立体几何中平行与垂直证明方法归纳

合集下载

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

立体几何平行垂直的证明

立体几何平行垂直的证明
平行、垂直的证法方法归纳总结
一、平行问题的证明方法
平行问题证明的基本思路:平面平行 线面平行 线线平行.
1.线线平行的证明方法:
①利用平面几何中的定理:三角形(或梯形)的中位线与底边平行;
平行四边形的对边平行;
利用比例、……;
②三线平行公理:平行于同一条直线的两条直线互相平行;
③线面平行的性质定理:如果一条直线平行于一个平面,经过这条直线的平面和这个平面相交,则这条直线和
垂直问题证明的基本思路:面面垂直 线面垂直 线线垂直.
1.线线垂直的证明方法:
①利用平面几何中的定理:勾股定理、等腰三角形,三线合一、菱形对角线、直径所对的圆周角是直角、点在
线上的射影。
②线面垂直的定义:如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直;
③三垂线定理或三垂线逆定理:如果平面内的一条直线和斜线的射影垂直,则它和斜线垂直;反之亦成立。
交线行;
④面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;
⑤线面垂直的性质定理:垂直于同一个平面的两条直线平行。
2.线面平行的证明方法:
①线面平行的定义:直线与平面没有公共点;
②线面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;
④如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
2.线面垂直的证明方法:
①线面垂直的定义:直线与平面内任意直线都垂直;
②线面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面;
③线面垂直的性质定理:两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面;
1.如图,四棱锥 中,四边形 为矩形, 为等腰三角形, ,平面 平面 ,且 . 分别为 和 的中点.

高中数学专项提升——立体几何中平行与垂直证明

高中数学专项提升——立体几何中平行与垂直证明

方法技巧专题立体几何中平行与垂直证明一、立体几何中平行与垂直知识框架cc∥∥b a ba ∥⇒二、立体几何中的向量方法【一】“平行关系”常见证明方法1.1直线与直线平行的证明1.1.1利用某些平面图形的特性:如平行四边形的对边互相平行等1.1.2利用三角形中位线性质1.1.3利用空间平行线的传递性(即公理4):平行于同一条直线的两条直线互相平行。

1.1.4利用直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

1.1.5利用平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.1.1.6利用直线与平面垂直的性质定理:垂直于同一个平面的两条直线互相平行。

1.1.7利用平面内直线与直线垂直的性质:在同一个平面内,垂直于同一条直线的两条直线互相平行。

1.1.8利用定义:在同一个平面内且两条直线没有公共点1.2直线与平面平行的证明1.2.1利用直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。

αbaabαβb a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα βα⊥⊥b a ba ∥⇒b∥a b a αα⊂⊄α∥a ⇒αab1.2.2利用平面与平面平行的性质推论:两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。

βαaβαα∥⊂a β∥a ⇒1.2.3利用定义:直线在平面外,且直线与平面没有公共点1.3平面与平面平行的证明1.3.1利用平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

ααββ////∩⊂⊂ba Pb a b a =αβ//⇒αβbaP1.3.2利用某些空间几何体的特性:如正方体的上下底面互相平行等1.3.3利用定义:两个平面没有公共点1.例题【例1】如图,已知菱形ABCD ,其边长为2,60BAD ∠=,ABD ∆绕着BD 顺时针旋转120得到PBD∆,M 是PC 的中点.(1)求证://PA 平面MBD ;(2)求直线AD 与平面PBD 所成角的正弦值.证明(1)连结AC 交BD 于点O ,连结OM在菱形ABCD 中,O 为AC 中点, M 为PC 的中点∴OM 为∆APC 的中位线,∴OM ∥AP---------------(利用1.1.2中位线性质)又 OM ⊂面MBD ,且PA ⊄面MBD∴//PA 平面MBD----------------(利用1.2.1直线与平面平行的判定定理)【例2】已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.证明:DN//平面PMB 。

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明平行与垂直证明是立体几何中的重要内容之一,本文将介绍一些方法和技巧用于解决平行与垂直的证明问题。

一、平行性的证明方法:1.公共光线法:如果两条直线分别与第三条直线相交,在相交点处的两个对应的内角相等,则这两条直线是平行的。

例如,如果直线AB和CD都与直线EF相交,在交点F处的∠AFC=∠DFB,则AB,CD。

2.反证法:假设AB和CD不平行,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不平行,则可以证明存在一条直线EF与这两条直线分别相交于F和G,且所形成的内角∠FAG=π/2-∠DAF≠π/2,则与直线EF平行,这是与已知条件矛盾的,所以AB,CD。

3.平行线性质法:利用平行线的性质来证明其他线段平行。

例如,根据平行线的交角性质可证明,如果一条直线与一对平行线之一形成等于直角的角,则与另一条平行线也形成等于直角的角。

二、垂直性的证明方法:1.垂直线性质法:利用垂直线的性质来证明其他线段垂直。

例如,如果直线AB与直线CD相交于点E,且∠AED=∠BEC=π/2,则直线AB垂直于直线CD。

2.垂直线段法:如果两条线段的斜率之积为-1,则这两条线段垂直。

例如,如果直线AB和直线CD的斜率之积为-1,则AB⊥CD。

3.反证法:假设AB和CD不垂直,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不垂直,则可以证明存在一条直线EF与这两条直线相交于点G,且所形成的两个内角∠GAC和∠GDB之和小于π/2,这与直线EF垂直的性质矛盾,所以AB⊥CD。

综上所述,平行与垂直证明可以通过公共光线法、反证法、平行线性质法、垂直线性质法、垂直线段法等方法和技巧来解决。

在实际问题中,可以根据已知条件选择合适的方法和技巧,灵活运用来解决平行与垂直的证明问题。

完整版)立体几何中平行与垂直证明方法归纳

完整版)立体几何中平行与垂直证明方法归纳

完整版)立体几何中平行与垂直证明方法归纳本文系统总结了立体几何中平行与垂直证明方法,适合高三总复时学生构建知识网络、探求解题思路、归纳梳理解题方法。

以下是常见证明方法:一、“平行关系”常见证明方法一)直线与直线平行的证明1.利用平行四边形的对边互相平行的特性;2.利用三角形中位线性质;3.利用空间平行线的传递性(即公理4);4.利用直线与平面平行的性质定理;5.利用平面与平面平行的性质定理;6.利用直线与平面垂直的性质定理;7.利用平面内直线与直线垂直的性质;8.利用定义:在同一个平面内且两条直线没有公共点。

二)直线与平面平行的证明1.利用直线与平面平行的判定定理;2.利用平面与平面平行的性质推论;3.利用定义:直线在平面外,且直线与平面没有公共点。

三)平面与平面平行的证明1.利用平面与平面平行的判定定理;2.利用某些空间几何体的特性;3.利用定义:两个平面没有公共点。

二、“垂直关系”常见证明方法一)直线与直线垂直的证明1.利用直角三角形的两条直角边互相垂直的特性;2.看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直;3.利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。

1.利用空间几何体的特性:例如长方体侧棱垂直于底面。

2.观察直线与平面所成角度:若直线与平面所成角为90度,则该直线垂直于平面。

3.利用直线与平面垂直的判定定理:若一条直线与一个平面内的两条相交直线垂直,则该直线垂直于此平面。

4.利用平面与平面垂直的性质定理:若两个平面互相垂直,则在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。

5.利用常用结论:例如若一条直线平行于一个平面的垂线,则该直线也垂直于此平面。

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定立体几何基础——平行与垂直的性质与判定立体几何是数学中的一个重要分支,它研究的对象是在三维空间内的图形和物体。

在立体几何中,平行和垂直是两个基本概念,它们在判断和解决几何问题时起着重要的作用。

本文将介绍平行与垂直的性质和判定方法,帮助读者更好地理解立体几何的基础知识。

一、平行的性质与判定平行是指在同一平面内,两条直线永不相交的性质。

在立体几何中,我们常用平行性质来推导和证明定理。

以下是一些与平行相关的性质和判定方法。

1. 平行线性质:(1)平行线上的对应角相等:如果两条平行线被一条横截线所交,那么对应的角都是相等的。

(2)平行线上的内错角互补:如果两条平行线被一条横截线所交,那么内错角互补,即相互补充的角和为180度。

(3)平行线上的同旁内角相等:如果两条平行线被一条横截线所交,那么同旁内角相等,即相邻的内角相等。

2. 判定平行线的方法:(1)两条线段平行的充要条件是斜率相等:如果两条线段的斜率相等,那么它们是平行的。

(2)两个向量平行的充要条件是比值相等:如果两个向量的坐标分量比值相等,那么它们是平行的。

(3)两条直线互相垂直的充要条件是斜率乘积为-1:如果两条直线的斜率乘积为-1,那么它们互相垂直。

二、垂直的性质与判定垂直是指两条直线或线段在交点处互相成直角的性质。

垂直的性质在几何证明中经常被用到,下面是关于垂直的一些性质和判定方法。

1. 垂直线性质:(1)垂直线上的对应角互补:如果两条垂直线被一条横截线所交,那么对应的角互补,即相互补充的角和为90度。

(2)垂直线上的内角相等:如果两条垂直线被一条横截线所交,那么内角相等,即相邻的内角相等。

2. 判定垂直线的方法:(1)两条线段垂直的充要条件是斜率乘积为-1:如果两条线段的斜率乘积为-1,那么它们是垂直的。

(2)两个向量垂直的充要条件是内积为0:如果两个向量的内积为0,那么它们是垂直的。

三、平行和垂直在实际中的应用平行和垂直的性质在日常生活和工程实践中有广泛的应用。

立体几何位置关系-平行与垂直证明方法汇总

立体几何位置关系-平行与垂直证明方法汇总

立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。

主要方法是②、③两法在使用判定定理时关键是确定出面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD.证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥21B 1D 1.∴EF ∥21BD. ∴E 、F 、B 、D 对共面.(2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ⊂面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O ,∴四边形PA O Q 为平行四边形. ∴PA ∥O Q.而O Q ⊂平面EFBD ,∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ⊂面AMN , ∴平面AMN ∥平面EFBD.例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=46,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PEC ;证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC例4、 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE.证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE.例5、正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。

主要方法是②、③两法在使用判定定理时关键是确定岀面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.•••ABCD是平行四边形,••• A O = O C.连结0Q,则0Q在平面BDQ内,且0Q是厶APC的中位线,• PC II 0Q.•/ PC在平面BDQ夕卜,• PC I 平面BDQ.例2、在棱长为a的正方体ABCD —A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2 )面AMN I 面EFBD.证明:⑴分别连结B i D i 、ED 、FB ,如图,则由正方体性质得 B i D i // BD.•/ E 、F 分别是D i C i 和B i C i 的中点,1i ••• EF // B i D i . A EF // BD.22 •E 、 F 、 B 、 D 对共面. (2)连结A i C i 交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O .•/ M 、N 为A i B i 、A i D i 的中点,• MN // EF ,EF 面 EFBD.• MN //面 EFBD.•/ PQ /A O ,•四边形PA O Q 为平行四边形.• PA // O Q.而O Q 平面EFBD ,• PA //面 EFBD.且 PA n MN=P ,PA 、MN 面AMN ,•平面AMN //平面EFBD.例 3 女口图(i ),在直角梯形 P i DCB 中, P i D//BC , CD 丄 P i D ,且 P i D=8,BC=4,DC=4A 是P i D 的中点,沿 AB 把平面P i AB 折起到平面 PAB 的位置(如图(2)),使二面角求证:AF//平面PEC ;证明:如图,设 PC 中点为G ,连结FG,CD — B 成 45 ,设E 、F 分别是线段AB 、PD 的中点1 贝U FG//CD//AE ,且 FG= CD=AE , 2•••四边形AEGF 是平行四边形••• AF//EG ,又••• AF 平面PEC , EG 平面PEC ,• AF// 平面 PEC例4、正方形ABCD 与正方形ABEF 所在平面相交于 AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ. 求证:PQ //面BCE.证法一:如图(1 ),作PM // AB 交BE于M ,作QN // AB 交BC 于N,连接MN, 因为面 ABCD n 面 ABEF=AB,贝U AE=DB.又••• AP=DQ,• PE=QB. 又••• PM // AB// QN,BQ• PM PE QN "AB AE 'DC BD• PM QN"AB DC• P M /QN.四边形PMNQ 为平行四边形• PQ // MN.又••• MN 面 BCE ,PQ 面 BCE ,• PQ //面 BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK.•/ AD // BC,• DQ AQ"QB QK .又•••正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,A(1)A Q A P .则 PQ II EK.QK PE••• EK 面 BCE , PQ 面 BCE.••• PQ //面 BCE.例5、正方形 ABCD 交正方形 ABEF 于AB (如图所示)M 、N 在对角线 AC 、FB 上且AM= FN 求证:MN // 平面BCE证明:过N 作NP//AB 交BE 于P ,过M 作 MQ//AB 交BC 于QCM QM BN NPNP MQAC AB BF EF 又NP 〃AB 〃MQ :「MQPN于 A 、B 、C 、D 、E 、F ,若 GA=9,AB=12,BH=16 , S AEC 72,求 S BFDG/ \a E 1 1 l0 l /CAF DBHMN // PQ PQ 面BCE MN //面BCE〃,线段 GH 、GD 、HE 交 GD GH G AC // BDHE HA H AE//BFAC GA 9EAC FBDBD GB 21证明:AC // BDBF HB 16 AE II BF AE HA 28S AEC -AC2AE si nA373S BFD-BF BD sin B 7442 S BFD 96立体几何每日一练基础部分线面平行问题(中位线)1.在正方体 ABCD — A i B i C i D i 中,P 、Q 分别是 AD i 、BD 上的点,且 AP=BQ ,求证:PQ II 平面 DCC i D i 。

立体几何线面平行垂直,线面角二面角的证明方法

立体几何线面平行垂直,线面角二面角的证明方法
一:线面平行的证明方法:
1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线)
看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。
2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行)
DE∩PD=D, PC⊥PDE.又 PC 面PCF, 面PCF⊥面PDE。
例五:如图,在四棱锥 中,ABCD是矩形, ,
,点 是 的中点,点 在 上移动。
求证: 。
, (方法3)
, (方法2)

,点 是 的中点 (方法2)

(方法3)
例六:如图,在四边形 中, , ,点 为线段 上的一点.现将 沿线段 翻折到 ,使得平面 平面 ,连接 , .
NEMD,即四边形ABCD为平行四边形。 ME//DN
又 ME 面PMB,且DN 面PMB, DN//平面PMB
----------(利用1、1)的、方法,构造平行四边形)
例三:如图,已知点 是平行四边形 所在平面外的一点, , 分别是 , 上的点且 ,求证: 平面 .
证明:过E做EM//AD交PD
∴AH⊥ED,∴ DHA为所求二面角,
∵ ⊥平面 ,∴AD⊥DH,在RT ADH中,tan DHA= =
-----------(利用方法1)在等腰三角形DEG中作交线的垂线,反连AH证明垂直于交线)
例十二:如图,四棱锥S-ABCD的底面是矩形,SA 底面ABCD,P为BC边的中点,SB与平面ABCD所成的角为 ,且AD=2,SA=1。

立体几何中的向量方法(一)证明平行与垂直

立体几何中的向量方法(一)证明平行与垂直

立体几何中的向量方法(一)证明平行与垂直【考点梳理】1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0【考点突破】考点一、利用空间向量证明平行问题【例1】如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD =22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.[解析]法一如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知,A(0,2,2),B(0,-2,0),D(0,2,0).设点C的坐标为(x0,y0,0).因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF→=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .【类题通法】1.恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.2.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【对点训练】如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .[解析] ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF→=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎨⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB→=(2,0,-2), ∴PB→·n =0,∴n ⊥PB →, ∵PB ⊄面EFG , ∴PB ∥平面EFG .法二 PB→=(2,0,-2),FE →=(0,-1,0),FG→=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB→=2FE →+2FG →, 又∵FE→与FG →不共线, ∴PB→,FE →与FG →共面. ∵PB ⊄平面EFG , ∴PB ∥平面EFG .考点二、利用空间向量证明垂直问题【例2】如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[解析] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM→·PB →=32×1+0×0+32×(-3)=0,∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB . 【类题通法】1.利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.2.用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【对点训练】如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .[解析] 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c , m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc =4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三、利用空间向量解决探索性问题【例3】如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.[解析] (1)设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .【类题通法】向量法解决与垂直、平行有关的探索性问题1.根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.2.假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.【对点训练】如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ ⊥平面PQMN ?若存在,求出实数λ的值;若不存在,说明理由.[解析] (1)以D 为坐标原点,建立如图所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN→=(-1,-1,0),NP →=(-1,0,λ-2).当λ=1时,FP→=(-1,0,1),因为BC 1→=(-2,0,2), 所以BC 1→=2FP →, 即BC 1∥FP . 而FP ⊂平面EFPQ , 且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎨⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1). 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0, 即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22. 故存在λ=1±22,使平面EFPQ ⊥平面PQMN .。

立体几何中的平行与垂直判定

立体几何中的平行与垂直判定

立体几何中的平行与垂直判定立体几何是研究三维空间中的几何关系和性质的一门学科,平行与垂直判定是其中重要的一部分。

在解题过程中,准确判定两个线、面或空间立体之间的平行与垂直关系至关重要。

本文将介绍几种常用的判定方法,并通过具体例子进行说明。

一、平面与平面的判定在立体几何中,平面与平面间的平行与垂直关系是经常需要判断的。

下面将介绍两种常用的判定方法。

1. 垂直判定两个平面互相垂直的条件是它们的法向量垂直。

设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2垂直的条件可以表示为:n1·n2 = 0(向量的点积为0)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。

我们可以计算两个法向量的点积:n1·n2 = (2, -1, 3)·(1, 2, -1) = 2×1 + (-1)×2 + 3×(-1) = 0因此,平面1和平面2是垂直的。

2. 平行判定两个平面互相平行的条件是它们的法向量平行。

设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2平行的条件可以表示为:n1 = k·n2(k为非零实数)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。

我们可以通过判断两个法向量的比例关系来确定其是否平行。

在本例中,两个法向量的各个分量之间的比例并不相等,因此平面1和平面2不是平行的。

二、直线与直线的判定在立体几何中,直线与直线的平行与垂直关系也经常需要判断。

下面将介绍两种常用的判定方法。

1. 垂直判定两条直线互相垂直的条件是它们的方向向量垂直。

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。

立体几何平行垂直的证明方法课件

立体几何平行垂直的证明方法课件
平面内任意的直线都垂直。 7、如果两条平行线中的一条垂直于一条直线, 则另一条也
垂直于这条直线。
4
五、线面垂直的证明方法:
1.定义法:直线与平面内任意直线都垂直。 2.点在面内的射影。 3.如果一条直线和一个平面内的两条相交直线垂直,那么
这条直线垂直于这个平面。(线面垂直的判定定理) 4.如果两个平面互相垂直,那么在一个平面内垂直于它们
那么这两个平面平行。(面面平行的判定定理) 3.平行于同一平面的两个平面平行。 4.垂直于同一直线的两个平面平行。 5.面面平行的判定定理的推论。
3
四、线线垂直的证明方法:
1.勾股定理。 2.等腰三角形,三线合一 3.菱形对角线,等几何图形 4.直径所对的圆周角是直角。 5.点在线上的射影。 6.如果一条直线和一个平面垂直,那么这条直线就和这个
交线的直线垂直于另一个平面。(面面垂直的性质定理) 5.两条平行直线中的一条垂直于平面,则另一条也垂直于
这个平面。 6.一条直线垂直于两平行平面中的一个平面,则必垂直于
另一个平面。 7、两相交平面同时垂直于第三个平面, 那么两平面交线垂
直于第三个平面。(小题用) 8、过一点, 有且只有一条直线与已知平面垂直。(小题用) 9、过一点, 有且只有一个平面与已知直线垂直。(小题用)
9
(3)解 ∵EF⊥FB,∠BFC=90° ∴BF⊥平面 CDEF. ∴BF 为四面体 B-DEF 的高. 又 BC=AB=2,∴BF=FC= 2. VB-DEF=13×12×1× 2× 2=31.
10
8
+ (2)证明 由四边形ABCD为正方形, + 得AB⊥BC. + 又EF∥AB,∴EF⊥BC. + 而EF⊥FB,∴EF⊥平面BFC. + ∴EF⊥FH. ∴AB⊥FH. + 又BF=FC,H为BC的中点,∴FH⊥BC. + ∴FH⊥平面ABCD. ∴FH⊥AC. + 又FH∥EG,∴AC⊥EG. + 又AC⊥BD,EG∩BD=G, + ∴AC⊥平面EDB.

空间立体几何中的平行、垂直证明

空间立体几何中的平行、垂直证明
又∵AH⊂平面 PAB,且ED 平面 PAB
∴DE∥平面 PAB.
精选ppt
H
构造平行四边行法
23
(2)证明 在直角梯形中,CB⊥AB, 又∵平面 PAB⊥平面 ABCD, 且平面 PAB∩平面 ABCD=AB, ∴CB⊥平面 PAB. ∵CB⊂平面 PBC, ∴平面 PBC⊥平面 PAB.
精选ppt
看到中点找中点
D1 A1
DE A
C1
B1
F
C B
精选ppt
7
定理应用
空间中的平行
方法一):构造平行四边形
D1 A1
DE A
M
C1
B1
F
C
N
B
精选ppt
8
定理应用
空间中的平行
方法二):构造平行平面
D1 A1
DE A
C1
B1
F
HC B
精选ppt
9
定理应用
空间中的平行
例 2.如图所示, P在 AB四 C 中D 棱 ,锥 已知 A四 BC 是 边 D 形 平行四M 边 ,N分 形别 ,是PA点 ,, BC的中 证明:MND //面PPC
精选ppt
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感 谢
感 谢
阅阅
读读
分析: (1)证明线面平行只需在平面内找一条和 该直线平行的直线即可,也可转化为经过这条直线 的平面和已知平面平行;(2)证明面面垂直,只需在 一个平面内找到另一个平面的垂线.
精选ppt
21

立体几何中平行与垂直证明方法归纳

立体几何中平行与垂直证明方法归纳

a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b

立体几何中有关平行、垂直常用的判定方法

立体几何中有关平行、垂直常用的判定方法

有关平行、垂直问题常见判定方法一、 线线平行的判定1、 公理4:平行于同一直线的另两直线互相平行.a ∥b ,b ∥c ==> a ∥c2、 三角形中位线平行于底边;平行四边形对边平行;棱柱侧棱互相平行.3、 线面平行的性质:一条直线与一个平面平行,过该直线的平面与已知平面相交,该直线与交线平行.a ∥α,a ⊂β,αβ=b ==> a ∥bβαba4、 面面平行的性质:两个平面平行,同时与第三个平面相交,所得的两条交线互相平行.α∥β,γα=a ,γβ=b ==> a ∥bγβαb a5、 平行于同一平面的两直线互相平行.a ⊥α,b ⊥α ==> a ∥bαbacb a二、 线面平行的判定1、 线面平行的判定定理:若平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.a ⊄α,b ⊂α,a ∥b ==> a ∥ααba2、 若两平面平行,则一个平面内的任一直线与另一平面平行.α∥β,a ⊂α ==> a ∥βαβa3、 α⊥β,a ⊥β,a ⊄α ==> a ∥αβαa4、 a ⊥b ,b ⊥α,a ⊄α ==> a ∥ααab三、 面面平行的判定1、 面面平行的判定定理:若一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.a ⊂α,b ⊂α,a b =O ,a ∥β,b ∥β ==> α∥βOαβa bαβa2、垂直于同一直线的两个平面互相平行.a⊥α,a⊥β ==> α∥β (见上图)3、平行于同一平面的两个平面互相平行.α∥γ,β∥γ ==> α∥βαγβ4、柱体的上下底面互相平行四、线线垂直1、线线垂直的定义:a与b所成的角为直角.2、线面垂直的定义:若一条直线与一个平面垂直,则该直线与平面内的任一直线都垂直.a⊥α,b⊂α ==> a⊥bαab3、a⊥α,b∥α ==> a⊥bαab4、三垂直定理及其逆定理l ⊥α( H 为垂足),a ⊂α,HM 是斜线PM 在平面α内的射影三垂线定理(垂影则垂斜):a ⊥HM ==> a ⊥PM三垂线定理的逆定理(垂斜则垂影):a ⊥PM ==> a ⊥HMlM H Pαa5、a ⊥α,b ⊥β,α⊥β ==> a ⊥bβαab五、线面垂直的判定1、线面垂直的判定定理:若一直线和平面内的两相交直线都垂直,则该直线与此平面垂直.a ⊂α,b ⊂α,ab =O , l ⊥a ,l ⊥b ==> l ⊥αlOαab2、a∥b,a⊥α ==> b⊥ααba3、直棱柱的侧棱与底面垂直4、一条直线垂直于两平行平面中的一个平面,也垂直于另一个平面α∥β,a⊥α ==> a⊥βαβa5、面面垂直性质:两平面垂直,一个平面内垂直于它们交线的直线垂直于另一个平面.α⊥β,αβ=l,a⊂α,a⊥l ==> a⊥βl βαa5、 两相交平面同时垂直于第三个平面,则它们的交线也与第三个平面垂直.αβ=l ,α⊥γ,β⊥γ ==> l ⊥γl γβα六、面面垂直的判定1、定义:两平面相交所成二面角为直二面角.2、判定定理:若一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. a ⊥β,a ⊂α ==> α⊥βl βαa2、a ∥α,a ⊥β ==> α⊥βαaβ。

立体几何平行与垂直定理总结

立体几何平行与垂直定理总结

(2)范围: [0,180] (3)求法: 方法一:定义法。
m
Pl n
步骤 1:作出二面角的平面角(三垂线定理),并证明。
步骤 2:解三角形,求出二面角的平面角。
方法二:截面法。
步骤 1:如图,若平面 POA 同时垂直于平面和 ,则交线(射线)AP 和 AO 的
夹角就是二面角。 步骤 2:解三角形,求出二面角。
直线。
P l且P l
αPl
4 平行于同一条直线的两条直线平行
由公理1,2得到三个推论 推论1 经过一条直线和这条直线外 一点,有且只有一个平面 推论2 经过两条相交直线,有且只 有一个平面 推论3 经过两条平行直线,有且只 有一个平面
(一):线线平行:
方法一:用线面平行实现。
l //
m
l
//
l
方法二:用面面平行实现。
l
m
//
l
l
//
β α
l
方法三:用平面法向量实现。
n
l
n 若 为 平 面 的 一 个 法 向 量 , n l 且 α
l ,则 l // 。
(三)面面平行: 方法一:用线线平行实现。
l // l'
β
m // l, m
m'
且相交
//
l', m' 且相交
θ
O
步骤 2:解三角形,求出线面角。
n 方法二:向量法( 为平面 的一个法向量)。
n AP
sin cos n, AP n AP 方法三:等体积法求高.
(一) 二面角及其平面角
(1)定义:在棱 l 上取一点 P,两个半平面内分别作 l 的垂线(射线)m、n,则

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
因为点 E 是 AC 中点,点 F 为 AB 的中点,
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)

立体几何证明平行和垂直

立体几何证明平行和垂直

立体几何证明平行和垂直
在立体几何中,我们可以通过以下定理和性质来证明线段、平面、直线的平行和垂直关系:
1. 平行线定理:若两条直线与第三条直线交叉时,两个内角和等于180度,则这两条直线是平行的。

2. 垂直线定理:若两条直线相交时,相邻的内角是直角,则这两条直线是垂直的。

3. 垂直平分线定理:若一个直线通过一个线段的中点并与该线段垂直,则这条直线垂直于该线段。

4. 同位角定理:当一条直线与两条平行直线相交时,对应的同位角是相等的。

5. 垂直平分线性质:当一条直线垂直平分一条线段时,它同时垂直于该线段的两个中垂线。

6. 垂直平分线交角性质:当两条直线都垂直平分了同一条线段时,这两条直线是平行的。

根据以上定理和性质,我们可以利用构造图形、辅助线、角度计算等方法进行立体几何证明的平行和垂直关系。

这些证明通常涉及到直线与平面的交点、线段的中点、角度的大小等问题,需要根据给定的条件进行分析和推导。

需要注意的是,在立体几何证明中,除了以上的定理和性质,还可以利用立体几何中的其他相关定理和公式来辅助证明,具体证明方法也要根据具体情况灵活运用。

总之,立体几何的平行和垂直关系证明是一个比较重要的内容,需要熟悉相关定理和性质,并能够熟练运用各种证明方法来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c c ∥∥b a b
a ∥⇒本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。

是一份不可多得的好资料。

一、“平行关系”常见证明方法
(一)直线与直线平行的证明
1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质
3) 利用空间平行线的传递性(即公理4):
平行于同一条直线的两条直线互相平行。

4)
利用直线与平面平行的性质定理:
如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

5) 利用平面与平面平行的性质定理:
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
6) 利用直线与平面垂直的性质定理:
a b
α
β
b
a a =⋂⊂βαβ
α∥b
a ∥⇒
b a b a ////⇒⎪⎭

⎬⎫
==γβγαβα α
a
b
垂直于同一个平面的两条直线互相平行。

7)
利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。

8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。

2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。

3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

α
b
a
β
α
a
β
αα∥⊂a β
∥a ⇒β
α
⊥⊥b a b a ∥⇒b
∥a b a α
α⊂⊄α
∥a ⇒
2) 利用某些空间几何体的特性:如正方体的上下底面互相平行等
3) 利用定义:两个平面没有公共点
二、“垂直关系”常见证明方法
(一)直线与直线垂直的证明
1) 利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。

2) 看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直。

3) 利用直线与平面垂直的性质:
如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。

4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。

α
α
⊥⊂b a a
b ⊥
⇒α
a
b
α
αββ////∩⊂⊂b a P b a b a =α
β//⇒α
β
b
a
P
l
b l a b a l ⊥⊥⊂⊂=⋂⊥βαβαβαb
a ⊥⇒
βα∥5) 利用常用结论:
① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另一条直线也垂直于第三条直线。

② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么这两条直线互相垂直。

(二)
1) 利用某些空间几何体的特性:如长方体侧棱垂直于底面等
2)
看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂
直于此平面。

3) 利用直线与平面垂直的判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。

4) 利用平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

5) 利用常用结论:

② 两个平面平行,一直线垂直于其中一个平面,则该直线也垂直于另一
α⊥b b
a ∥α⊥⇒a β
α⊥⇒l
a a l ⊥⊂=⋂⊥α
βαβ
αc
a b a ⊥∥c
b ⊥⇒b
a
l
αA
α⊥⇒⎪⎪⎭

⎪⎬⎫l b
l a l A b a b a ⊥⊥=⊂⊂ α
α b
α
α
∥b a ⊥b
a ⊥⇒β
α
a
l
个平面。

α
β⊂⊥a a βα⊥

(三)平面与平面垂直的证明
1) 利用某些空间几何体的特性:如长方体侧面垂直于底面等
2) 看二面角:两个平面相交,如果它们所成的二面角是直二面角(即平面角
是直角的二面角),就说这连个平面互相垂直。

3) 利用平面与平面垂直的判定定理
一个平面过另一个平面的垂线,则这两个平面垂直。

(注:可编辑下载,若有不当之处,请指正,谢谢!)
a
α
β。

相关文档
最新文档