二次电池可反复充放电循环使用;1.2.2. 可充电电池在放电时电极体积和结构之间发生可逆变化,因此设计时必须调节这些变化,而一次电池内部则简单得多,因为它不需要调节这些可逆性变化;1.2.3.一次电池的质量比容量和体积比容量均大于一般充电电池,但内阻远比二次电池大,因此负载能力较低;1.2.4. 一次电池的自放电远小于二次电池。

1.3 镍氢电池的结构组成及电化学原理是什么?正极片(含活性物质Ni(OH)2、导电剂、导电骨架泡沫镍等)负极片(含活性物质储氢合金粉、导电骨架铜网)隔膜(PP、PE)电解质(KOH、NaOH、LiOH等)电池壳(低碳钢质)、盖板(包括密封圈)镍氢电池充电时,正极发生反应如下:Ni(OH)2 –e + OH- → NiOOH + H2O负极反应:M +H2O +e→ MH + OH-放电时,正极:NiOOH + H2O + e → Ni(OH)2 + OH-负极:MH + OH- → M+H2O+e过充电时:正极反应为:4OH- → 2H2O+O2+4e负极反应为:2H2O+O2+4e → 4OH-过放电时:正极反应为:2H2O+2e → H2+2OH-负极反映为:H2+2OH- → 2H2O+2e环保电池:是指电池中不含汞、镉危害环境的金属成分,对人体无害,不污染环境1.4 什么是动力型电池动力行电池就是能够为一些电动工具提供动力的电池,其特点是要求放电电流较大,想对于电池而言就是放电倍率较大,所以动力型电池也可以称之为高功率电池。

动力型电池的性能主要体现在其放电性能,主要考核指标有:常规容量、高倍率放电容量、内阻、电压、高倍率放电平台。

1.5 什么是高温电池所谓高温电池,就是在较高的环境温度(一般为40℃以上)下进行工作的电池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、因为普通镍氢电池月自放电率达20~30%,所以,每三个月最好充一次电,意义同上述第一样,以免过放的损害;
6、不同品牌、不同容量的电池不能混合充电,充电器与电池充电特性不匹配的也不能混合充电。镍氢电池出厂后的第一次充电包括两个方面的问题:一是要不要先充电再使用,二是充电多久合适。一般情况下,新的镍氢电池只含有少量的电量,这是与镍氢电池较高的自放电速率密切相关的,假如镍氢电池出厂时的带电量为40%,在月自放电率高达30%的情况下,一月后的电量仅有10%,再长一些时间,有些电池就会处于放电态(即没有充电的状态),而且,镍氢电池还有一个特点,即,容量越高,其自放电速率也越大,这样,即使出厂时带电量大一些,经过一定时间后的电量仍然很小。因此,新电池使用前必须进行首次充电。然而,另外一种情况也可以先用后充,2005年开始有低自放电镍氢电池推出市场,国内目前也有一些厂家生产低自放电电池。但是,由于低自放电镍氢电池的结构复杂,造价要比普通型的贵出很多,因而民用市场上的低自放电镍氢电池比例很小。正宗品牌的这种电池如果出厂时间较短(如一个月以内),通常带电量还很足,因为充电电池带电量如果在30%以上都可以正常使用,所以,镍氢电池在第一次充电前可以先使用。镍氢电池充电一旦开始,就要选择用什么方式充电。
2、对电池恒流充电时,开始尽量避免涓流充电,自始至终用涓流充电模式会影响电池特性,特别是导致以后的大电放电无法启用。但恒流充电后应该设置涓流充电方式,进行补充充电,以达到完全激活因子,补充损失电量的目的;3、单节镍氢电池一使用完最好立即充电,不要先行与其他电池一起充电,因为放完电的镍氢电池放到一定时候容易造成电池过放电,形成极板短路,造成电池永久损坏;
一种情况是以恒压充电,比较老式的充Байду номын сангаас方式仍然这样设置,一般都是设置为1.4V,但这样的后果有可能是电池到达1.4V可能还没有充饱,在这种情况下,镍氢电池充电终止电压就不是镍氢电池饱和电压。
上述缺陷主要是由充电电流引起的,大电流充电有可能在1.4V时并未满电。从充电曲线上来看,有些以1C充电的镍氢电池容量到达100%的电压可以达到目的1.53V,然后,然后在这一电压下转头向下再恢复到1.4V附近,因此,1.53V成为充电最高电压,镍氢电池充电器往往通过这个特点,把拐点电压出现设置为充电截止时间。大电流与小电流充电对充电电压的比较是:小电流在较低电压值就可以充满电,而且在满电后的充电仍能缓慢地提升电压,相反,1C以上的大电流在满电状态下继续充电,电压不升反降。所以,在电压达到一定高度(如1.36V)后,采用0.3C左右的小电流充电是较为合理的。恒流充电法采用了温升速率法作为充电结束的判断依据,比如,在0.3C充电条件下,每分钟温度上升2℃就会停止充电,这时的镍氢充电电压一般都在1.4V左右。根据镍氢电池所处工作阶段,镍氢电池电压分为:充满电压、额定电最低电压,或者说是饱和电压、工作电压、截止电压。镍氢电池的额定电压是1.2V,这也是镍氢电池正常工作时的平均电压值,通常,合格的镍氢电池工作电压比较平稳,如果是一直在用的话,会表现为以一个比较稳定的频率形成电压下降过程。镍氢电池截止电压为0.9V,有的镍氢充电电池实际可用到0.8V,电压降到0.8V以下,则说明镍氢电池被过放,电池需要修复,如果电池经过修复(通常用0.2C充电1小时的方法修复)仍然未能达到0.8V说明电池失效。到达截止电压后应给镍氢电池充电,普通型镍氢电池饱和电压值会因充电电流不同而略有差别,相对小的电流在到达同样电压值时,容量(也就是电量)补偿会多一些,通常,镍氢电池充满电压在1.4V左右。试验中,因电流不同,镍氢电池充满电时的高电压会出现1.5V,低的也有1.38V。镍氢电池充电,如果电流不同,充电效果和对电池的影响都会有比较大的区别。表示充电电流大小的是倍率概念,在数值上等于充电电流与电池容量的比值,计量单位是mA。如标称容量为2000mAh的镍氢电池,如果用1000mA电流充电,充电倍率为0.5C,如果用400mA电流充电,充电倍率为0.2C。以单体电池为例,通常认为:镍氢电池充电分小电流、标准电流、大电流三种方式,以0.1~0.3C为标准充电电流,小于0.1C是小电流,大于0.3C是大电流。通常,充电电流不能大于1C。小电流充电的好处是保护电池,有轻度过充,但对电池无太大影响;不足是充电时间很长;大电流充电的好处是充电时间短;缺点是持续大电流对电池有损伤,影响使用寿命。标准充电模式的优点是充电电路简单,充电时间稍长,但这种模式在设计复杂性和照顾电池充电时间上取得了平衡,得到业内的认同。
通常认为,第一次充电前的镍氢电池电量很小,所以,应以小电流恒流充电方式为宜,大多数用0.1C倍率充电12~14小时,小电流充电对电池没有负面影响,即使有可能出现一点过充电也没有太大关系。同时,也可保证电池在充电电压范围内使电池容量100%的得到恢复。第一次充电也必须充满才能使性能发挥到最佳状态。放电是向外电路输出电流的过程,镍氢电池在电过程中,伴随有电压下降和容量减少现象。考核镍氢电池放电效果的是其输出功率占输入功率的比值,也可以近似地换算成输出容量与输入容量的比值。按照正确方法使用的镍氢电池放完电的总输出功率正常都可以达到输入功率的95%以上,放电效果的差别是因为不同电流和温度下,电池的内、外阻与放电特性会有一定的区别。实验显示,镍氢电池放电效率明显受电流和温度影响:1、镍氢电池具有良好的低温放电特性,在这方面甚至好于锂电池,即使在-20℃环境温度下,采用大电流(以1C放电速率)放电,放出的电量也能达到标称容量的85%以上。在40℃以上的高温环境中容量损失可能会达到5~10%。镍氢电池虽然有良好的低温放电特性,但其工作温度还是在0~40℃之间为宜,毕竟,超出这个温度范围后,电池容量会有不同程度的降低。2、按照IEC标准,镍氢电池容量是以标准充放电计算的,在这个标准计算中适用的电流是0.2C。实际上,以0.2C的小电流放电要比用1C放电的容量多出10%以上。如果上述两个标准应用的不恰当都会使电池放电时间减少,比如,在上述过低的温度环境下只能放出85%的电量,而电流过大也会使放电效率降低,从而使放电时间缩短。当然,如果电池在正常工作环境下放电时间明显过短,则要检查是不是电池未被充满电,那就是追溯到镍氢电池充电的问题上了。电池放完内部储存的电量,电压到达终止电压值后,继续放电就会造成过放电,镍氢电池也不例外。镍氢电池过放的出现一是在使用中,如对镍氢电池持续以较大电流放电就会造成这一现象,这与一些使用者把镍氢电池记忆效应看的过于严重有关,以为电量放的越彻底越好,这是一个误解,镍氢电池记忆效应的存在在一个很小的范围内的容量损失不大,而且可以通过周期性的(比如三个月)完全充放电来进行修复,但是电池使用中的长期过放则会破坏电池结构,使得以后的充电无法进行,相比较而言,过放的这种伤害比记忆效应所造成的部分容量损失对电池的伤害更大。另一种过放场景出现在储存过程中的自放电,镍氢电池是所有自放电中最大的,每月自放电率可达20~30%,虽然如此巨大,但由于这时电池体内电流很小,因而不会伴随使用过程中过放电可能出现的发热、发烫现象,电池结构可逆容量的破坏总的来说小得多。从电化学原理上来说,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,即使充电也只能部分恢复,活性物质不可逆使得电池容量明显衰减。因此,预防镍氢电池过放电可以有效提升电池的用效率。
2、电池应带电储存,因为普通镍氢电池的自放电率高达30%,所以尽量使电池在80%的容量下储存,至少要有40%的电量,因为电池在40%容量下的自放电率会小许多。如果容量不够,很容易因为忘记补电而使镍氢电池处于过放当中;
3、存放环境应干净整洁,以防灰尘中含有导体物质而使电自放电加快。从机理上讲,自放电大小与正极材料在电解液中的溶解和它受热后的不稳定性,易自我分解有关,所以,镍氢电池自放电是由其结构决定而不可避免的,但控制自放电在可逆的范围内则可以通过使用者的正确使用而达到,除了上述三个方面的改善措施外,要及时充电补充自放电造成的电量损失,以使自放电不会发生不可逆反应。市场上有一些低自放电镍氢电池,造价较高,但可以在一年后仍保持80%的容量,因而充电次数可以显著减少。镍氢电池与其他充电电池一样,最重要的性能参数就是容量。通常意义上的电池容量是指在一定的放电条件下,电池放电至截止电压时放出的电量。IEC61436标准规定了镍氢电池在20±5℃环境下,以0.1C充电16个小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,这种方法以C5表示,即以5小时率放电模式。镍氢电池容量单位:mAh(毫安时)/Ah(安时)。镍氢电池容量是由其材料和结构决定的。
对此,一定要设置好放电终止电压,使镍氢电池在电压下降到0.9V时自动停止放电。电池不与外电路连接时,由内部自发反应引起的电池容量损失就是电池的自放电,在所有的电池类型中,镍氢电池自放电最大,普通镍氢电池达到30%的自放电率。
影响镍氢电池自放电的因素主要有三个:
1、温度影响:通常情况下,温度越高,自放电越大;反之,温度越低,自放电越小;2、与电池的带电量有关。通常,镍氢电池充得越满,自放电率也就越高,这里说的是平均值,当较高电池容量降到较低容量时,它与同等较低容量的其他电池自放电率是一样的;3、存放条件的影响。镍氢电池处在一个导体环境中可能会产生微电流,加快电池的自放电进程,意外原因造成的瞬间大电流通过甚至可能会造成短路。电池自放电会成容量损失,这种损失大部分是可逆的,通过充电行为能够得到补充,可怕的是因此导致的过放电,过放电实际是电池处于少量带电或不带电情况下的储存与工作方式,往往会表现为电池低电压或者零电压,从而形成部分容量的不可逆损失。减小自放电是提高镍氢电池性能的重要内容,针对引起自放电的原因,可以从以下方面着手改善:1、温度环境:按照IEC规定的规范化的镍氢电池,其储存温度以20±5℃为宜;而其工作温度一般在0~40℃较为理想;
4、对电池充电最好选择能控制充电电流与时间的智能充电器。如果是非智能充电器只有靠自己控制充电时间(因为不设置控制措施的普通充电器极易形成过充)。
新电池头三次充电时间一般为:充电时间=(电池容量/充电器充电电流)×1.5,日常使用的镍氢电池充电时间则为:充电时间=(电池容量/充电器充电电流)×1.2,因为头三次要完全激活电池因子,故时间长些;
相关文档
最新文档