数列中an与Sn的关系
数学人教A版高中必修5数列中an与Sn的关系探究优秀学案
数列中n a 与n S 的关系探究1、理解数列的前n 项和n S 与通项n a 的关系;对数列的前n 项和n S 与通项n a 的关系能有较深刻的理性认识,会变形利用⎩⎨⎧≥-==-.2,;1,11n S S n S a n n n )(*N n ∈来解决一些与n a 及n S 有关联的一定难度的灵活性、综合性问题,形成技能。
2、通过对问题探究与变式训练,体会⎩⎨⎧≥-==-.2,;1,11n S S n S a n n n )(*N n ∈联结数列的通项n a 和前n 项和n S 的作用。
重点:由数列前n 项和n S 与通项n a 的关系求n a ; 难点:(1)由1-⇒n n S S 及使用1--=n n n S S a 的前提条件”“2≥n ; (2)由数列前n 项和n S 与通项n a 的关系,进行n a 与n S 的转化。
1、回顾:我们前面学过等差数列、等比数列,可以由a n →S n ,如等差数列中有2)(1n n a a n S +=;等比数列中有S n →a n ,如已知22n S n n =+,可以求a n 。
2、问题引入:如果知道a n 与S n 之间的关系式,能否求a n 或S n 呢? 3、典型例题及类题演练:例1:2016年全国III 卷17题:已知数列}{n a 的前n 项和n n a S λ+=1,其中0≠λ。
(1)、证明}{n a 是等比数列,并求其通项公式;(2)、若32315=S ,求λ。
类题演练:2015年全国I 卷17:n S 为数列}{n a 的前n 项,已知342,02+=+>n n n n S a a a .(1)、求}{n a 的通项公式;(2)、设11+=n n n a a b ,求数列}{n b 的前n 项和。
问题演变:变式:已知正项数列{a n }的前n 项和为n S ,a 1=3,且)2(21≥=+-n a S S n n n ,求该数列的通项a n 。
等差数列中Sn与an间的重要关系及应用
等差数列中S n 与a n 间的 重要关系及其应用“设S n、a n分别是等差数列{a n}的前n 和与通项,则它们之间有如下的重要关系:S n =(kn )a n ,其中k 是非零实数,n 是正整数。
”我们知道,等差数列{a n }的前n 和S n 、通项a n 分别有如下的表达式:⑴ S n =na 1- n(n-1)2 d ,其可等价变形为S n = d 2 n 2 +(a 1-d2 )n ,它是关于n 的二次函数且不含常数项,一般形式是:S n =An 2+Bn ,其中A 、B 是非零待定系数;⑵ a n = a 1 +(n-1)d ,其可等价变形为a n =dn+(a 1 -d ),它是关于n 的一次函数,一般形式是:a n =an+b ,其中a 、b 是非零待定系数;通过对等差数列{a n }前n 和S n 的一般形式S n =An 2+Bn 与其通项a n 的一般形式a n =an+b 的观察分析,不难得出S n 与a n 之间有这样的重要关系式:S n =(kn )a n 。
S n 与a n 相互关系的应用举例:[例1]在等差数列{a n }中,a 4=0.8,a 11=2.2,求a 51+a 52+…+a 80.【解】 由等差数列的通项公式得⎩⎨⎧=+=+2.2108.0311d a d a ,解得a 1=0.2,d =0.2.∴a 51+a 52+…+a 80=S 80-S 50 =80a 1+d a d 2495050279801⨯--⨯=30a 1+1935d =30×0.2+1935×0.2=393. 【点评】 本题求解分两个层次,首先由已知求出a 1和d ,再将所求转化为S 80-S 50,这是解题的关键.[例2]根据数列{a n }的前n 项和公式,判断下列数列是否是等差数列. (1)S n =2n 2-n (2)S n =2n 2-n +1【解】 (1)a 1=S 1=1 当n ≥2时,a n =S n -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=2(2n -1)-1=4n -3∵n =1 时也成立,∴a n =4n -3 a n +1-a n =[4(n +1)-3]-[4n -3]=4∴{a n }成等差数列(2)a 1=S 1=2 a 2=S 2-S 1=5 a 3=S 3-S 2=9 ∵a 2-a 1≠a 3-a 2 ∴{a n }不是等差数列.【点评】 已知S n ,求a n ,要注意a 1=S 1,当n ≥2时a n =S n -S n -1, 因此a n =⎩⎨⎧≥-=-)2( )1(11n S S n S n n.练习: 已知等差数列{a n }的前项和S n 满足条件:S n =2n 2+3n ,求此等差数列的通项a n解: 根据等差数列的前n 项和S n 是关于n 的二次函数且不含常数项,即S n = d 2n 2+(a 1-d 2 )n,并结合已知条件等差数列{a n }的前项和S n =2n 2+3n 立有, d2 =2且a 1-d2=3, 解之得 a 1=5,d=4,于是便得所求等差数列的通项a n =4n+1. [例3]已知等差数列{a n }满足:S p =q ,S q =p ,求S p +q (其中p ≠q ). 【解】 由已知S p =q ,S q =p 得 pa 1+q d p p =-2)1( ① qa 1+p d q q =-2)1( ② ①-②整理得2)1(21dq p a -++=-1∴d q p q p a q p S q p 2)1)(()(1-++++=+=(p +q )2)1(21d q p a -++=-(p +q ) 【点评】 本问题即是在a 1、d 、n 、a n 、S n 中知三求二问题,但在解方程的过程中体现出了较高的技巧;也可考虑设S n =An 2+Bn 去求解. 例4 有两个等差数列{a n }、{b n },其前n 和分别为S n 、 T n ,并且n n T S =7n+2n+3 ,求:⑴ 55b a 的值;⑵115b a的值分析:由等差数列可知,其前n 项和是关于n 的二次函数且不含常数项;根据已知条件,两个等差数列前n 项和的比的结果是关于n 的一次因式,说明它们在相比的过程中约去了一个共同的因式kn ,于是,我们只要将其还原,即可得到两个等差数列的前n 项和,再对照等差数列前n 项和的二次函数形式:S n = d 2 n 2 +(a 1-d2 )n ,很快便可得到其首项、公差与通项,进而由等差数列通项公式求出数列中的任意一项。
数列中An与Sn的关系(选用)
n a 与n S 的关系数列是高中数学的重要内容之一,也是高考的的考查重点。
在数列这部分的内容中,一定要处理好数列{}n a 的通项n a 与前n 项和n S 的关系,即 ⎩⎨⎧≥-==-.,2,111n S S n S a n n n 。
下面通过几例,与同行共同探讨。
一.已知n S 求n a例1 已知数列{}n a 的前n 项和为n S ,且1)1(log 2+=+n S n ,求数列{}n a 的通项公式。
解:由1)1(log 2+=+n S n 得,121-=+n n S ,当1=n 时,311==S a ; 当2≥n 时,1--=n n n S S a n n n 2)12()12(1=---=+,综上所述,数列{}n a 的通项公式为⎩⎨⎧≥==.2,2,1,3n n a n n 二.已知n a 求n S例2 已知数列{}n a ,)(2*∈=N n n a n n ,求{}n a 的前n 项和n S 。
解:∵n n a a a a S ++++= 321∴n S =n n n n 221242322211432+-+++++- -------------------------(1) 在(1)两边同乘以21得 143222123222121++-++++=n n n n n S --------------------------(2) )2()1(-得14322)21212121(2121+-+++++=n n n n S =1221++-n n ∴n n n S 222+-=。
三.已知n a 与n S 的关系,求n a 或n S例 3 设{}n a 是正数组成的数列,其前n 项和为n S ,且对于所有的正数n ,n a 与2的等差中项等于n S 与2的等比中项,求{}n a 的通项公式。
解:由题意知 n n S a 222=+,∴8)2(2+=n n a S ,又8)2(211+=--n n a S∴ 8448)2(8)2(12122121-----+-=+-+=-=n n n n n n n n n a a a a a a S S a 0)4)((0)(4111212=--+⇒=+------n n n n n n n n a a a a a a a a , ∵{}n a 是正数组成的数列,∴01≠+-n n a a ,∴041=---n n a a 即 41=--n n a a ,故{}n a 是等差数列,且首项21=a ,公差4=d , ∴ 24)1(1-=-+=n d n a a n ,∴数列{}n a 的通项公式为24-=n a n 。
数列中an及Sn的关系
对于任意一个数列,当定义数列的前n项和通常用S表示时,记作S= a i+ a2+・・・+禺,此时通项公S,n= 1,式a n= .Si—S T, n》2而对于不同的题目中的a n与S的递推关系,在解题时又应该从哪些方向去灵活应用◎= S— S-1 (n》2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n与S相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S,求a n;角度二:客观运用a n= S—S—1 (n》2),求与如S有关的结论;角度三:a n与S的延伸应用.方法:已知 $求a n的三个步骤(此时S为关于n的代数式):(1) 先利用a i= S求出a i ;(2) 用n—1替换S中的n得到一个新的关系,利用a n = S—S—1 (n》2)便可求出当n》2时a n的表达式;(3) 对n= 1时的结果进行检验,看是否符合n》2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n = 1与n》2两段来写.同时,在部分题目中需要深刻理解“数列的前n项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S求解.女口:a+ 2a2+ 3a s+ — + na n= 2n—1,其中a+ 2比+ 3a s+^+ na n表示数列{na n}的前n 项和.1.已知数列{a n}的前n项和S= n2—2n+2,则数列{a()n}的通项公式为A. a n = 2n —3 B . a n= 2n+ 31, n= 11, n= 1C. a n = D . a n =2n —3, n》22n+ 3, n》2【解析】当n》2时,a n = S n —S n—1 = 2n—3 .当n = 1时,a1= S = 1,不满足上式.【答案】C2. (2015 •河北石家庄一中月考)数列{a n}满足:a1+ 3a2+ 5&+…+ (2 n—1) • a n= ( n—1) • 3n+1+ 3( n € M),则数列的通项公式a n= _____________ .【解析】当n》2时,a1 + 3a2 + 5a3+-+ (2n —3) • a n—1= (n —2) • 3n+ 3;则用已知等式减去上式得(2 n—1) • a n = (2n—1) • 3,得a n= 3 ;当n = 1 时,a i = 3,满足上式;故a n = 3.【答案】a n= 3n3. ____________________________________________________________________________________ (2015 •天津一中月考)已知{a n}的前n项和为S,且满足log2(S+1) = n +1,贝U a n= ______________________________ .【解析】由已知得S+ 1= 2n+1,贝U S= 2n+1—1;当n》2 时,a n= S—S—1= 2n+1—1 —2n+ 1 = 2n;当n3, n= 1=1时,a1 = S1 = 3,不满足上式;故a n= n.2 , n》23, n= 1【答案】a n= n2 , n》24. (2015 •四川成都树德期中)已知{a n}是一个公差大于0的等差数列,且满足a3a5= 45, a2 + a6= 14.(1) 求{a n}的通项公式;b b2 b n(2) 若数列{b n}满足:空+ 尹…+ 2 = a n+ 1(n€ M),求{b n}的前n项和.【解】(1)设等差数列{a n}的公差为d,则d>0,由a2+ a6= 14,可得a4= 7由a3a5= 45,得(7 —d)(7 + d) = 45,解得d= 2 或d=—2(舍)a n= a4+ ( n—4) d= 7+ 2( n —4),即a n= 2n—1.b n(2) 令6=尹贝U C1+ C2+ C3+ — + C n= a n+ 1 = 2n ①当n》2 时,d+ C2+ C3+・・・+ C n-1= 2( n—1) ②由①一②得,C n= 2,当n= 1时,C1= 2,满足上式;b n n 亠 1贝U C n= 2(n€ N*),即戸=2, . b n= 2 + ,故数列{b n}是首项为4,公比为2得等比数列,4(1 —2n) n+2•••数列{b n}的前n项和S n= = 2 +—4.1 —2此类题目中,已知条件往往是一个关于a n与S n的等式,问题则是求解与a n, S有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n,还是S.那么,主要从两个方向利用a n= S n—S n- 1( n》2):方向一:若所求问题是与a n相关的结论,那么用S—S—1 = a n ( n》2)消去等式中所有S与S n—1,保留项数a n,在进行整理求解;1. (2015 •广州潮州月考)数列{a n}的前n项和记为S, ai = 1, a n+1= 2S+ 1(n》1, n€ N*),则数列的通项公式是.【解析】当 n 》2 时,a n = 2S — i +1,两式相减得 a n +i — a n = 2( S — S —J ,即 a n +1 — a n = 2a n ,得 a n +1 = 3a n ;当n = 1时,a 2= 3,则a 2= 3a i ,满足上式;故{a n }是首项为1,公比为3得等比数列,二a n = 3 I . 【答案】a n = 3n — 12.数列{a n }的前 n 项和为 S,若 a n +1 = — 4S +1, a 1= 1. (1) 求数列{a n }的通项公式;(2) 设b n = na n ,求数列{b n }的前n 项和T n .【解】(1)当 n 》2 时,a n = — 4S —1 + 1,又 a n +1 = — 4S + 1,又 a 2 = — 4a 1 + 1 = — 3, a 1 = 1,•••数列{a n }是首项为a 1= 1,公比为q =— 3的等比数列,⑵由(1)可得b n = n • ( — 3)T n = 1 • ( — 3)0+ 2 • ( — 3)1 + 3 • ( — 3)2 +•••+ (n — 1) • ( — 3)n —2 + n • ( — 3)n —1,—3T n = 1 • ( — 3)1 + 2 • ( — 3)2+…+ (n — 2) • ( — 3)n —2 + (n — 1) • ( — 3)n —1+ n ( — 3)n ,1 2 n — 1n.•4 T n = 1 + ( — 3) + ( — 3) +…+ ( — 3)— n ,( — 3),16方向二:若所求问题是与 S 相关的结论,那么用 &= S — S —1 (n 》2)消去等式中所有项数 a n ,保留S 与$-1,在进行整理求解.11. 已知数列{a n }的前n 项和为S 且满足a n + 2S • S-1 = 0( n 》2) , a 1=玄1(1) 求证:—是等差数列; (2) 求a n 的表达式.【解】(1)证明:••• a n = S — S-1( n 》2),又 a n =— 2S • S-1,• S n - 1 — Si = 2S n • Si - 1 , S n M 0 .11因此疋―W= 2( n 》2).S 1 S 1— 111 1故由等差数列的定义知$是以&=一=2为首项,2为公差的等差数列.Si S 1 a 11 1 1(2)由(1)知S = S + (n — 1)d = 2 + (n — 1) x 2= 2n ,即 S =亦.1当 n 》2 时,a n =— 2S • Si —1 =—2n (n — 1)I又T a 1 = ,不适合上式.a n= ( — 3)n — 11 — (4n + 1)( — 3)所以, T n =--a n +1 — a n = —4a即—3(n 》2),12, n = 1,2. (2015 •江西名校联盟调考)已知正项数列{a n }的前n 项和为S ,且a 2— 2S a n + 1 = 0. (1) 求数列{S }的通项公式;1 1 1 一 1 2(2) 求证:$+疋+…+Q >2(S+I — 1).(提示: 一 > ------------------------ )o ! S2 Sn寸 n 寸 n +1+寸 n【解】(1) T a n = S1— Si -1 (n 》2),由 a n — 2S n a n +1 = 0,得(S — S —1)2— 2S n (S n — S —1) + 1= 0,整理得 S 2— S 2— 1= 1 . 当 n = 1 时,a 1 — 2Sa 1 + 1 = 0,且 a 1 >0,解得 a = 1, 故由等差数列的定义知{S n }是以1为首项,1为公差的等差数列. • S n = n ,则 S n = n . 亠 & 1 1 22 ,—— 厂⑵由⑴知十=丽>$+讦=2("—回,• S + S +…+ S >2( .2 — 1) + 2( 3 — 2) +…+ 2( n + 1— , n) = 2( n + 1 — 1) 即 1 + 2+…+ 1 > 2(S n + 1— 1)【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.S , n = 1, 解此类题目中不仅需要深刻理解“数列的前 n 项和”的实际意义,还需要对a n =关S n — S n - 1 , n系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前n 项和此类题目中一般出现“数列 {a n }的前n 项和为S,数列{S }的前n 项和为T n ”的条件,在解答时需要 确定清楚求的是与 a n , S n , T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的/ .1. (2015 •湖北武汉质检)设数列{a n }的前n 现和为S ,数列{S }的前n 项和为T n ,满足T n = 2S — n 2,n € N*.(1) 求a 1的值;(2) 求数列{a n }的通项公式.【解】(1)当 n = 1 时,T 1= 2S — 1,且 T 1 = S = a 1,解得 a 1= 1,(2)当 n 》2 时,S n = T n — T n -1= 2S — n — [2 S -1 — (n — 1) ] = 2S — 2S n -1 — 2n + 1a n =1 2n (n — 1)n 》2.i +1 i歹(1 -尹)n + 1_3尹=2n + 3 3盯v 2--S n = 2Si -1 + 2n — 1①则 S+1 = 2S + 2n +1②由②一①,得 a n +i = 2a n + 2,••• a n + 2 = 3 - 2n -1,贝y a n = 3 • 2n -1-2(n € N*).2• (2015 •安徽滁州期末联考)设数列{a n }的前n 项和为S,数列{S n }的前n 项和为T n ,且2T n = 4S n -2(n + n ), n € N*.(1) 证明:数列{a n + 1}为等比数列;n +1(2) 设 b n =■ ~-,证明:b 1 + b 2+^+ b n v 3.a n + 1【解】(1)当 n = 1 时,2T 1 = 4S - 2,且 T 1 = S= a 1,解得 a= 1,当 n = 2 时,212= 2(a + ◎ + a ?) = 4(a+ a ?) — 6,解得 a ?= 3, 当 n >2 时,2T n -1= 4S n -1-[( n — 1) + (n - 1)]• 2S = 2T n - 2T n -1 = 4S — (n + n ) — 4S -1 + [( n — 1) + ( n — 1)] 整理得s= 2S n -1 + n ① 则 S n +1 = 2S + n + 1②由②一①,得 a n +1 = 2a n + 1 ,a n + 1 + 1• a n +1 +1= 2(a n + 1),即——=2(n 》2),a n + 1•数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n + 1 = 2n ,贝 y b n =号1则 b 1+ b 2+-+ b n = |+ 22 + 壬…+2 2 2令T n = 2 +斗芬+专,① 则扣=|+1+寺…+ 7+齐,②,—+ 1 1 1 1 1 n +1由①一②,得2几=1+戸+戸+尹••+歹一I ^+Ta n +1 + 2K+I=E 2),易求得, a i + 2= 3, a 2 + 2= 6,贝U=2 ,显然a ?+ 1 a 1 + 1n + 12 ,a n + 1 + 2= 2( a n + 2), 即•••数列{a n + 2}是首项为3,公比为2的等比数列,1 则 T n V 3,即 b i + b 2+…+ b n v 3.方向二:已知等式在整理过程中需要因式分解求数列{a n }的通项公式.【解】(1)当 n = 1 时,「= 2S — 1;又 T 1 = S = a 1,__22(2)当 n 》2 时,S n = T n — T n — 1 = (2 S n — n ) — [2 S n —1 — (n — 1) ] = 2S n — 2 Si — 1 — 2n + 1,整理得s= 2$-1 + 2n — 1①•- S n + 1 = 2S n + 2n + 1②由②一①,得 a n +1 = 2a n + 2又 T 2= 20— 4;得 a 2= 4a 1 + 2当 n = 1 时,a1+ 2 = 3,比+ 2= 6,则市=2,•••数列{a n + 2}是以3为首项,2为公比的等比数列. 则 a n + 2 = 3 ・2“ 1,所以 a n = 3 ・2“ 1 — 2. 已知数列{ a n }的各项均为正数,前n 项和为$,且S= a (a J ° , n € N*.1设 b n = 2S , T n = b + b 2+…+ b n ,求 T n .a 1 (a 1 + 1)【解】(1)由已知得,当n = 1时,a 1 = S =2 ( &> 0) , - a 1= 1.22S a n + a n ,当n 》2时,由cc 22Si —1 = a n — 1 + a n — 1得 2a n = a n + ai — a n - 1 — a n —1 . 即(a n + a n -1)( a n — a n — 1 — 1) = 0,a n + a n —1 >0, • a n — a n — 1 = 1( n 》2).所以数列{a n }是以1为首项,1为公差的等差数列.(2)由(1)可得 a n = n , $= n(ri+ ° , b n = 2 =1——=-—^^22S n (n + 1) nn +1此类问题大多数时候会伴随"各项均为正数的数列{a n } ”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.(2015 •山东青岛一模)各项均为正数的数列2{a n }满足 a n = 4S — 2a n —1( n € N*),其中 S 为{a n }的n 项和. (1) 求a i , a 2的值;则 a 1= 2a — 1,解得 a 1= 1 ;...a n + 1 + 2= 2( a n + 2),即 a n + 1 + 2K =2(n > 2)(1) 求证:数列{a n }是等差数列;方向三:需对已知等式变形后,再求解1. (2015 •江西五校联考)已知正项数列{&}中,其前n 项和为S ,且a n = 2西一1. (1) 求数列{a n }的通项公式;1(2) 设 b n =, T n = b 1 + b 2+ b 3+…+ b n ,求 T n .a n • a n+1【解】(1)由已知得,4S = (a n + 1)2.当 n 》2 时,4S —1= (a n -1+ 1)2,2222则 4S1 — 4S n - 1 = (a n + 1) — ( a n - 1 + 1),整理得(a n — 1) — ( a n - 1 +1) = 0 ,..(a n — a n — 1 — 2)( a n + a n — 1) = 0 又 a n > 0,贝U a n — a n — 1 = 2,2当 n = 1 时,4S = (a 1 +1),得 a 1 = 1 ; 故数列{a n }是首项为1,公差为2的等差数列;--a n = 2n — 1.1 111 1 12 1 —3 + 3 — 5 +…+ 2n — 1 — 2n + 1 1 1 n 2 1 — 2n + 1 = 2n + 12. (2015 •浙江温州中学月考)设数列{a n }的前n 项和为S,已知a 1 = 2, a 2= 8, $+1 + 4S -1= 5$(n 》2) , T n 是数列{log 2a n }的前n 项和.(1) 求数列{a n }的通项公式; (2) 求 T n .【解】(1)当n 》2时,S+1+ 4S —1= 5S ,..S n + 1 — Si = 4( S n — S n — 1),即 N n + 1 = 43n , 当 n = 1 时,a 2= 4a 1;故数列{a n }是以2为首项,4为公比的等比数列.n —12n —1a n = 2 • 4 = 2.2n 一 1(2)由(1)可知 log 2a n = log 22 = 2n — 1,111 1 ...T n = b 1 + b 2+ b 3+ …+ b n = 1—石 + 石一厅+…+ - 2 2 3 n1 1 nn =1—nnn n T! •1 1 1⑵由(1)可得"=K =犷* — 1 1 2 2n —11 2n + 1,T n =+ £ + £ +…+ b 1 b 2 b 31b n•- A n =1 — q n1 — q ,4. (2015 •辽宁沈阳诊断考试)设数列{a n }的前n 项和为S, a 1= 10, a n +1 = 9S + 10. (1)求证:{lg a n }是等差数列;⑵设Tn 是数列(lg a n )(lg a n +!)的前n 项和,求Tn ;1 2⑶ 求使T n >4(m i — 5m )对所有的n € N*恒成立的整数 m 的取值集合.【解】(1)证明:当n 》2时,&= 9S — 1+ 10,/• T n = log 2a i + log 2a ?+ log 2a 3+・・・+ log 2a n=1 + 3+ 5+…+ 2n — 1n (1 + 2n —1) 23. (2015 •江西三县联考)已知数列{a n }的各项均为正数, 记A (n ) = a i + a 2+-+ a n , B ( n )=a 2 + a 3+…+ a n +1, C ( n )= a 3 + a 4 +…+ a n +2,其中 n € N .(1)若a 1= 1, a 2 = 5,且对任意n € N ,三个数A (n ),巳n ) , C (n )依次组成等差数列,求数列{a n }的通项公式;⑵ a 1 = 1,对任意n € N*,三个数A (n ),耳n ) , C (n )依次组成公比为 q 的等比数列,求数列{a n }的前n 项和A.【解】(1) •••任意n € N*,三个数A (n ) , B ( n ) , C (n )依次组成等差数列,••• B ( n ) — A ( n ) = C ( n ) — B ( n ),贝V a n +1 — a 1 = a n + 2— a 2,即卩 a n + 2— a n +1 = a 2— a 1 = 4, 故数列{ a n }是首项为1,公差为4的等差数列;•- a n = 1 + (n — 1) x 4 = 4n — 3.(2)若对任意n € N*,三个数A (n ),B ( n ),C (n )依次组成公比为q 的等比数列,• B (n ) = qA (n ), C ( n ) = qB (n ), 则 C (n ) — Rn ) = q [Bn ) — A ( n )],得 a n + 2— a 2= q (a n +1 — a 1),即 a n + 2—qa n +1 = a 2— qa 1 , 当 n = 1 时,由 耳1) = qA (1),可得 a 2= qa ; a n +2 a 2 则 a n + 2—qa n +1 = a 2— qa = 0,又 a n >0,则—==q ,a n +1 a 1故数列{a n }是以1为首项,q 为公比的等比数列.a n + 1 a n + 1 — a n = 9( S n — S n _1),贝U a ・+ 1= 10a n ,即 =10,a n当 n = 1 时,a 2= 9a 1+ 10= 100,则竺=10, a 1故数列{a n }是以10为首项,10为公比的等比数列.a n = 10:贝y ig a n = n ,--lg a n +1 — Ig a n = n + 1 — n = 1,故数列{Ig a n }是首项为1,公差为1的等差数列.- 3 11⑵解:由(1)知 --=——=3 -—(Ig a n ) (lg a n +1)n n +1 n1 1 1 1 1 1• Tn =31 —1+1—3+…+ n —市=31—市3n3⑶Tn =市=3—市,3•••当n = 1时,T n 取最小值2-依题意有|>治—5n ),解得一1v m< 6, 故整数m 的取值集合为{0,1,2,3,4,5}1. (2015 •江苏扬州外国语中学模拟 )已知数列{a n }的前n 项和S = 2n — 3,则数列{a n }的通项公式为 __________ .【解析】当n 》2时,a n = Si — Si -1 = I — 3— I 1 + 3 = I 1.当n = 1时,a 1= S = — 1,不满足上式.—1, n =1【答案】a n = n — !2, n 》2a 2a n 2n2. (2015 •辽宁沈阳二中月考)已知数列{a n }满足a 1 + - +…+ -= a — 1,求数列{a n }的通项公式. 【解】当n 》2时,a 1 +号+…十-^7 = a 2n —2 — 12 n — 1an2n 2n — 2 2 2n —2由已知等式减去上式,得 -=a — 1 — a + 1 = (a — 1)a ,n —2…a n = n (a — 1) a ,3 (2015 •安徽江淮十校联考)已知函数f (x )是定义在(0,+^ )上的单调函数,且对任意的正数x .y 都有 f (x • y )= f (x ) + f (y ),若数列{a n }的前 n 项和为 S,且满足 f(S + 2) — f (a n )= f (3)( n € M),则 a n3nn +^.当n = 1时,a 1= a 2— 1,满足上式;.2八 2n—2• a n = n (a — 1) a .n — 1A. 2C. 2n—1【解析】由f(x • y)= f (x) + f(y) , f (S+ 2) —f(a n)= f (3),得S+ 2 = 3a n, S—1+ 2= 3a n—1 (n》2),3 两式相减得2a n= 3a n—1 ;当n= 1时,S + 2= 3a1= a1 + 2,则a1= 1 .所以数列{a n}是首项为1,公比为q的等比数列.3 n 1 【答案】a n= 2 n—134. (2015 •辽宁鞍山二中期中)设数列{a n}是等差数列,数列{b n}的前n项和S满足S=^(b n—1),且a2 = b1, a5= b2.(1) 求数列{a n}和{b n}的通项公式;(2) 设C n= a n • b n, T n 为{C n}的前Fl 项和,求T n .3【解】(1)当n >2 时,S n— 1 = 2(b n—1—1),3 3 亠则b n= S n—S n—1= ^( b n—1) —?(b n —1- 1),整理得b n = 3b n—13当n= 1 时,b1 = ^(匕一1),解得b1= 3 ;故数列{b n}是以3为首项,3为公比的等比数列.b n= 3,设等差数列{a n}的公差为d,由a2= b1= 3, a5= b2= 9,a1 + d = 3,则解得d= 2, a1 = 1,—a n= 2n—1,a1 + 4d= 3,a n= 2n—1,b n= 3.(2)由(1)知C n= a n • b n= (2n —1) • 3n,• T n= 3 + 3 • 32+ 5 • 33+…+ (2 n—1) • 3n,①3T n= 3 2+ 3 • 33+ 5 • 34+…+ (2 n —3) • 3n+ (2n—1) • 3n+1,②由①一②,得—2T n= 3+ 2(3 2+ 33+…+ 3n ) —(2 n—1) • 3n+1【解析】由已知1 n》2时,a n= 2S1-1①当n》3时,①—②整理得a n1,n= 1,=3 ( n》3), • a n = n- 2a n—12X3 ,n》2.1,n= 1,【答a n =n 22X3 ,n》2.(2015 •广东桂城摸底6.a n- 1 = 2S1 -2 ②B. nD.=3+ 2X2 n —1、3 (1 —3 )—(2n—1) 3n+1(2 —2n) • 3n+1—6,)已知各项均为正数的数列{a n }的前n 项和为S,且a :+ a n = 2S .(1) 求a i ;求数列{a n }的通项公式; ⑶若b n=-5n € N*) , T n = b 1+ b 2+・・・+ b n ,求证:T n < -.提示:31 1n "< 2 2n — 1 2n +12【解】(1)当 n = 1 时,a i + a i = 2S ,且 a n > 0,得 a i = 1 ;(2) 当 n 》2 时,a n -1 + a n —1 = 2S -1 ①;且 ai + a n = 2S n ②;由②一①,得(a n +a n — 1)( a n — a n — 1— 1) = 0, 又 a n > 0,贝U a n — a n -1= 1,故数列{a n }是首项为1,公差为1的等差数列;1 1⑶证明:由⑵知,b n = 2=「a n2,5当n = 1时,b 1= 1 <3,不等式成立; 11 41当 n 》2 时,孑< Yl = 4n 2— 1 = 2 乔 12n + 1,n —41 1 12 5• Tn =b1+b+・・+ bn =1+尹尹•••+ 冷v 1 + 2 3—才5—7^+ 冇—市 <1 +3=3, 3 555• Tn < 32 *7. (2015 •大连双基测试)已知数列{a n }的前n 项和S = n +2n +1(n € N),贝U a n= ______________________________ .4, n = 1, 【解析】当 n 》2 时,a n = Si — S n -1 = 2n + 1,当 n = 1 时,a 1 = S = 4去2x 1 + 1,因此 a n =2n +1, n 》2.4, n = 1【答案】2n + 1, n 》21& (2014 •烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且刁a n , $成等差数列. (1)求数列{a n }的通项公式;11 1【解】(1) T 2, a n , S 成等差数列,二2a n = S n + 2,t丄11 当 n = 1 时,2a 1 = S + 2,二已1= 2,t丄1 1当 n 》2 时,S n = 2a n — 2, S n - 1 = 2a n — 1 — 2,a n 两式相减得:a n = Si — S —1 = 2a n — 2 a n — 1,「. —= 2,a n — 11 1所以数列{a n }是首项为2,公比为2的等比数列,即a n = 2"n —1 = 2n —2.(2) T b n = (log 2a 2n +1)x (I og 2a 2n + 3)= (log 222n +1—2) x (log 222n +3—2) = (2 n —1)(2 n +1),1 1 1 1 1 1/.——= x =— ,b n 2n — 12n + 12 2n — 1 2n + 11数列 的前n 项和b n1 11 11 111 1111 n1b 1 +b 2+b 3+ +b n 213 + 3 5 ++2n — 12n +12 12n +12n +19. __________________________________________________________________________ (2014 •山西四校联考)已知数列{a n }的前n 项和为S , S= 2a n — n ,贝U a n = ____________________________________________________________ .【解析】当 n 》2 时,a n = S n — S n —1 = 2a n — n — 2an —1 + (n — 1),即 a n = 2a n — 1 + 1, • a n +1 = 2( a n —1 + 1), •数列{a n +1}是首项为a 1+ 1 = 2,公比为2的等比数列,• a n +1 = 2・2 n —1= 2n ,「. a n = 2n — 1.【答案】2n — 1n 2 + n *10. (2014 •湖南卷)已知数列{a n }的前n 项和S= —, n € N .(1)求数列{a n }的通项公式;⑵ 设b n = 2a n + ( — 1)n a n ,求数列{b n }的前2n 项和.【解】(1)当n = 1时, a 1 = S 1 = 1 ;当n 》2时, 22小 cn + n n — 1 + n — 1a n Si Si-12 2 n .又a 1= 1满足上式,故数列{a n }的通项公式为a n = n .(2)由(1)知,b n = 2n + ( — 1)n n ,记数列{b n }的前2n 项和为Tm ,_122n则 T 2n = (2 + 2 +…+ 2 ) + ( — 1 + 2— 3+ 4—…+ 2n ).B= ( — 1 + 2) + ( — 3+ 4) +…+ [ — (2n — 1) + 2n ] = n .故数列{b n }的前 2n 项和 T 2n = A + B= 22n +1 + n — 2.11.已知数列{a n }是各项均为正数的等比数列, a 3= 4, {a n }的前3项和为7.(1)求数列{a n }的通项公式;记 A = 21+ 22 +…+ 22n ,B=— 1 + 2 — 3+ 4-…+ 2n ,则 A =-2n1 —2 1 — 2=22n +1n1111 ⑵ 若ab + a 2b 2 + ・・・+ a n b n = (2 n — 3)2 n + 3,设数列{ b n }的前n 项和为 S,求证:+…+2—- .S 1 S 2Si na*1 q 4,a*1 1,【解】 ⑴ 设数列{a n }的公比为q ,由已知得q >0,且/•a 1 + ag + 4= 7,q = 2.•••数列{a n }的通项公式为a n = 2n —1.(2)【证明】当n = 1时,a1b = 1,且a 1 = 1,解得b 1 = 1.当 n 》2 时,a n b n = (2n — 3)2 n + 3 — (2 n — 2 — 3)2 n — 1 — 3 = (2n — 1)・2 n — 1. a n = 2 1 ,•当 n 》2 时,b n = 2n — 1.■/ b 1= 1 = 2x 1 — 1 满足 b n = 2n — 1,•数列{b n }的通项公式为 b n = 2n —1(n € N *). •数列{b n }是首项为1,公差为2的等差数列.•- S n = nl1 1 •••当 n = 1 时,S = 1 =2 — 1t」1 1 1 1 当 n 》2 时,S = n 2< n (n — 1) =n —1 1 1 1 1 1 1 1 1• ◎+S 2+…+ 亍2—1+厂 2+…+ n — - n =2—n 12.设数列{a n }的前 n 项和为 S , a 1 = 1, a n = + 2 (n — 1) ( n € N). n(1)求证:数列{a n }为等差数列,并分别写出 a n 和S 关于n 的表达式;请说明理由.*【解】(1)由 a n = n + 2( n — 1),得 S = na n — 2n ( n — 1) ( n € N).当 n 》2 时,a n S n — S n — 1 na n — (n — 1) a n — 1 — 4( n — 1),艮卩 a n — a n —1 4, 故数列{a n }是以1为首项,以4为公差的等差数列.a 1 + a n n 2*a n =4n — 3, S = = 2n — n ( n € N).(2)由 S n = na n — 2n ( n — 1),得—=2n — 1 ( n € N),$ S 3 S 1 2 2 2 2又 s+ 2 + 3 +…+ n — (n — 1) = 1 + 3 + 5 + 7+-+ (2n — 1) — (n — 1) = n —(n — 1) = 2n — 1.令2n — 1 = 2 013,得n = 1 007,即存在满足条件的自然数n = 1 007 .(2)是否存在自然数n ,S ? S 3Si…使得S+ 2+ 3+…+ -—(n — 1)2= 2 013?若存在,求出n 的值;若不存在,于是,1. 已知$为正项数列{a n }的前n 项和,且满足 S = 2a n + ?a n (n € N *).⑴求a i , a 2, a 3, a 4的值;⑵求数列{a n }的通项公式.1 2 1 1 2 1【解】(1)由$=,a n + 2a n ,可得a 1 = 2^+空31,解得◎= 1 ;1 2 1S= a + a 2= 2a 2 + g a ?,解得 a 2 = 2;同理,1 2 1当 n 》2 时,S n - 1= 2 a n -1 + ^a n - 1,②①一②得(a n — a n -1 — 1)( a n + a n -1)= 0 .由于 a n + a n -1 工 0,所以 a n — a n -1 = 1, 又由(1)知a 1= 1, 故数列{a n }是首项为1,公差为1的等差数列,故 a n = n .2. 在数列{a n }中,a 1=- 5, a 2=- 2,记 A (n ) = a 1 + 比+…十 a n , B (n ) = a 2 + a 3+・・・+ a n +1, qn ) =a 3+ a 4 + •••+ a n +2(n €N *),若对于任意 n € N *, A (n ) , B ( n ), q n)成等差数列.(1) 求数列{a n }的通项公式; (2) 求数列{| a n |}的前n 项和.【解】(1)根据题意A (n ) ,B (n ),C ( n )成等差数列,二A ( n ) + C ( n ) = 2B ( n ),整理得 a n +2— a n +1 = a 2— a 1 = — 2+ 5 = 3,•••数列{a n }是首项为—5,公差为3的等差数列,a n = — 5 + 3( n — 1) = 3n — 8.—3n + 8, n W 2,(2)| a n | =记数列{| a n |}的前n 项和为S.3n — 8, n 》3,2当 n W2 时,S n =n 5+ 2— 3n = — + 务3 2 13—尹 + 厂,n w 2,3. (2014 •广东卷)设各项均为正数的数列 {a n }的前n 项和为S ,且S 满足S n — (n 2+ n -3)S n — 3( n 2 + n ) = 0, n€ N .(1) 求a 1的值;(2) 求数列{a n }的通项公式;a 3 = 3, a 4= 4.当n 》3时,S n = 7 +n -2 1 + 3n — 8 2普-岭+ 14,2 2综上,S n =|n 2 —爭+ 14, n 》3.1(3)证明:对一切正整数亠 1 1 11n, a 1 a+1 + a 2 a ?+1 + + a n a n +1 <3'【解】(1)由题意知,U — (n 2+ n — 3)S h -3(n 2+ n ) = 0, n € N*. 令 n = 1,有 S — (1 2+ 1— 3) S — 3X (1 2+ 1) = 0,可得 S 1+ S — 6 = 0,解得 S =— 3或 2, 即卩 a 1 =— 3 或 2, 又a n 为正数,所以a 1 = 2.222* __(2)由 S>— ( n + n — 3) Si — 3( n + n ) = 0, n € N 可得,2 2(S + 3)( S — n — n ) = 0,贝U S = n +n 或 $=— 3,又数列{a n }的各项均为正数,2 2S= n + n , S -1 = (n — 1) + (n — 1),当 n 》2 时,a n = S n — S n — 1 = n + n — [( n — 1)2+ (n — 1)] = 2n . 又 a 1= 2 = 2x 1,所以 a n = 2n .1a a+ 1111 111当n ^2时, a na n + 1= 2n 2n + 1 v 2n —12n + 12 2n — 1 —2n + 1 , 1 111 1 1 111 …a 1 a 1+ 1+a 2a 2 + 1 + -••+ a na n + 1+ ■ 6 +2 3 5 + •' '• 2n — 12n + 11 1 11 1 1 1=一 + — —v —+ _ =6 2 3 2n + 1 6 6 3(3)证明:当n = 1时,11+a 2a 2 + 1+…+aT^+所以对一切正整数n,有07葛+• T n= (n—1) 3 n+1+ 3.5.在数列{a n}中,已知a1 =1, a n= 2(a n —1 + a n—2 + — + a2+ a" ( 2, n€N*),则数列的通项公式是_________ .1。
数列中an与sn的关系探究(课堂PPT)
挖掘条件,得到新式(与
间的关an系
S1 Sn
n=1 Sn1 n
2
条件相邻),作差将“和” 转化为“项”之间的关系
直接代入
作差消元
10
类题演练
1、 如 果 数 列 {an}的 前 n项 和 为 Sn=3 2an-3, 则 an
【 答 案 】 an63n1
11
类题演练
2、 数 列 {an}中 , 已 知 a11 2, 其 前 n项 和 为 Sn=n2an, 则 an
南京市第九中学 易雪梅
2
典型例题 例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 , 求 该 数 列 的 通 项 an 。
3
数学解题的四个步骤: • 理解问题 • 拟定计划 • 实现计划 • 回顾与检验
——乔治·波利亚《怎样解题》
4
例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 , 求 该 数 列 的 通 项 an 。
这是一个什么类型的问题?
类型
求数列通项an
特征
已 知 条 件 为 a n 与 S n 的 关 系 式
如何实现从条件到结论的转化?
S n 转化 a n
怎样转化?
an
SS1n
n=1 Sn1 n
2
5
例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 ,
求 该 数 列 的 通 项 an 。
解:当 n 1 时 ,a 1S 1 3 a 1 1 , 得 a 1 12 ; 当 n2 时 ,a nS n S n 13an1(3an11)
7
变 式 : 已 知 正 项 数 列 { a n } 的 前 n 项 和 为 S n , a 1 3 , 且 S n S n -1 = a n ( 2n 2 ) , 求 该 数 列 的 通 项 a n 。
数列Sn与an关系(含详细答案)
数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
第4章 4.1 第2课时数列的递推公式与an和Sn的关系-新教材高中数学选择性必修二课件
分 层
释 疑 难
an=SS1n, -nS= n-11,,n≥2.
作 业
返 首 页
·
·
情
境
导
学
探
1.判断正误(正确的打“√”,错误的打“×”)
新
知
(1)根据通项公式可以求出数列的任意一项.
合 作
(2)有些数列可能不存在最大项.
探
究
(3)递推公式是表示数列的一种方法.
释
疑 难
(4)所有的数列都有递推公式.
时 分 层 作
疑
业
难
故数列{an}有最大项 a5 或 a6,且 a5=a6=7865.
返
首
页
·
28
·
情 境
求数列{an}的最大小项的方法
课 堂
导
小
学
一是利用判断函数增减性的方法,先判断数列的增减情况,再求 结
·
探
提
新 知
数列的最大项或最小项;如本题利用差值比较法来探讨数列的单调
素 养
合 性,以此求解最大项.
时 分 层 作
疑
业
难
返 首 页
·
19
·
情
由递推公式写出数列的项的方法
课
境
堂
导
小
学
1根据递推公式写出数列的前几项,首先要弄清楚公式中各部 结
·
探
提
新 知
分的关系,依次代入计算即可.
素 养
合
2若知道的是末项,通常将所给公式整理成用后面的项表示前
作
课
探 究
面的项的形式,如 an=2an+1+1.
时 分
层
作 业
《数列中an和sn的关系》教案
《数列中an和sn的关系》教学准备学情分析1、知识前的储备:学生已经学习了等差数列和等比数列的定义,通项公式,及其前n项和的求法。
从这两大数列的角度,对于项式an和Sn 之间的关系,已经具备了知识的储备,对进一步掌握两者的关系,学生有了容易接受的心理以及深入探究的兴趣。
2、学生的普遍特征:高中学生的逻辑思维能力日益加强,数学理解能力加强,接受新知识也很快。
学生的整体水平尽管有差异,但探究知识的能力都已经趋向成熟,也能够持之以恒地深入思考,但学生整体上还是具备的由浅入深学习数学的习惯,由特殊到一般学习法是学生的显著特征。
3、本节课知识结构:本节课知识是在等差数列和等比数列已经学完的基础上继续巩固项式与和式之间的关系的一堂课,主要目的是让学生加深数列的理解和应用。
所以本节课的知识学习是有目的性的,课堂设计尽量突出知识结构,使课堂生动吸人、使学生对知识的理解浅显易懂,掌握上变化有序,学习上有深度有广度。
教学工具1、电脑及其投影:投影ppt课件。
2、实物投影仪:投影学生的解题过程。
3、手机及希沃授课助手:拍摄学生解题步骤,投影出来及时点评正确或错误的细节之处。
教案设计教学目标1、知识与技能:(1)加强等差数列,等比数列的定义理解和通项公式的求法;(2)加强对数列项式a n和和式S n的关系进一步掌握;(3)方程消元的思想,迭代的思想,构造新数列的数学方法的应用。
2、过程与方法:本节课通过学生独立思考、小组交流讨论等方式的学习,培养学生的团队合作精神,培养学生的创新意识,提高学生应用数学知识解决实际问题的能力。
使学生学会理解数学,分析数学知识的方法,提高学生的逻辑思维能力。
3、情感、态度和价值观:本节课通过数学的实际应用例子,利用数学建模的思想,激发学生的探究兴趣,科学的创新精神。
让学生形成积极的学习态度,健康向上的人生理想、以及科学精神和正确的人生观、世界观和价值观。
教学重难点重点为利用数列a n与S n的关系,求出a n或者S n难点是间接转化法,是将S n转化为a n还是将a n转化为S n。
等差数列sn和an的关系
等差数列sn和an的关系全文共四篇示例,供读者参考第一篇示例:等差数列是数学中非常常见且重要的数列之一,其中每一项与前一项之差都相等。
在等差数列中,我们常使用两种常见的记号:S_n和a_n。
S_n表示等差数列的前n项和,而a_n表示等差数列的第n项。
本文将详细探讨S_n和a_n之间的关系。
我们来看S_n和a_n之间的关系。
设等差数列的首项为a_1,公差为d,则等差数列的第n项可以表示为a_n=a_1+(n-1)d。
而S_n表示等差数列的前n项和,即S_n=a_1+a_2+...+a_n。
接下来,我们来看一些具体的例子来说明S_n和a_n之间的关系。
假设我们有一个等差数列的首项a_1=2,公差d=3,我们来求该等差数列的前5项和S_5。
首先确定等差数列的第5项:a_5=2+(5-1)\times 3=14。
然后利用前面推导的公式计算前5项和S_5:S_5=\frac{5}{2}(2\times2+(5-1)\times 3)=5\times 8=40。
所以,当等差数列的首项为2,公差为3时,它的前5项和为40。
通过这个例子,我们可以看到S_n和a_n之间的关系是非常紧密和重要的。
在实际生活和工作中,等差数列的概念和相关公式会被广泛应用。
比如在金融领域中,等差数列常用来描述递增或递减的收入或支出情况;在物理学中,等差数列可以用来描述匀速运动的距离随时间的变化等问题。
S_n和a_n之间的关系是数学中一个非常重要的概念,对于理解等差数列的性质和应用起着至关重要的作用。
希望通过本文的介绍,读者能够更加深入地理解等差数列及其相关知识,从而更好地应用于实际问题中。
【2000字】第二篇示例:等差数列,顾名思义,就是数列中相邻两项之间的差值是相同的。
在数学中,我们常用字母a表示等差数列的首项,d表示公差,n表示项数,数列的一般形式可以表示为:an = a + (n-1)d,其中an表示第n项,a表示首项,d表示公差。
非等差等比数列前n项和计算方法
第二章:数列11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔= ⑶通项公式:1(1)()nma a n d a n m d =+-=+- 或(na pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则qpnma a a a +=+;②下标为等差数列的项()Λ,,,2mk m k k a a a ++,仍组成等差数列;③数列{}b a n+λ(b ,λ为常数)仍为等差数列; ④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n nka pb + (k 、p 是非零常数)、*{}(,)p nqa p q N +∈、,…也成等差数列。
⑤单调性:{}na 的公差为d ,则:ⅰ)⇔>0d {}n a 为递增数列; ⅱ)⇔<0d {}n a 为递减数列; ⅲ)⇔=0d {}na 为常数列;⑥数列{n a }为等差数列na pn q ⇔=+(p,q 是常数)⑦若等差数列{}n a 的前n 项和,则、kk S S -2、kk S S 23-… 是等差数列。
3、等比数列⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a b 、G 、成等比数列2,G ab ⇒=(ab 同号)。
反之不一定成立。
⑶通项公式:11n n mn ma a q a q --==⑷前n 项和公式:()11111n n na q a a q Sqq--==--⑸常用性质①若()+∈ +=+N q p n m q p n m ,,,,则mnpqa a a a ⋅=⋅;②Λ,,,2mk m k k a a a ++为等比数列,公比为kq (下标成等差数列,则对应的项成等比数列)③数列{}na λ(λ为不等于零的常数)仍是公比为q 的等比数列;正项等比数列{}na ;则{}lg na 是公差为lg q 的等差数列;④若{}na 是等比数列,则{}{}2n n ca a ,,1n a ⎧⎫⎨⎬⎩⎭,{}()r na r Z ∈是等比数列,公比依次是21.rq q q q,,, ⑤单调性:110,10,01a q a q >><<<或{}n a ⇒为递增数列;{}110,010,1na q a q a ><<<>⇒或为递减数列; {}1n q a =⇒为常数列; {}0nq a <⇒为摆动数列;⑥既是等差数列又是等比数列的数列是常数列。
数列与推理证明——学生版
第1讲 等差数列、等比数列【高考考情解读】 高考对本讲知识的考查主要是以下两种形式:1.以填空题的形式考查,主要利用等差、等比数列的通项公式、前n 项和公式及其性质解决与项、和有关的计算问题,属于基础题;2.以解答题的形式考查,主要是等差、等比数列的定义、通项公式、前n 项和公式及其性质等知识交汇综合命题,考查用数列知识分析问题、解决问题的能力,属低、中档题.1. a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2. 等差数列和等比数列等差数列 等比数列 定义 a n -a n -1=常数(n ≥2) a na n -1=常数(n ≥2) 通项公式a n =a 1+(n -1)da n =a 1q n -1(q ≠0)判定方法(1)定义法(2)中项公式法:2a n +1=a n +a n +2(n ≥1)⇔{a n }为等差数列(3)通项公式法:a n =pn +q (p 、q 为常数)⇔{a n }为等差数列(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }为等差数列(5){a n }为等比数列,a n >0⇔{log a a n }为等差数列 (1)定义法(2)中项公式法:a 2n +1=a n ·a n +2 (n ≥1)(a n ≠0) ⇔{a n }为等比数列(3)通项公式法:a n =c ·q n (c 、q 均是不为0的常数,n ∈N *)⇔{a n }为等比数列(4){a n }为等差数列⇔{aa n }为等比数列(a >0且a ≠1)性质(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m +a n =a p +a q (2)a n =a m +(n -m )d(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q (2)a n =a m q n-m(3)等比数列依次每n 项和(S n ≠0)仍成等比数列 前n 项和S n =n (a 1+a n )2=na 1+n (n -1)2d(1)q ≠1,S n =a 1(1-q n )1-q =a 1-a n q1-q(2)q =1,S n =na 1考点一 与等差数列有关的问题例1 在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.(1)若a 1>0,当S n 取得最大值时,求n 的值;(2)若a 1=-46,记b n =S n -a nn ,求b n 的最小值.(1)(2012·浙江改编)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是________.(填序号)①若d <0,则数列{S n }有最大项;②若数列{S n }有最大项,则d <0;③若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0;④若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列.(2)(2013·课标全国Ⅰ改编)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________.考点二 与等比数列有关的问题例2 (1)(2012·课标全国改编)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.考点三 等差数列、等比数列的综合应用 例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.已知数列{a n }满足a 1=3,a n +1-3a n =3n (n ∈N *),数列{b n }满足b n =3-n a n .(1)求证:数列{b n }是等差数列;(2)设S n =a 13+a 24+a 35+…+a n n +2,求满足不等式1128<S n S 2n <14的所有正整数n 的值.1. 在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算.2. 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 3. 等差、等比数列的单调性(1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值.d <0⇔{a n }为递减数列,S n 有最大值.d =0⇔{a n }为常数列.(2)等比数列的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4. 常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n }等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公差为q k . 等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d . 5. 易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac .1. 已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=________.2. 已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为________.3. 已知等差数列{a n }的前n 项的和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:a 1=3,b 1=1,b 2+S 2=12,S 2=b 2q .(1)求a n 与b n ;(2)设c n =3b n -λ·2a n3,若数列{c n }是递增数列,求λ的取值范围.(推荐时间:60分钟)一、填空题1. (2013·江西改编)等比数列x,3x +3,6x +6,…的第四项等于________.2. (2013·课标全国Ⅱ改编)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=________. 3. 等差数列{a n }前9项的和等于前4项的和.若a 4+a k =0,则k =________.4. 已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.5. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →=________.6. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8等于________. 7. 各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6a 2a 6+a 4a 5=________.8. 在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于________.9. 已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________. 二、解答题10.已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.11.设数列{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .12.(2013·湖北)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式; (2)是否存在正整数m ,使得1a 1+1a 2+…+1a m ≥1?若存在,求m 的最小值;若不存在,说明理由.第2讲数列求和及数列的综合应用【高考考情解读】高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件,求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1.数列求和的方法技巧(1)分组转化法:有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2)错位相减法:这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列.(3)倒序相加法:这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法:利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n+1的数列的前n项和,其中{a n}若为等差数列,则1a n a n+1=1d⎝⎛⎭⎫1a n-1a n+1.常见的拆项公式:①1n(n+1)=1n-1n+1;②1n(n+k)=1k(1n-1n+k);③1(2n-1)(2n+1)=12(12n-1-12n+1);④1n+n+k=1k(n+k-n).2.数列应用题的模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项a n与它的前一项a n-1(或前n项)间的递推关系式,我们可以用递推数列的知识来解决问题.考点一分组转化求和法例1等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前n 项和S n .(2013·安徽)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n+1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n .考点二 错位相减求和法例2 (2013·山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.考点三裂项相消求和法例3(2013·广东)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a2n+1-4n-1,n∈N*, 且a2,a5,a14构成等比数列.(1)证明:a2=4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.已知x,f(x)2,3(x≥0)成等差数列.又数列{a n}(a n>0)中,a1=3,此数列的前n项和为S n,对于所有大于1的正整数n都有S n=f(S n-1).(1)求数列{a n}的第n+1项;(2)若b n是1a n+1,1a n的等比中项,且T n为{b n}的前n项和,求T n.考点四 数列的实际应用例4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).某产品在不做广告宣传且每千克获利a 元的前提下,可卖出b 千克.若做广告宣传,广告费为n (n ∈N *)千元时比广告费为(n -1)千元时多卖出b2n 千克.(1)当广告费分别为1千元和2千元时,用b 表示销售量S ;(2)试写出销售量S 与n 的函数关系式;(3)当a =50,b =200时,要使厂家获利最大,销售量S 和广告费n 分别应为多少?1. 数列综合问题一般先求数列的通项公式,这是做好该类题型的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).(2)递推关系形如a n +1-a n =f (n ),常用累加法求通项.(3)递推关系形如a n +1a n=f (n ),常用累乘法求通项.(4)递推关系形如“a n +1=pa n +q (p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p (a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列.(5)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1转为用迭加法求解.2. 数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解.(2)并项求和时,将问题转化为等差数列求和. (3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解. 提醒:运用错位相减法求和时,相减后,要注意右边的n +1项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3. 数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.1. 在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称k 为这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.2. 秋末冬初,流感盛行,特别是甲型H1N1流感.某医院近30天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗甲流的人数为________.3. 已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2·a 4=65,a 1+a 5=18. (1)若1<i <21,a 1,a i ,a 21是某等比数列的连续三项,求i 的值;(2)设b n =n(2n +1)S n ,是否存在一个最小的常数m 使得b 1+b 2+…+b n <m 对于任意的正整数n 均成立,若存在,求出常数m ;若不存在,请说明理由.(推荐时间:60分钟)一、填空题1. 已知数列112,314,518,7116,…,则其前n 项和S n =________.2. 在等差数列{a n }中,a 1=-2 013,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 013的值等于________.3. 对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2 013=________.x 1 2 3 4 5 f (x )543124. 设{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,记M n =ab 1+ab 2+…+ab n ,则数列{M n }中不超过2 013的项的个数为________.5. 在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1,S 2a 2,…,S 15a 15中最大的是________.6. 数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 012=________.7. 已知函数f (n )=⎩⎪⎨⎪⎧n 2(n 为奇数),-n 2(n 为偶数),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2 012=________.8. 数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n =________.9. 已知数列{a n }满足3a n +1+a n =4(n ≥1)且a 1=9,其前n 项之和为S n ,则满足不等式|S n -n -6|<1125的最小整数n 是________.10.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910(n ∈N *)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了________天.二、解答题11.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n项和S n.12.将函数f(x)=sin 14x·sin14(x+2π)·sin12(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{a n}(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2n a n,数列{b n}的前n项和为T n,求T n的表达式.13.在等比数列{a n}中,a2=14,a3·a6=1512.设b n=log2a2n2·log2a2n+12,T n为数列{b n}的前n项和.(1)求a n和T n;(2)若对任意的n∈N*,不等式λT n<n-2(-1)n恒成立,求实数λ的取值范围.第3讲推理与证明【高考考情解读】 1.高考主要考查对合情推理和演绎推理的理解及应用;直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列、不等式、解析几何等综合命题.考查“归纳—猜想—证明”的模式,常与数列结合考查.2.归纳推理和类比推理等主要是和数列、不等式等内容联合考查,多以填空题的形式出现,难度中等;而考查证明问题的知识面广,涉及知识点多,题目难度较大,主要考查逻辑推理能力、归纳能力和综合能力,难度较大.1. 合情推理(1)归纳推理①归纳推理是由部分到整体、由个别到一般的推理.②归纳推理的思维过程如下:实验、观察→概括、推广→猜测一般性结论 (2)类比推理①类比推理是由特殊到特殊的推理②类比推理的思维过程如下:观察、比较→联想、类推→猜测新的结论 2. 演绎推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般性原理.②小前提——所研究的特殊情况.③结论——根据一般原理,对特殊情况做出的判断.(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确. 3. 直接证明(1)综合法:用P 表示已知条件、已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q(2)分析法:用Q 表示要证明的结论,则分析法可用框图表示为 Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→ 得到一个明显成立的条件4. 间接证明:反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p 则q ”的过程可以用如图所示的框图表示.考点一 归纳推理例1 (2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.(1)在数列{a n }中,若a 1=2,a 2=6,且当n ∈N *时,a n +2是a n ·a n +1的个位数字,则a 2 014=________.(2)(2012·江西改编)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=________.考点二 类比推理例2 (1)在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.(2)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2.那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =________.(1)现有一个关于平面图形的命题,如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个中心,则这两个正方体重叠部分的体积恒为________. (2)命题p :已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2是椭圆的两个焦点,P 为椭圆上的一个动点,过F 2作∠F 1PF 2的外角平分线的垂线,垂足为M ,则OM 的长为定值.类比此命题,在双曲线中也有命题q :已知双曲线x 2a 2-y 2b 2=1(a >b >0),F 1、F 2是双曲线的两个焦点,P 为双曲线上的一个动点,过F 2作∠F 1PF 2的________的垂线,垂足为M ,则OM 的长为定值________.考点三 直接证明与间接证明例3 已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0 (n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明:数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列.1. 合情推理的精髓是“合情”,即得到的结论符合“情理”,其中主要是归纳推理与类比推理.归纳推理是由部分得到整体的一种推理模式.类比推理是由此及彼的推理模式;演绎推理是一种严格的证明方式.2. 直接证明的最基本的两种证明方法是综合法和分析法,这两种方法也是解决数学问题时常见的思维方式.在实际解题时,通常先用分析法寻求解题思路,再用综合法有条理地表述解题过程.1. 将全体正奇数排成一个三角形数阵:按照以上排列的规律,第45行从左向右的第17个数为________.2. 在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项,k (k +1)=13[k (k +1)(k+2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,计算“1×2×3+2×3×4+…+n (n +1)(n +2)”的结果为________.(推荐时间:60分钟)一、填空题1. 下列关于五角星的图案构成一个数列,该数列的一个通项公式是________.2. 已知结论:在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2.若把该结论推广到空间中,则有结论:在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM等于________. 3. 已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是________.4. 已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是________________________________________________________________________.5. 把非零自然数按一定的规则排成了如图所示的三角形数表(每行比上一行多一个数).设a ij (i 、j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8,若a ij =2 014,则i ,j 的值的和为________.6. 有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1},第二组含两个数{3,5},第三组含三个数{7,9,11},第四组含四个数{13,15,17,19},…,现观察猜想每组内各数之和为a n 与其组的编号数n 的关系为________.7. (2013·陕西)观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为______________.8. 如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n ,每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第3个数(从左往右数)为________.9. 对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23⎩⎨⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,….仿此,若m 3的“分裂数”中有一个是59,则m 的值为________. 二、解答题10.已知a >0且a ≠1,f (x )=1a x +a.(1)求值:f (0)+f (1),f (-1)+f (2);(2)由(1)的结果归纳概括对所有实数x 都成立的一个等式,并加以证明; (3)若n ∈N *,求和:f (-(n -1))+f (-(n -2))+…+f (-1)+f (0)+f (1)+…+f (n ).11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.12.已知数列{a n }有a 1=a ,a 2=p (常数p >0),对任意的正整数n ,S n =a 1+a 2+…+a n ,并有S n 满足S n =n (a n -a 1)2.(1)求a 的值并证明数列{a n }为等差数列;(2)令p n =S n +2S n +1+S n +1S n +2,是否存在正整数M ,使不等式p 1+p 2+…+p n -2n ≤M 恒成立,若存在,求出M 的最小值;若不存在,说明理由.。
高三理科数学培养讲义:第2部分_专题2_第4讲_数列求和与综合问题
第4讲 数列求和与综合问题高考统计·定方向题型1 数列中的a n 与S n 的关系■核心知识储备·1.数列{a n }中,a n 与S n 的关系 a n =⎩⎨⎧S 1(n =1),S n -S n -1(n ≥2).2.求数列{a n }通项的方法 (1)叠加法形如a n -a n -1=f (n )(n ≥2)的数列应用叠加法求通项公式,a n =a 1+(a 2-a 1)+…+(a n -a n -1)=a 1+f (2)+…+f (n )(和可求).(2)叠乘法 形如a n a n -1=f (n )(n ≥2)的数列应用叠乘法求通项公式,a n =a 1·a 2a 1·a 3a 2·…·a na n -1=a 1·f (2)·f (3)…f (n )(积可求).(3)待定系数法形如a n =λa n -1+μ(n ≥2,λ≠1,μ≠0)的数列应用待定系数法求通项公式,a n +μλ-1=λ⎝ ⎛⎭⎪⎫a n -1+μλ-1⎝ ⎛⎭⎪⎫构造新数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +μλ-1为等比数列.■高考考法示例·【例1】 (1)(2018·巴蜀适应性月考)数列{a n }中,a 1=1,a n +1=S n +3n (n ∈N *,n ≥1),则数列{S n }的通项公式为________.(2)(2018·锦州市模拟)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n+1=4S n -3(n ∈N *).①求a 2的值并证明:a n +2-a n =2; ②求数列{a n }的通项公式.(1)S n =3n -2n [∵a n +1=S n +3n =S n +1-S n , ∴S n +1=2S n +3n , ∴S n +13n +1=23·S n 3n +13, ∴S n +13n +1-1=23⎝ ⎛⎭⎪⎫S n 3n -1,又S 13-1=13-1=-23,∴数列⎩⎨⎧⎭⎬⎫S n 3n -1是首项为-23,公比为23的等比数列, ∴S n 3n -1=-23×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n ,∴S n =3n -2n .](2)[解] ①令n =1得2a 1a 2=4a 1-3, 又a 1=1, ∴a 2=12.由2a n a n +1=4S n -3, 得2a n +1a n +2=4S n +1-3. 即2a n +1(a n +2-a n )=4a n +1.∵a n ≠0,∴a n +2-a n =2.②由①可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,∴a 2k -1=1+2(k -1)=2k -1,即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12, ∴a 2k =12+2(k -1)=2k -32, 即n 为偶数时,a n =n -32. 综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.1.数列{a n }中,a 1=1,对任意n ∈N *,有a n +1=1+n +a n ,令b i =1a i(i ∈N *),则b 1+b 2+…+b 2 018=( )A .2 0171 009 B .2 0172 018 C .2 0182 019D .4 0362 019D [∵a n +1=n +1+a n ,∴a n +1-a n =1+n , ∴a n -a n -1=n ,∴a n =a 1+(a 2-a 1)+…+(a n -a n -1) =1+2+…+n =n (n +1)2, ∴b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴b 1+b 2+…+b 2 018=21-12+12-13+…+12 018-12 019=4 0362 019,故选D .] 2.数列{a n }满足,12a 1+122a 2+123a 3+…+12n a n =2n +1,则数列{a n }的通项公式为________.a n =⎩⎨⎧6,n =12n +1,n ≥2 [因为12a 1+122a 2+123a 3+…+12n a n =2n +1,所以12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+1,两式相减得12n a n =2, 即a n =2n +1,n ≥2. 又12a 1=3, 所以a 1=6,因此a n =⎩⎨⎧6,n =1,2n +1,n ≥2.]题型2 求数列{a n }的前n 项和■核心知识储备·1.分组求和法:将数列通项公式写成c n =a n +b n 的形式,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.2.裂项相消法:把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +2(其中{a n }为等差数列)等形式的数列求和.3.错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分六步:①S n ;②qS n ;③差式;④和式;⑤整理;⑥结论.■高考考法示例· ►角度一 分组求和法【例2-1】 (2018·昆明市教学质量检查)已知数列{a n }中,a 1=3,{a n }的前n 项和S n 满足:S n +1=a n +n 2.(1)求数列{a n }的通项公式;(2)设数列{b n }满足:b n =(-1)n +2a n ,求{b n }的前n 项和T n . [解] (1)由S n +1=a n +n 2 ① 得S n +1+1=a n +1+(n +1)2②则②-①得a n =2n +1.当a 1=3时满足上式, 所以数列{a n }的通项公式为a n =2n +1. (2)由(1)得b n =(-1)n +22n +1, 所以T n =b 1+b 2+…+b n=[](-1)+(-1)2+…+(-1)n+(23+25+…+22n +1)=(-1)×[1-(-1)n ]1-(-1)+23×(1-4n )1-4=(-1)n -12+83(4n-1).【教师备选】(2018·石家庄三模)已知等差数列{a n }的首项a 1=2,前n 项和为S n ,等比数列{b n }的首项b 1=1,且a 2=b 3,S 3=6b 2,n ∈N *.(1)求数列{a n }和{b n }的通项公式;(2)数列{c n }满足c n =b n +(-1)n a n ,记数列{c n }的前n 项和为T n ,求T n . [解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q . ∵a 1=2,b 1=1,且a 2=b 3,S 3=6b 2,∴⎩⎪⎨⎪⎧2+d =q 2,3(2+2+2d )2=6q .解得⎩⎨⎧d =2,q =2.∴a n =2+(n -1)×2=2n ,b n =2n -1.(2)由题意:c n =b n +(-1)n a n =2n -1+(-1)n 2n .∴T n =(1+2+4+…+2n -1)+[-2+4-6+8-…+(-1)n ·2n ], ①若n 为偶数:T n =1-2n 1-2+{(-2+4)+(-6+8)+…+[-2(n -1)+2n ]}=2n -1+n 2×2=2n+n -1.②若n 为奇数:T n =1-2n 1-2+{(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n }=2n -1+2×n -12-2n =2n -n -2.∴T n =⎩⎨⎧2n+n -1,n 为偶数,2n -n -2,n 为奇数.►角度二 裂项相消法求和【例2-2】 (2015·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和. [解] (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.两式相减可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=12⎝ ⎛⎭⎪⎫13-12n +3=n3(2n +3). 【教师备选】(2018·郑州第三次质量预测)已知数列{a n }的前n 项和为S n ,a 1=-2,且满足S n =12a n +1+n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =log 3(-a n +1),设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +2的前n 项和为T n ,求证:T n <34.[解] (1)由S n =12a n +1+n +1(n ∈N *),得S n -1=12a n +n (n ≥2,n ∈N *), 两式相减,并化简,得a n +1=3a n -2,即a n +1-1=3(a n -1),又a 1-1=-2-1=-3≠0, 所以{a n -1}是以-3为首项,3为公比的等比数列, 所以a n -1=(-3)·3n -1=-3n . 故a n =-3n +1.(2)证明:由b n =log 3(-a n +1)=log 33n =n , 得1b n b n +2=1n (n +2)=12⎝⎛⎭⎪⎫1n -1n +2, T n =121-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2=121+12-1n +1-1n +2=34-2n +32(n +1)(n +2)<34.►角度三 错位相减法求和【例2-3】 (2018·合肥教学质量检测)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 3=9.(1)求数列{a n }的通项公式;(2)设b n =(2n -1)·a n ,求数列{b n }的前n 项的和T n . [解] (1)设等比数列{a n }的公比为q . 由4S 5=3S 4+S 6,得S 6-S 5=3S 5-3S 4, 即a 6=3a 5,∴q =3,∴a n =9×3n -3=3n -1. (2)由(1)得b n =(2n -1)·a n =(2n -1)·3n -1, ∴T n =1×30+3×31+5×32+…+(2n -1)×3n -1,① ∴3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n , ②①-②得-2T n =1+2(31+32+…+3n -1)-(2n -1)·3n =1+2×3(1-3n -1)1-3-(2n -1)·3n =-2-2(n -1)·3n ,∴T n =(n -1)·3n +1.【教师备选】(2018·石家庄教学质量检测)已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn ,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .[解] (1)由a n +1=n +1n a n +n +12n 可得a n +1n +1=a n n +12n .又∵b n =a n n ,∴b n +1-b n =12n ,由a 1=1,得b 1=1, 累加可得:(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,化简并代入b 1=1得:b n =2-12n -1.(2)由(1)可知a n =2n -n2n -1,设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1① 12T n =121+222+323+…+n 2n ②①-②得12T n =120+121+122+…+12n -1-n 2n =120-12n1-12-n2n =2-n +22n ,∴T n =4-n +22n -1.又∵数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)-4+n +22n -1.已知等差数列{a n}的前n项和为S n,且a1=1,S3+S4=S5.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1a n a n+1,求数列{b n}的前2n项和T2n.[解](1)设等差数列{a n}的公差为d,由S3+S4=S5,可得a1+a2+a3=a5,即3a2=a5,故3(1+d)=1+4d,解得d=2.∴a n=1+(n-1)×2=2n-1.(2)由(1)可得b n=(-1)n-1·(2n-1)·(2n+1)=(-1)n-1·(4n2-1).∴T2n=(4×12-1)-(4×22-1)+(4×32-1)-(4×42-1)+…+(-1)2n-1·[4×(2n)2-1]=4[12-22+32-42+…+(2n-1)2-(2n)2]=-4(1+2+3+4+…+2n-1+2n)=-4×2n(2n+1)2=-8n2-4n.题型3数列中的创新与交汇问题近几年新课标高考对该知识的命题主要体现在以下两方面:一是新信息情境下的数列问题,此类问题多以新定义、新运算或实际问题为背景,主要考查学生的归纳推理解决新问题的能力;二是创新命题角度考迁移能力,题目常与函数、向量、三角、解析几何等知识交汇结合,考查数列的基本运算与应用.■高考考法示例·►角度一新信息情境下的数列问题【例3-1】(2017·全国卷Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110[思路点拨] 阅读题干―――――→提取数据数据分组―――――――→联想数列知识推理论证得出结论A [设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (1+n )2.由题意知,N >100,令n (1+n )2>100⇒n ≥14且n ∈N *,即N 出现在第13组之后.第n 组的各项和为1-2n 1-2=2n -1,前n 组所有项的和为2(1-2n )1-2-n =2n +1-2-n .设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则N -n (1+n )2项的和即第n +1组的前k 项的和2k -1应与-2-n 互为相反数,即2k -1=2+n (k ∈N *,n ≥14),k =log 2(n +3)⇒n 最小为29,此时k =5,则N =29×(1+29)2+5=440.故选A .]►角度二 交汇类创新问题【例3-2】 (2018·长沙联考)已知正项数列{a n },{b n }满足:对于任意的n ∈N *,都有点(n ,b n )在直线y =22(x +2)上,且b n ,a n +1,b n +1成等比数列,a 1=3.(1)求数列{a n },{b n }的通项公式;(2)设S n =1a 1+1a 2+…+1a n ,如果对任意的n ∈N *,不等式2aS n <2-b n a n恒成立.求实数a 的取值范围.[思路点拨] (1)点(n ,b n )在直线y =22(x +2)上――→满足方程求b n ―――――――→b n ,a n +1,b n +1成等比数列求a n ; (2)裂项,求S n ―――――――→2aS n <2-b n a n 分离变量建立a 的不等式―――――――→数列的单调性求实数a 的取值范围[解] (1)∵点(n ,b n )在直线y =22(x +2)上,∴b n =22(n +2),即b n =(n +2)22.又∵b n ,a n +1,b n +1成等比数列,∴a 2n +1=b n ·b n +1=(n +2)2(n +3)24, ∴a n +1=(n +2)(n +3)2, ∴n ≥2时,a n =(n +1)(n +2)2, a 1=3适合上式,∴a n =(n +1)(n +2)2. (2)由(1)知,1a n =2(n +1)(n +2)=2⎝ ⎛⎭⎪⎫1n +1-1n +2, ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =2⎝ ⎛⎭⎪⎫12-1n +2=n n +2. 故2aS n <2-b n a n可化为: 2an n +2<2-(n +2)22(n +1)(n +2)2=2-n +2n +1=n n +1, 即a <n +22(n +1)=12⎝ ⎛⎭⎪⎫1+1n +1对任意的n ∈N *恒成立,令f (n )=n +22(n +1)=12⎝ ⎛⎭⎪⎫1+1n +1,显然f (n )随n 的增大而减小,且f (n )>12恒成立,故a ≤12. 综上知,实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12.1.若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 的个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________.2 n 2 [因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3, 所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16,猜想((a n )*)*=n 2.]2.(2014·全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n<32. [证明] (1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n -1,所以13n-1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1 =32⎝ ⎛⎭⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n<32.[高考真题]1.(2016·全国卷Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个C [由题意知:当m =4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a 1=0,a 8=1.不考虑限制条件“对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数”,则中间6个数的情况共有C 36=20(种),其中存在k ≤2m ,a 1,a 2,…,a k 中0的个数少于1的个数的情况有:①若a 2=a 3=1,则有C 14=4(种);②若a 2=1,a 3=0,则a 4=1,a 5=1,只有1种;③若a 2=0,则a 3=a 4=a 5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C .]2.(2018·全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.-63 [法一:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2;当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4;当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8;当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16;当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32.所以S 6=-1-2-4-8-16-32=-63.法二:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1, 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×(1-26)1-2=-63.] 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =1 1S k =________.2n n +1[设等差数列{a n }的首项为a 1,公差为d ,则 由⎩⎪⎨⎪⎧ a 3=a 1+2d =3,S 4=4a 1+4×32d =10,得⎩⎨⎧a 1=1,d =1. ∴S n =n ×1+n (n -1)2×1=n (n +1)2,1S n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.∴∑nk =11S k =1S 1+1S 2+1S 3+…+1S n=2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1 =2⎝⎛⎭⎪⎫1-1n +1=2n n +1.] 4.(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.[解] (1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n =⎩⎨⎧ 0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.[最新模拟]5.(2018·昆明教学质量检查)数列{a n }满足a n +1+a n =(-1)n ·n ,则数列{a n }的前20项的和为( )A .-100B .100C .-110D .110A [由a n +1+a n =(-1)n n ,得a 2+a 1=-1,a 3+a 4=-3,a 5+a 6=-5,…,a 19+a 20=-19,∴a n 的前20项的和为a 1+a 2+…+a 19+a 20=-1-3-…-19=-1+192×10=-100,故选A .] 6.(2018·安阳模拟)设等差数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=x 2+Bx +C -1(B ,C ∈R )的图象上,且a 1=C .(1)求数列{a n }的通项公式;(2)记数列b n =a n (a 2n -1+1),求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,又S n =n 2+Bn +C -1,两式对照得⎩⎪⎨⎪⎧ d 2=1,C -1=0,⎩⎨⎧d =2,a 1=C =1,所以数列{a n }的通项公式为a n =2n -1.(2)b n =(2n -1)(2·2n -1-1+1)=(2n -1)2n ,则T n =1×2+3×22+…+(2n -1)·2n ,2T n =1×22+3×23+…+(2n -3)·2n +(2n -1)·2n +1, 两式相减得T n=(2n-1)·2n+1-2(22+…+2n)-2=(2n-1)·2n+1-2×22(1-2n-1)1-2-2=(2n-3)·2n+1+6.。
高考数学一轮复习 第5章 数列 5.1 数列的概念与表示学案 理-人教版高三全册数学学案
5.1 数列的概念与表示[知识梳理]3.数列{a n }的a n 与S n 的关系(1)数列的前n 项和:S n =a 1+a 2+…+a n .特别提醒:若当n ≥2时求出的a n 也适合n =1时的情形,则用一个式子表示a n ,否则分段表示.[诊断自测] 1.概念思辨(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)若数列用图象表示,则从图象上看都是一群孤立的点.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案 (1)× (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A5P 31T 2)已知数列{a n }的通项公式为a n =9+12n ,则在下列各数中,不是{a n }的项的是( )A .21B .33C .152D .153 答案 C解析 代n 值进行验证,n =1时,A 满足;n =2时,B 满足;n =12时,D 满足.故选C.(2)(必修A5P 33T 4)在数列{a n }中,a 1=2,a n +1=a n +1n (n +1),则数列a 5=________.答案145解析 a 1=2,a 2=2+12=52,a 3=52+16=83,a 4=83+112=3312,a 5=3312+120=145.3.小题热身(1)(2017·石家庄模拟)数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N *) B .a n =(-1)n -12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n +12n +1n 2+2n(n ∈N *) 答案 D解析 由分子3,5,7,9归纳为2n +1,由分母3,8,15,24归纳为n (n +2),奇数项为正,偶数项为负.故选D.(2)已知数列{a n }满足:a 1=a 2=1,a n =1-a 1+a 2+a 3+…+a n -24(n ≥3,n ∈N *),则a 6=________.答案316解析 由题意可得a 3=1-a 14=34,a 4=1-a 1+a 24=1-12=12,a 6=1-a 1+a 2+a 3+a 44=1-1316=316.题型1 知数列前几项求通项公式典例 根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…; (3)1,0,13,0,15,0,17,0,…;(4)32,1,710,917,…. 注意项的正负号,分子、分母分开进行不完全归纳.解 (1)符号问题可通过(-1)n或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n(6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89⎝ ⎛⎭⎪⎫1-110n .(3)把数列改写成11,02,13,04,15,06,17,08,…,分母依次为1,2,3,…,而分子1,0,1,0,…周期性出现,因此数列的通项可表示为a n =1+(-1)n +12n或a n =⎪⎪⎪⎪⎪⎪sin n π2n.(4)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1,所以可得它的一个通项公式为a n =2n +1n 2+1.方法技巧由数列的前几项求数列通项公式的策略1.对数列的前几项进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系.如典例(4).2.根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.如典例(1).冲关针对训练(2017·青岛模拟)数列1,3,6,10,15,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2D .a n =n (n -1)2答案 C解析 代入进行验证可得选项C 成立.故选C. 题型2 数列的周期性典例在数列{a n }中,a 1=1,a 2=5,a n +2=a n +1-a n (n ∈N *). (1)求a 2018; (2)求S 100.本题采用累加法.解 (1)由a 1=1,a 2=5,a n +2=a n +1-a n (n ∈N *)可得该数列为1,5,4,-1,-5,-4,1,5,4,….由此可得a 2018=a 336×6+2=a 2=5.(2)a n =a n -1-a n -2,a n -1=a n -2-a n -3,…,a 3=a 2-a 1这n -1个式子相加得:a n +a n -1+…+a 3=a n -1-a 1, S n =a n -1+a 2(n ∈N *且n ≥2), S 100=a 99+a 2=a 16×6+3+a 2=a 3+a 2=9.方法技巧数列的周期性是数列的性质之一,其解法往往是依题意列出数列的前若干项,从而发现规律找到周期.冲关针对训练(2018·大兴一中模拟)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2018项为________.答案 15解析 ∵a 1=35,∴a 2=2a 1-1=15.∴a 3=2a 2=25.∴a 4=2a 3=45.∴a 5=2a 4-1=35,a 6=2a 5-1=15,….∴该数列周期为T =4.∴a 2018=a 2=15.题型3 由a n 与S n 的关系求通项公式典例 (2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.转化法S n →a n .答案 -2n -1解析 依题意得S n +1=2a n +1+1,S n =2a n +1, 两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n . 又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项,2为公比的等比数列,a n =-2n -1.[条件探究] 将本典例条件变为“a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12”,则{a n }的通项公式为________.答案 a n=⎩⎪⎨⎪⎧12(n =1),-12n (n -1)(n ≥2,n ∈N *)解析 ∵当n ≥2,n ∈N *时,a n =S n -S n -1,∴S n -S n -1+2S n S n -1=0,易知S n S n -1≠0,所以1S n -1S n -1=2.又S 1=a 1=12,∴1S 1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是以2为首项,公差为2的等差数列.∴1S n =2+(n -1)×2=2n .∴S n =12n. ∴当n ≥2,n ∈N *时,a n =-2S n S n -1=-2×12n ×12(n -1)=-12n (n -1).∴a n=⎩⎪⎨⎪⎧12(n =1),-12n (n -1)(n ≥2,n ∈N *).方法技巧1.已知S n 求a n 的三个步骤 (1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.如条件探究.2.S n与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.如典例.冲关针对训练设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.解(1)令n=1时,T1=2S1-1.∵T1=S1=a1,∴a1=2a1-1.∴a1=1.(2)当n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.∵当n=1时,a1=S1=1也满足上式,∴S n=2a n-2n+1(n≥1).∴当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减,得a n=2a n-2a n-1-2,∴a n=2a n-1+2(n≥2).∴a n+2=2(a n-1+2)(n≥2).∵a1+2=3≠0,∴数列{a n+2}是以3为首项,公比为2的等比数列.∴a n+2=3×2n-1,∴a n=3×2n-1-2.当n=1时也满足a1=1,∴a n=3×2n-1-2.题型4 由递推关系求通项公式角度1 形如a n+1=a n+f(n),求a n(多维探究)a n}满足a1=1,且a n+1-a n=n+1(n∈N*),求a n.典例(2015·江苏高考)设数列{累加法(或凑配法).解 由题意可得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2.[条件探究] 将本典例条件“a n +1-a n =n +1”变为“a n +1=a n +2n”,其他条件不变,则a n 的通项公式为________.答案 2n-1解析 由题意知a n +1-a n =2n,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=1-2n1-2=2n-1.角度2 形如a n +1=a n f (n ),求a n典例 已知数列{a n }满足a 1=23,a n +1=n n +2a n ,则通项公式a n =________. 累乘法.答案43n (n +1)解析 由已知得a n +1a n =n n +2,分别令n =1,2,3,…,(n -1),代入上式得n -1个等式累乘,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13×24×35×46×…×n -2n ×n -1n +1,所以a n a 1=2n (n +1),a n =43n (n +1).又因为a 1=23也满足该式,所以a n =43n (n +1).角度3 形如a n +1=pa n +q ,求a n (多维探究)典例 已知数列{a n }中,a 1=1,a n +1=2a n +3,则通项公式a n =________.待定系数法、转化法、构造法.答案 2n +1-3解析 递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ⇒t =-3.故递推公式为a n +1+3=2(a n +3),令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n}是以b1=4为首项,2为公比的等比数列,则b n=4×2n-1=2n+1,所以a n=2n+1-3.[条件探究1] 将典例条件“a1=1,a n+1=2a n+3”变为“a1=-1,a n+1=2a n+4·3n-1”,求an.解原递推式可化为a n+1+λ·3n=2(a n+λ·3n-1).①比较系数得λ=-4,①式即a n+1-4·3n=2(a n-4·3n-1).则数列{a n-4·3n-1}是一个等比数列,其首项a1-4·31-1=-5,公比是2.∴a n-4·3n-1=-5·2n-1.即a n=4·3n-1-5·2n-1.[条件探究2] 将典例条件“a1=1,a n+1=2a n+3”变为“a1=-1,a2=2,当n∈N*,a n+2=5a n+1-6a n”,求a n.解a n+2=5a n+1-6a n可化为a n+2+λa n+1=(5+λ)(a n+1+λa n).比较系数得λ=-3或λ=-2,不妨取λ=-2.代入可得a n+2-2a n+1=3(a n+1-2a n).则{a n+1-2a n}是一个等比数列,首项a2-2a1=2-2×(-1)=4,公比为3.∴a n+1-2a n=4·3n-1.利用上题结果有a n=4·3n-1-5·2n-1.当λ=-3时结果相同.[条件探究3] 将典例条件“a1=1,a n+1=2a n+3”变为“a1=1,a n+1=2a na n+2”,求a n.解两边同取倒数得1a n+1=a n+22a n=1a n+12.故⎩⎨⎧⎭⎬⎫1a n是以1为首项,12为公差的等差数列,1a n=n+1 2,∴a n=2n+1.方法技巧已知数列的递推公式求通项公式的常见类型及解法(1)形如a n+1=a n f(n),常用累乘法.(2)形如a n+1=a n+f(n),常用累加法.(3)形如a n+1=ba n+d(其中b,d为常数,b≠0,1)的数列,常用构造法.(4)形如a n +1=pa n qa n +r (p ,q ,r 是常数)的数列,将其变形为1a n +1=r p ·1a n +qp. 若p =r ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为qp,可用公式求通项;若p ≠r ,则采用(3)的方法来求.以上几种为常见的命题方式,下边再列举一些偶有命题形式的几种,以供参考: (5)形如a n +2=pa n +1+qa n (p ,q 是常数,且p +q =1)的数列,构造等比数列,将其变形为a n +2-a n +1=(-q )(a n +1-a n ),则{a n -a n -1}(n ≥2,n ∈N *)是等比数列,且公比为-q ,可以求得a n -a n -1=f (n ),然后用累加法求得通项.(6)形如a 1+2a 2+3a 3+…+na n =f (n )的式子, 由a 1+2a 2+3a 3+…+na n =f (n ),①得a 1+2a 2+3a 3+…+(n -1)a n -1=f (n -1),② 再由①-②可得a n .(7)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.(8)形如a n ·a n +1=f (n )的数列,可将原递推关系改写成a n +2·a n +1=f (n +1),两式作商可得a n +2a n =f (n +1)f (n ),然后分奇、偶讨论即可. (9)a n +1-a n =qa n +1a n (q ≠0)型,将方程的两边同时除以a n +1a n ,可构造一个等差数列. (10)a n =pa rn -1(n ≥2,p >0)型,一般利用取对数构造等比数列.冲关针对训练(2014·全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式.解 由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.a n +12=3n 2,因此{a n }的通项公式为a n =3n-12.1.(2018·安徽皖江名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n 则S 2018为( )A .504 B.17713 C .-17573 D .-504答案 C解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2018÷4=504余2,∴S 2018=504×⎝ ⎛⎭⎪⎫-76+2+13=-17573.故选C.2.(2017·河南许昌二模)已知等差数列{a n }满足a 1=1,a n +2-a n =6,则a 11等于( ) A .31 B .32 C .61 D .62 答案 A解析 ∵等差数列{a n }满足a 1=1,a n +2-a n =6,∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19,a 9=6+19=25,a 11=6+25=31.故选A.3.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.答案 1 121解析 解法一:∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121. 解法二:由a n +1=2S n +1,得a 2=2S 1+1,即S 2-a 1=2a 1+1,又S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,则S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列,∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.4.(2018·福州模拟)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的第4项.解 (1)依题意有⎩⎪⎨⎪⎧S 1=a 1=2a 2-3-4,S 2=a 1+a 2=4a 3-12-8,S 3=a 1+a 2+a 3=15,解得a 1=3,a 2=5,a 3=7.(2)解法一:由S 3=15,S n =2na n +1-3n 2-4n , 得S 3=2×3a 4-3×32-4×3=15, 解得a 4=9.解法二:∵S n =2na n +1-3n 2-4n ,①∴当n ≥2时,S n -1=2(n -1)a n -3(n -1)2-4(n -1).② ①-②并整理得a n +1=(2n -1)a n +6n +12n (n ≥2).∴a 4=(2×3-1)×7+6×3+12×3=9.[基础送分 提速狂刷练]一、选择题1.(2018·海南三亚一模)在数列1,2,7,10,13,…中,219是这个数列的( ) A .第16项 B .第24项 C .第26项 D .第28项 答案 C解析 设题中数列为{a n },则a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n =3n -2.令3n -2=219=76,解得n =26.故选C.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5= ( )A.6116 B.259 C.2516 D.3115答案 A解析 解法一:令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.故选A.解法二:当n ≥2时,a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2. 两式相除得a n =⎝⎛⎭⎪⎫n n -12,∴a 3=94,a 5=2516,∴a 3+a 5=6116.故选A.3.(2018·安徽江南十校联考)在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n +1}的前10项和为( )A .100B .110C .120D .130 答案 C解析 {a n +a n +1}的前10项和为a 1+a 2+a 2+a 3+…+a 10+a 11=2(a 1+a 2+…+a 10)+a 11-a 1=2S 10+10×2=120.故选C.4.(2018·广东测试)设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n-2n) B .3n+2 C .3nD .3·2n -1答案 C解析 由题意知⎩⎪⎨⎪⎧a 1=S 1=32(a 1-1),a 1+a 2=32(a 2-1),解得⎩⎪⎨⎪⎧a 1=3,a 2=9,代入选项逐一检验,只有C符合.故选C.5.(2018·金版原创)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件答案 B解析 当a n +1>|a n |(n =1,2,…)时,∵|a n |≥a n ,∴a n +1>a n ,∴{a n }为递增数列.当{a n }为递增数列时,若该数列为-2,0,1,则a 2>|a 1|不成立 ,即a n +1>|a n |(n =1,2,…)不一定成立.故综上知,“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的充分不必要条件.故选B.6.(2018·广东三校期末)已知数列{a n }满足:a 1=17,对于任意的n ∈N *,a n +1=72a n (1-a n ),则a 1413-a 1314=( )A .-27 B.27 C .-37 D.37答案 D解析 a 1=17,a 2=72×17×67=37,a 3=72×37×47=67,a 4=72×67×17=37,….归纳可知当n 为大于1的奇数时,a n =67;当n 为正偶数时,a n =37.故a 1413-a 1314=37.故选D.7.(2018·江西期末)定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,若已知数列{a n }的前n 项的“均倒数”为15n ,又b n =a n5.则b 10等于( )A .15B .17C .19D .21 答案 C 解析 由na 1+a 2+…+a n=15n得S n =a 1+a 2+…+a n =5n 2,则S n -1=5(n -1)2(n ≥2),a n =S n -S n -1=10n -5(n ≥2),当n =1时,a 1=5也满足.故a n =10n -5,b n =2n -1,b 10=2×10-1=19.故选C.8.(2018·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2(a >0且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3 C .(2,3) D .(1,3)答案 C解析 因为{a n }是递增数列,所以 ⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2<a 2×32-9×3+11,解得2<a <3,所以实数a 的取值范围是(2,3).故选C.9.对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设b n =2t -tn -12n -1,若数列b 3,b 4,b 5,…是“减差数列”,则实数t 的取值范围是( )A .(-1,+∞)B .(-∞,-1]C .(1,+∞)D .(-∞,1]答案 C解析 由数列b 3,b 4,b 5,…是“减差数列”, 得b n +b n +22<b n +1(n ≥3), 即t -tn -12n+t -t (n +2)-12n +2<2t -t (n +1)-12n,即tn -12n+t (n +2)-12n +2>t (n +1)-12n.化简得t (n -2)>1.当n ≥3时,若t (n -2)>1恒成立,则t >1n -2恒成立, 又当n ≥3时,1n -2的最大值为1,则t 的取值范围是(1,+∞).故选C. 10.(2018·湖北八校模拟)已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n +1(n ∈N *),b 1=-32λ,且数列{b n }是单调递增数列,则实数λ的取值范围是( )A .λ<45B .λ<1C .λ<32D .λ<23答案 A解析 ∵数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *),∴a n >0,1a n +1=2a n+1,则1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,∴数列⎩⎨⎧⎭⎬⎫1a n+1是等比数列,且首项为1a 1+1=2,公比为2,∴1a n+1=2n.∴b n +1=(n -2λ)⎝⎛⎭⎪⎫1an+1=(n -2λ)·2n (n ∈N *),∴b n =(n -1-2λ)·2n -1(n ≥2),∵数列{b n }是单调递增数列, ∴b n +1>b n ,∴(n -2λ)·2n>(n -1-2λ)·2n -1(n ≥2),可得λ<n +12(n ≥2),∴λ<32, 又当n =1时,b 2>b 1,∴(1-2λ)·2>-32λ,解得λ<45,综上,λ的取值范围是λ<45.故选A.二、填空题11.(2018·厦门海沧实验中学联考)若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________.答案 a n =⎩⎪⎨⎪⎧6,n =1,n +2n,n ≥2,n ∈N *解析 a 1·a 2·a 3·…·a n =(n +1)(n +2), 当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n, 所以a n =⎩⎪⎨⎪⎧6,n =1,n +2n,n ≥2,n ∈N *.12.(2017·湖北襄阳优质高中联考)若a 1=1,对任意的n ∈N *,都有a n >0,且na 2n +1-(2n -1)a n +1a n -2a 2n =0.设M (x )表示整数x 的个位数字,则M (a 2017)=________.答案 6解析 由已知得(na n +1+a n )(a n +1-2a n )=0, ∵a n >0,∴a n +1-2a n =0,则a n +1a n=2, ∵a 1=1,∴数列{a n }是以1为首项,2为公比的等比数列, ∴a n =1×2n -1=2n -1.∴a 2=2,a 3=4,a 4=8,a 5=16,a 6=32,a 7=64,a 8=128,…,∴n ≥2时,M (a n )依次构成以4为周期的数列.∴M (a 2017)=M (a 5)=6,故答案为6.13.(2017·吉林模拟)若数列{a n }满足a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),则a 2016等于________.答案 2解析 ∵a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),∴a 2=1-1a 1=1-112=-1,∴a 3=1-1a 2=1-1-1=2,∴a 4=1-1a 3=1-12=12,…,依此类推,可得a n +3=a n ,∴a 2016=a 671×3+3=a 3=2.14.(2017·河南测试)已知各项均为正数的数列{a n }满足a n +1=a n 2+14,a 1=72,S n 为数列{a n }的前n 项和,若对于任意的n ∈N *,不等式12k 12+n -2S n ≥2n -3恒成立,则实数k 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫38,+∞ 解析 由a n +1=12a n +14,得a n +1-12=12⎝ ⎛⎭⎪⎫a n -12,且a 1-12=3,所以数列⎩⎨⎧⎭⎬⎫a n -12是以3为首项,12为公比的等比数列,则a n -12=3×⎝ ⎛⎭⎪⎫12n -1,所以a n =3×⎝ ⎛⎭⎪⎫12n -1+12,所以S n =3×( 120+12+122+…+12n -1 )+n 2=6⎝ ⎛⎭⎪⎫1-12n +n 2,则12+n -2S n =122n .因为不等式12k 12+n -2S n =k ·2n≥2n -3,n ∈N *恒成立,所以k ≥⎝⎛⎭⎪⎫2n -32n max ,n ∈N *.令2n -32n =b n ,则b n +1-b n =2n -12n +1-2n -32n =5-2n 2n +1,则b 1<b 2<b 3>b 4>…,所以(b n )max =b 3=38,故k ≥38. 三、解答题15.(2017·河南百校联盟模拟)已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =34S n +2成立.记b n =log 2a n ,求数列{b n }的通项公式.解 在a n =34S n +2中,令n =1,得a 1=8.因为对任意正整数n 都有a n =34S n +2成立,所以a n +1=34S n +1+2,两式相减得a n +1-a n =34a n +1,所以a n +1=4a n ,又a 1=8,所以{a n }是首项为8,公比为4的等比数列,所以a n =8×4n -1=22n +1,所以b n =log 222n +1=2n +1.16.(2015·四川高考)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11000成立的n 的最小值.解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1). 所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列. 故a n =2n.(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11000,得⎪⎪⎪⎪⎪⎪1-12n -1<11000,即2n >1000. 因为29=512<1000<1024=210, 所以n ≥10.于是,使|T n -1|<11000成立的n 的最小值为10.。
2020-2021高三复习数列的概念与表示第三集an与sn关系应用
1.已知数列{an}的前 n 项和 Sn=2n-3,则数列{an}的通项公式 an=________.
解析:当 n=1 时,a1=S1=-1; 当 n≥2 时,an=Sn-Sn-1=(2n-3)-(2n-1-3)=2n-2n-1=2n-1,a1 不适合此等式.所以 an=-2n-11,,nn=≥12,.
数列
第1讲 数列的概念与简单表示法 第三集 an与sn关系的应用
高三复课数学
an 与 Sn 关系的应用(多维探究) 角度一 利用 an 与 Sn 的关系求通项公式 an
已知数列an的前 n 项和 Sn=13an+23,则an的通项公式为 an=________. 【解析】 当 n=1 时,a1=S1=13a1+23,所以 a1=1.当 n≥2 时,an=Sn-Sn-1=13an- 13an-1,所以aan-n 1=-12,所以数列an为首项 a1=1,公比 q=-12的等比数列,故 an=-12 n-1.
答案:- 2n-11,,nn=≥12,
2.已知数列{an}中,a1=1,Sn 为数列{an}的前 n 项和,Sn≠0,且当 n≥2 时,有anS2na-n S2n =1 成立,则 S2 017=________.
解析:当 n≥2 时,由anS2na-n S2n=1,得 2(Sn-Sn-1)=(Sn-Sn-1)Sn-S2n=-SnSn-1,所以S2n
角度二 利用 an 与 Sn 的关系求 Sn 设 Sn 是数列{an}的前 n 项和,Sn≠0,且 a1=-1,an+1=SnSn+1,则 Sn=________.
【解析】 因为 an+1=Sn+1-Sn,an+1=SnSn+1,所以 Sn+1-Sn=SnSn+1. 因为 Sn≠0,所以 S1n-Sn1+1=1,即Sn1+1-S1n=-1. 又S11=-1,所以 {S1n}是首项为-1,公差为-1 的等差数列. 所以 S1n=-1+(n-1)×(-1)=-n,所以 Sn=-n1. 【答案】 -n1
公开课数列an与sn关系
数列中a n 与S n 的关系【使用说明及学法指导】1.复习后完成导学案,不做达标检测和拓展训练部分;2.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;3.必须记住的内容:等差数列通项公式,等比数列通项公式和a n 与S n 的关系的公式。
【学习目标】学习目标:熟练运用S n 与a n 关系,学会S n 与a n 互化。
学习重点:理解S n 与a n 关系。
学习难点:熟练运用S n 与a n 关系,培养利用已知条件建立或推导递推关系的能力,进一步体会方程,化归和类比等数学思想,逐步落实逻辑推理和数学运算核心素养。
【复习回顾,学情自测】一、如何证明一个数列是等差数列,如何证明一个数列是等比数列?二、你能列举出典型的递推式及其求通项公式的方法吗?三、项式a n 与和式S n 的关系的公式__________.基础小测:1(2020安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为()A .15B .16C .49D .642.已知数列{a n }的前n 项和S n =2n ,则a 3+a 4=__________.3.(2017全国Ⅲ)设数列{}n a 满足123(21)2n a a n a n +++-= .求{}n a 的通项公式;4.根据数列前几项,写出下列数列的一个通项公式:(1)1,3,9,27,81,…(2)2,3,9,27,81,…四、回顾项式a n 与和式S n 的关系常考形式有哪些,条件通常会如何变化,体会不同条件下的联系与区别,易错点有哪些?【变式探究,例题精讲】一.设数列{a n }的前n 项和为S n ,求S n .【例1】(2015课标Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=1,a n+1=-S n S n+1,则S n =.二.设下列数列{a n }的前n 项和为S n ,求a n .【例2】(2021全国)12++=n n S n ;【例3】(1)32-+=n a S n n ;(2)n n n a S 22-=;(3)12+=n n a S 思考:题目求解过程中综合了哪些知识与方法?【变式1】(2021辽宁改编)112,1+==n n a S a ;思考:体会与例3(3)之间的区别与联系,需要注意易错点有哪些?【变式2】1112,2++==n n a S a .【达标检测】1.(2021浙江)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-,求数列{}n a 的通项。
an与Sn关系问题--高考数学【解析版】
专题28 n a 与n S 关系问题等差数列、等比数列的性质、通项公式和前n 项和公式构成两类数列的重要内容,在历届高考中属于必考内容,既有独立考查的情况,也有二者与其它知识内容综合考查的情况.一般地,选择题、填空题往往独立考查等差数列或等比数列的基本运算,解答题往往综合考查等差数列、等比数列.数列求和问题是高考数列中的另一个易考类型,其中常见的是“裂项相消法”、“错位相减法”.数列求和与不等式证明相结合,又是,数列考题中的常见题型,关于数列中涉及到的不等问题,通常与数列的最值有关或证明(数列的和)不等式成立或确定参数的范围,对于数列中的最值项问题,往往要依靠数列的单调性,而对于数列的和不等式的证明问题,往往可以利用“放缩法”,要根据不等式的性质通过放缩,达到解题目的. 关于求数列的通项公式问题,在高考中较少独立命题,但数列的通项公式、猜想、归纳、递推意识却融入数列的试题之中,特别是题目中给定n a 与n S 的关系,通过确定数列的通项公式进一步解题,常见于各类考试题中.【重点知识回眸】(一)依据递推关系求数列通项公式 1、累加(累乘法)(1)累加法:如果递推公式形式为:()1n n a a f n +-=,则可利用累加法求通项公式 ① 等号右边为关于n 的表达式,且能够进行求和 ② 1,n n a a +的系数相同,且为作差的形式 (2)累乘法:如果递推公式形式为:()1n na f n a +=,则可利用累加法求通项公式 2、构造辅助数列:通过对递推公式进行变形,变形为相邻项同构的特点,进而将相同的结构视为一个整体,即构造出辅助数列.通过求出辅助数列的通项公式,便可算出原数列的通项公式(1)形如()11,0n n a pa q p q -=+≠≠的形式:通常可构造出等比数列,进而求出通项公式.(2)形如1n n n a pa q -=+,此类问题可先处理n q ,两边同时除以nq ,得11n n n n a a p q q-=+,进而构造成111n n n n a p a q q q --=⋅+,设n n n a b q =,从而变成11n n pb b q-=⋅+,从而将问题转化为第(1)个问题. 另外:对于以上两个问题,还有一个通用的方法:对于形如()1n n a pa f n -=+(其中()f n 为关于n 的表达式),可两边同时除以np ,()11n n n n n f n a a p p p --=+.设n n n a b p =,即()1n n n f n b b p --=,进而只要()nf n p可进行求和,便可用累加的方法求出n b ,进而求出n b .(3)形如:11n n n n qa pa a a ---=,可以考虑两边同时除以1n n a a -,转化为11n n q pa a --=的形式,进而可设1n nb a =,递推公式变为11n n qb pb --=,转变为上面的类型求解 (4)形如()21n n n pa p q a qa k ++-++=,即中间项的系数与两边项的系数和互为相反数,则可根据两边项的系数对中间项进行拆分,构造为:()()211n n n n p a a q a a k +++---=的形式,将1n n n b a a +=-,进而可转化为上面所述类型进行求解(二)已知数列{}n a 的前n 项和n S ,求数列的通项公式: 求解过程分为三步: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用=n a 1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写. (三)“构造相减”求通项公式当所给递推公式无法直接进行变形,则可考虑根据递推公式的形式再构造出下一组相邻项的递推公式,通过两式相减可构造出新的递推公式,再尝试解决.尤其是处理递推公式一侧有求和特征的问题,这种做法可构造出更为简单的递推公式.(四)“观察、归纳、猜想”求通项公式先通过数列前几项找到数列特点,从而猜出通项公式(教科书的基本要求:根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.必要时再利用数学归纳法证明.【典型考题解析】热点一 累加法研究(通)项【典例1】(2022·浙江·高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a << B .100510032a << C .100731002a <<D .100710042a <<【答案】B 【解析】 【分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323n n a n ⎛⎫-<-++++ ⎪⎝⎭,再次放缩可得出10051002a >. 【详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n n a a a a a +==+--, ∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥,∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭, ∴10011111111133334943932399326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭, 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<.故选:B .【典例2】(2021·浙江·高考真题)已知数列{}n a 满足)111,N 1nn na a n a *+=∈+.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S <<D .100952S <<【答案】A 【解析】 【分析】 显然可知,10032S >,利用倒数法得到21111124n n n n a a a a +⎛⎫==-⎪⎪⎭112n na a +<,由累加法可得24(1)n a n ≥+,进而由11n n na a ++113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)na n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解. 【详解】 因为)111,N 1nn n a a n a *+==∈+,所以0n a >,10032S >. 由2111111241n n n n n n n a a a a a a ++⎛⎫==+-⎪⎪+⎭ 21111122n n n n a a a a ++⎛⎫∴<⎪⎪⎭112n n a a +<11122nn n a -+≤+=,当且仅当1n =时取等号,12412(1)3111n n n n n n a n a a a n n a n ++∴≥∴≤=+++++ 113n n a n a n ++∴≤+, 由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【典例3】(2023·全国·高三专题练习)已知数列{}n a 满足()()*1111n n a a n n n n n +-=∈++N ,且11a =,求数列{}n a 的通项公式; 【答案】21n a n =- 【分析】由已知条件可得()111211n n a a n n n n n--=-≥--,再由递推及11a =可得()212n a n n =-≥,最后再检验即可得到答案. 【详解】因为()1111111n n a a n n n n n n +-==-+++,所以()111211n n a a n n n n n--=-≥--, 12111221n n a a n n n n ---=-----,…2111122a a -=-,所以累加可得()1112n a a n n n -=-≥.又11a =,所以21n a n n n-=,所以()212n a n n =-≥. 经检验,11a =,也符合上式,所以21n a n =-. 【总结提升】由递推关系求通项公式的关键是“模型化”,即针对不同的关系选择不同的方法求解. 热点二 累乘(积)法研究(通)项【典例4】(2023·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且满足2411()()()2n n n S n a ++=+,则数列{}n a 的通项公式n a 等于___________ 【答案】3(1)n +【分析】根据给定的递推公式,结合“当2n ≥时,1n n n S S a --=”化简,再利用累乘法求解作答. 【详解】由2411()()()2n n n S n a ++=+得:22()41()1n n n a S n ++-=,当2n ≥时,211()114n n n a S n--+-=, 两式相减得:2212141()()4)(n n n n a n a a n n-++=-+,化简整理得:331(1)n n n a n a -=+,当1n =时,11S a =,即有118(1)9a a +=,解得18a =,因此,N n *∈,2n ≥,331(1)n n a n a n -+=, 333333123213333312321(1)(1)438(1)(1)(2)32n n n n n n n a a aa a n n n a a n a a a a a n n n -----+-=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=+--, 而18a =满足上式,所以3(1)n a n =+.故答案为:3(1)n +【典例5】(2023·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且满足()213n n S n a =+-,n ∈+N .求{}n a 的通项公式;【答案】()()612n a n n =++,n ∈+N【分析】根据已知条件可利用n a 与n S 的关系可得12n n a na n -=+,再由递推累乘可得通项公式,最后检验11a =是否符合通项公式即可.【详解】1n =时,1143a a =-,解得11a =.当2N n n +≥∈,时,2113n n S n a --=-,故()22111n n n n n a S S n a n a --=-=+-,所以12n n a na n -=+, 故()()1321122113261215412n n n n n a a a a n n a a a a a a n n n n ----=⋅⋅⋅=⋅⋅⋅=++++.经检验,11a =符合上式, 故{}n a 的通项公式为()()612n a n n =++,N n +∈.【典例6】(2022·全国·高三专题练习)已知数列{n a }满足:114a =,114n n n a a n++=,*N n ∈,且其前n 项和为n S ,求n a 与n S .【答案】4n nna =,134494n n n S +⎛⎫=- ⎪⎝⎭. 【分析】由已知可得114n n a n a n++=,然后利用累乘法可求出n a ,再利用错位相减法可求出n S . 【详解】由114n n n a a n++=,得114n n a n a n ++=, 当n ≥2时, 32111211213144142414n n n n a a a n n a a a a a n -⎛⎫⎛⎫⎛⎫=⋅⋅⋅=⨯⨯⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⋅, 又114a =也满足上式,故4n n na =(n *N ∈). 231234444n n n S =++++, ∴231112144444n n n n nS +-=++++,相减得,2311111131111114411444444434414nn n n n nn n n nS +++⎛⎫- ⎪⎛⎫⎝⎭=++++-=-=--⎪⎝⎭-, ∴134494n n n S +⎛⎫=- ⎪⎝⎭.热点三 构造法研究(通)项【典例7】(2019·浙江·高考真题)设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A 【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确. 【详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112(22n n n n a a a a +=+=+≥, 且2211122a a =+≥, 792(2)42a a ∴≥≥21091610a a >≥>,故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =, 则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为1x =-或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2,同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为117x ± 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A. 【点睛】利用函数方程思想,通过构造方程,研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解. 【典例8】(2018·浙江·高考真题)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>【答案】B 【解析】 【分析】先证不等式ln 1x x ≥+,再确定公比的取值范围,进而作出判断. 【详解】令()ln 1,f x x x =--则1()1f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()(1)0,ln 1f x f x x ≥=∴≥+,若公比0q >,则1234123123ln()a a a a a a a a a a +++>++>++,不合题意;若公比1q ≤-,则212341(1)(1)0,a a a a a q q +++=++≤但212311ln()ln[(1)]ln 0a a a a q q a ++=++>>,即12341230ln()a a a a a a a +++≤<++,不合题意; 因此210,(0,1)q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如ln 1,x x ≥+ 2e 1,e 1(0).x x x x x ≥+≥+≥【典例9】(2023·全国·高三专题练习)已知数列{}n a 中,11a =,133nn n a a +=+,求数列{}n a 的通项公式___________【答案】13n n a n -=⋅【分析】由已知条件可得111333n n n n a a ++-=,从而可得数列3n n a ⎧⎫⎨⎬⎩⎭是等差数列,求出其通项公式后化简即可得到n a . 【详解】∵133nn n a a +=+,∴111333n n n n a a ++-=,∴数列3n na ⎧⎫⎨⎬⎩⎭是等差数列,公差为13,又1133a =, ∴11(1)3333n n a nn =+-⨯=,∴13n n a n -=⋅. 故答案为:13n n a n -=⋅.【规律方法】构造法构造的领域较广泛,如构造方程、函数、数列等.一般地,构造数列往往结合等差(比)数列的定义求解.热点四 构造相减研究(通)项【典例10】(2022·北京·高考真题)己知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅==.给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是__________. 【答案】①③④ 【解析】 【分析】 推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③. 【详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得23533a -=<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【典例11】(2016·全国·高考真题(理))已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ. 【答案】(Ⅰ);(Ⅱ)1λ=-.【解析】 【详解】试题分析:(Ⅰ)首先利用公式11,1{,2n n n S n a S S n -==-≥,得到数列{}n a 的递推公式,即可得到{}n a 是等比数列及{}n a 的通项公式;(Ⅱ)利用(Ⅰ),用λ表示前n 项和n S ,结合n S 的值,建立方程可求得λ的值. 试题解析:(Ⅰ)由题意得,故,,. 由,得,即.由,得,所以.因此{}n a 是首项为,公比为的等比数列,于是.(Ⅱ)由(Ⅰ)得.由得,即.解得1λ=-.【典例12】(2017·全国·高考真题(文))设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【答案】(1) 221n a n =-;(2)221n n +. 【解析】(1)利用递推公式,作差后即可求得{}n a 的通项公式.(2)将{}n a 的通项公式代入,可得数列21n a n ⎧⎫⎨⎬+⎩⎭的表达式.利用裂项法即可求得前项和.【详解】(1)数列{}n a 满足()123212=n a a n a n ++⋯+-2n ≥时,()()12132321n a a n a n ++⋯+--﹣= ∴()212n n a -= ∴221n a n =- 当1n =时,12a =,上式也成立 ∴221n a n =- (2)21121(21)(21)2121n a n n n n n ==-+-+-+ ∴数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和1111113352121n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1212121nn n =-=++ 【典例13】(2022·河南·高三阶段练习(理))已知数列{}n a 的前n 项和为n S ,且满足11a =,122n n S S +=+. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足1n n nb a a =+,求数列{}n b 的前n 项和n T .【答案】(1)112n n a -=;(2)1221n n nT -=-+. 【分析】(1)根据n S 与n a 关系可得{}n a 是等比数列,根据等比数列的通项公式即可求解; (2)利用分组求和法与等比数列的求和公式直接求解. 【详解】解:(1)当n =1时,2122S S =+, ∵11a =,∴212a =.可得2112a a =,当2n ≥时,122n n S S +=+,122n n S S -=+, 两式相减,得12n n a a +=,即112n n a a +=, 故数列{}n a 是首项为1,公比为12的等比数列,则112n n a -=; (2)由(1)知,11122n n n b --=+, 故()111111112212212211221212nn n n n n n T -----⎛⎫=+++++++=+=-+ ⎪-⎝⎭-. 【典例14】(2021·江西南昌·高三阶段练习)已知正项数列}{n a 的前n 项和为n S ,且(21)n n n S a a =+ (1)求}{n a 的通项公式; (2)设11n n n n a b a a +=+,数列}{n b 的前n 项和为n T ,求使得9910k T ≤的最大整数k 的值.【答案】(1)n a n = (2)9【分析】(1)根据11,2,1n n n S S n a S n --≥⎧=⎨=⎩得数列}{n a 是等差数列,公差为1,首项为1,进而得其通项公式;(2)结合(1)得1111n b n n =+-+,进而得111n T n n =+-+,再解不等式9910k T ≤即可得答案.(1)解:因为(21)n n n S a a =+①,所以,当2n ≥时,1112(1)n n n S a a ---=+②,所以,①-②得:22112n n n n n a a a a a --=+--,即111()()n n n n n n a a a a a a ---+=+-,因为0n a >,10n n a a -+≠, 所以11(2)n n a a n --=≥,因为,当1n =时,11112(1)2S a a a =+=,解得11a =, 所以,数列}{n a 是等差数列,公差为1,首项为1. 所以1(1)1n a n n =+-⨯= (2)解:结合(1)得11111111n n n n a n b a a n n n n +=+=+=+-++, 所以,数列}{n b 的前n 项和为121111111111122311n n T b b b n n n n ⎛⎫⎛⎫⎛⎫=+++=+-++-++-=+- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 所以,1991110k T k k =+-≤+,整理得:()()2101991100k k +-+-≤,解得19k ≤≤. 所以,使得9910k T ≤的最大整数k 的值为9. 【精选精练】一、单选题1.(2022·海南·琼海市嘉积第三中学高三阶段练习)若数列{n a }的前n 项和为n S =2133n a +,n S =( )A .123n-B .1(2)3n--C .2123+D .1(2)3n+-【答案】B【分析】根据已知条件,利用n a 与n S 的关系求得数列{}n a 的通项公式,利用等比数列前n 项和公式求解即可.【详解】解:当1n =时,1112133a S a ==+,解得11a =, 当2n ≥时,11212122333333n n n a n n n n a S S a a a a ---⎛⎫=-=+-+=- ⎪⎝⎭,即12n n a a -=-, ∴{}n a 是首项为1,公比为-2的等比数列,∴1(2)n n a -=-, 所以1(2)1(2)1(2)3n n nS ----==--. 故选:B.2.(安徽省部分校2023届高三上学期开学摸底考)已知数列 {}n a 的前n 项和为n S ,且满足31n n a S =-,则4S =( )A .38B .916C .724D .516【答案】D【分析】利用n a 与n S 关系求得通项关系,判断数列{}n a 为等比数列即可求得. 【详解】当1n =时,1131a a =-,∴112a =,当2n ≥时,1131n n a S --=-,两式相减可得112n n a a -=-,∴数列{}n a 是首项为12,公比为12-的等比数列,∴4411[1()]5221161()2S --==--. 故选:D .3.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为111,2,2n n n n S a S a ++=+=,则n S =( )A .()12n n +⋅B .()112n n -+⋅ C .12n n -⋅ D .2n n ⋅【答案】D【分析】根据给定条件,结合11n n n a S S ++=-变形,构造数列,再求数列通项即可求解作答. 【详解】因为112n n n a S ++=+,则112n n n n S S S ++-=+,于是得11122n nn nS S ++-=, 因此数列2n n S ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,首项1112S =,则()1112n n S n =+-⨯,所以2n n S n =⋅. 故选:D 二、多选题4.(2021·山东·高三开学考试)已知数列{}n a 的前n 项和为11121n n n S a S S a +==++,,,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为*n T n N ∈,,则下列选项正确的为( ) A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D . 1n T <【答案】BCD【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得()()111221121212121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为()1121n n a a ++=+,由111S a ==,可得数列{}1n a +是首项为2,公比为2的等比数列,则12nn a +=,即21n n a =-,又()()111221121212121n n n n n n n n a a +++==-----,可得 2231111111111 1.212121212121n n n n T ++=-+-+⋯+-=-<------ 故选:BCD5.(2023·全国·高三专题练习)设n S 是数列{}n a 的前n 项和,且1a =-1,11n n n a S S ++=,则下列结论正确的是( ) A .1(1)n a n n =-B . 1,1,1,2(1)n n a n n n -=⎧⎪=⎨≥⎪-⎩C .1n S n=-D .数列1n S ⎧⎫⎨⎬⎩⎭是等差数列【答案】BCD【分析】先由an +1=Sn ·Sn +1=Sn +1-Sn ,判断出1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,d =-1的等差数列,即可判断D,进而求出1n S n=-,再由n S 求出通项公式n a .【详解】∵an +1=Sn ·Sn +1=Sn +1-Sn ,两边同除以Sn +1·Sn ,得1111n nS S +-=. ∴1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,d =-1的等差数列, 即1nS =-1+(n -1)×(-1)=-n , ∴Sn =-1n.当n ≥2时,an =Sn -Sn -1=-1n+11n -=1(1)n n -,又a 1=-1不符合上式,∴1,1,1,2(1)n n a n n n -=⎧⎪=⎨≥⎪-⎩ 故A 错误,BCD 正确. 故选:BCD 三、填空题6.(2023·全国·高三专题练习)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,*N n ∈,则数列{}n a 的通项公式为________. 【答案】12n na【分析】由构造法和n a 与n S 关系求解【详解】由题意得1)2(11n n S S +=++,而112S +=, 所以{1}n S +是首项为2,公比为2的等比数列.12n n S +=,21n n S =-,当2n ≥时,112n n n n a S S --=-=,11a =也满足此式,综上,12n na故答案为:12n na7.(2023·全国·高三专题练习)已知数列{}n a 的前n 项和2321n S n n =-+,则数列{}n a 的通项公式为______.【答案】2,165,2n n a n n =⎧=⎨-≥⎩ 【分析】利用n a 与n S 关系即得.【详解】因为2321n S n n =-+,当1n =时,113212a S ==-+=,当2n ≥时,2213213(1)2(1)165n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦,所以2,165,2n n a n n =⎧=⎨-≥⎩.故答案为:2,165,2n n a n n =⎧=⎨-≥⎩.8.(2023·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*N n ∈),则n S =___________ 【答案】2n n ⋅【分析】根据给定的递推公式,结合“当2n ≥时,1n n n S S a --=”构造数列求出数列{}n a 的通项即可求解作答. 【详解】因为12n n n a S n ++=,则12n n na S n +=+,当2n ≥时,1(1)1n n n a S n --=+,因此1(1)21n n n na n a a n n +-=-++,化简整理得1221n n a a n n +=⋅++,而211336a S a ===,有21232a a =⋅,即有*N n ∈,1221n n a an n +=⋅++,因此,数列{}1na n +是以112a =为首项,2为公比的等比数列,则121n n a n -=+,即1(1)2n n a n -=+⋅, 所以1(2)2222n n n n n n S a n n n n +==⋅+⋅=⋅++. 故答案为:2n n ⋅ 四、解答题9.(2022·湖北·天门市教育科学研究院模拟预测)已知数列{}n a 满足121,6a a ==,且()*1144,2,n n n a a a n n +-=-≥∈N .(1)证明数列{}12n n a a +-是等比数列,并求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .【答案】(1)证明见详解,1(21)2n n a n -=-(2)(23)23n n T n =-+【分析】(1)根据递推公式构造可证,然后借助{}12n n a a +-为等比数列可得通项,再构造数列{}2n n a 可证为等差数列,根据等差数列通项公式可解; (2)由错位相减法可得. (1)因为()*1144,2,n n n a a a n n +-=-≥∈N所以111422()22n n n n n n a a a a a a +--=--=- 又因为2124a a -=所以{}12n n a a +-是以4为首项,2为公比的等比数列.所以1112422n n n n a a -++-=⨯=变形得11122n nn na a ++-= 所以{}2n n a 是以1122a =为首项,1为公差的等差数列 所以111222n n a n n =+-=-,所以1(21)2n n a n -=- (2)因为0121123252(21)2n n T n -=⨯+⨯+⨯+⋅⋅⋅+-…①所以1232123252(21)2nn T n =⨯+⨯+⨯+⋅⋅⋅+-…②①-②得:212312(12)1222(21)21(21)212n n nn n T n n ----=+++⋅⋅⋅+--=+---所以1(21)223(23)23n n nn T n n +=--+=-+10.(2020·全国·高考真题(理))设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+. 证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n n n n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n na n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+. [方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n n n a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22nn S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n n n a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2nn n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.11.(2023·全国·高三专题练习)已知数列{}n a 的各项均为正数,前n 项和为n S ,且满足22 4.n n S a n =+-(1)求证:{}n a 为等差数列; (2)求{}n a 的通项公式. 【答案】(1)见详解 (2)n +2【分析】(1)利用()12-=-≥n n n a S S n 可得答案;(2)由(1)得1a ,d ,代入等差数列的通项公式可得答案. (1)当1n =时,有121214=+-a a ,即211230a a --=,解得13a = (11a =-舍去),224=+-n n S a n ,当2n ≥时,有211214--=+--n n S a n ,两式相减得22121n n n a a a -=-+,即22121-+-=n n n a a a ,也即()2211n n a a --=,因此11n n a a --=或11n n a a --=-,若11n n a a --=-,则11n n a a -+=,而13a =,所以22a =-, 这与数列{}n a 的各项均为正数矛盾,所以11n n a a --=, 即11n n a a --=,因此{}n a 为公差为1的等差数列; (2)由(1)知13a =,1d =,所以数列{}n a 的通项公式()312=+-=+n n n a , 即2n a n =+.12.(2022·安徽省太和中学高三阶段练习)已知等差数列{}n a 的前n 项和为n S ,等差数列{}n b 的公差为1,且2n n S b =.(1)求数列{}{},n n a b 的通项公式; (2)求数列1n n S b ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【答案】(1)21n a n =-,n b n = (2)1n n T n =+ 【分析】(1)利用当2n ≥时,()()2211111n n n n n n n n n n n a S S b b b b b b b b -----=-=-=+-=+,可求得1223n a n b =+-,进而求得数列{}n a 的公差为2,再由22111212a a b b -=+-=,解得11b =,从而求得数列{}n a 和数列{}n b 的通项公式(2)利用裂项相消法求和即得所求 (1)由()1111n b b n n b =+-=+-可得,当2n 时,()()2211111n n n n n n n n n n n a S S b b b b b b b b -----=-=-=+-=+111111223n b n b n b =+-+-+-=+-则()1112123221n a n b n b +=++-=+- 所以 12n n a a +-=即数列{}n a 的公差为2,又2111a S b ==所以22111212a a b b -=+-=,解得11b =,故数列{}n a 的通项公式为21n a n =-,数列{}n b 的通顶公式为n b n =; (2)由(1)可知,2,n n b n S n ==,所以()21111111n n S b n n n n n n ===-++++. 11111111.223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭13.(2022·云南·昆明一中高三开学考试)已知数列{}n a 的前n 项和为,0n n S a >,且2241n n n a a S +=-.(1)求{}n a 的通项公式; (2)设1nn n n S b a a +=的前n 项和为n T ,求n T . 【答案】(1)21n a n =-(2)242n n nT n +=+【分析】(1)先用()1n +替换原式中的n ,然后两式作差,结合n a 与n S 的关系,即可得到{}n a 为等差数列,从而得到其通项.(2)由(1)的结论,求得n S 及1n a +,代入1nn n n S b a a +=化简,得到n T 的式子,裂项相消即可. (1)2241n n n a a S +=-,2111241n n n a a S ++++=-,两式作差得:()()1120n n n n a a a a +++--=, 102n n n a a a +>∴-=,{}n a ∴成等差数列,又当1n =时,()2110a -=, 所以11a =即()11221n a n n =+-⨯=- (2)由(1)知21n a n =-, 则()()1212122n n n a a n n S n ++-===, 即()()()()21111212142121n n n n S n b a a n n n n +⎡⎤===+⎢⎥-+-+⎢⎥⎣⎦ 1111482121n n ⎛⎫=+- ⎪-+⎝⎭, 故1111111483352121n n T n n ⎛⎫=+-+-++- ⎪-+⎝⎭2111482148442n n n n nn n n +⎛⎫=+-=+= ⎪+++⎝⎭. 14.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且满足120n n n a S S -+=(2n ≥),112a =. (1)求n S ;(2)求数列{}n a 的通项公式. 【答案】(1)12n S n=(2)()*1,(1)211,2,222n n a n n n n ⎧=⎪⎪=⎨⎪-≥∈⎪-⎩N【分析】(1) 利用1n n n a S S -=-, 化简已知条件, 转化推出1121Sn Sn -=-. 即可证明数列1n S ⎧⎫⎨⎬⎩⎭是等差数列 ; (2)利用(1)求出数列的和, 通过已知条件转化求解即可. (1)由题意可得, 当1n =时,112a =, 当2n ≥时,120n n n a S S -⋅+=, 即 112n n n n S S S S ---=-, 可得1112n n S S --=, 即数列 1n S ⎧⎫⎨⎬⎩⎭是首项为2 ,公差为2的等差数列 , ()122(1)2n n n S =+-≥,, 可得()*12,2n S n n n =≥∈N ,. 经检验,1n =时,1112S a ==满足上式, 故12n S n=. (2)由(1)可得,当2n ≥时,111222n n n a S S n n -=-=--, 当1n =时,112a =,不符合11222n a n n =--, 综上所述, 结论是:()*1,(1)211,2,222n n a n n n n ⎧=⎪⎪=⎨⎪-≥∈⎪-⎩N .15.(2022·陕西·渭南市华州区咸林中学高三开学考试(文))在数列{}n a 中,11a =,且2n ≥,1231111231n n a a a a a n -++++=-. (1)求{}n a 的通项公式; (2)若11n n n b a a +=,且数列{}n b 的前项n 和为n S ,证明:3n S <. 【答案】(1)1,1, 2.2n n a n n =⎧⎪=⎨≥⎪⎩ (2)证明见解析【分析】(1)由已知得当123211113,232n n n a a a a a n --≥++++=-,再和已知的式子相减化简后利用累乘法可求出通项公式,(2)由(1)得当2n ≥时,4114(1)1n b n n n n ⎛⎫==- ⎪++⎝⎭,利用裂项相消法可求得n S ,从而可证得结论.(1)解:因为12311112,231n n n a a a a a n -≥++++=-, 所以当123211113,232n n n a a a a a n --≥++++=-, 两式相减,得1111n n n a a a n --=--,即11n n n a a n -=-, 当2n =时,211a a ==,所以当3n ≥时,11n n a na n -=-, 所以当3n ≥时,1321221311222n n n n n a a a n n na a a a a n n ----=⨯⨯⨯⨯=⨯⨯⨯⨯=--, 当2n =时,上式成立;当1n =时,上式不成立,所以1,1, 2.2n n a n n =⎧⎪=⎨≥⎪⎩ (2)证明:由(1)知1,14,2(1)n n b n n n =⎧⎪=⎨≥⎪+⎩当2n ≥时,4114(1)1n b n n n n ⎛⎫==- ⎪++⎝⎭,所以当1n =,113S =<;当2n ≥时,111111144423341n S n n ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭11111111414143323341211n n n n ⎛⎫⎛⎫=+-+-++-=+-=-< ⎪ ⎪+++⎝⎭⎝⎭. 综上,3n S <.16.(2022·黑龙江·哈尔滨市第六中学校高三阶段练习)在数列{}n a 中,11111,12n n n n a a a n ++⎛⎫==++ ⎪⎝⎭,(1)设nn a b n =,求证:112n n n b b +-=; (2)求数列{}n b 的通项公式; (3)求数列{}n a 的前n 项和n S . 【答案】(1)证明见解析; (2)1122n n b -=-; (3)()121422n n S n n n -⎛⎫=++-+ ⎪⎝⎭.【分析】(1)依题意将11112n n n n a a n ++⎛⎫=++ ⎪⎝⎭转化为1112n n n a a n n +-=+,将n n ab n =代入即可得到112n n n b b +-=,结论成立;(2)根据第(1)问112n n n b b +-=,运用累加法得到11112311112211111112222212n n n n b b ---⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦-=++++==- ⎪⎝⎭-,进而求出1122n n b -=-; (3)根据第(1)、(2)问知,nn a b n =,1122n n b -=-,则122n n n a n -=-,运用分组转化求和以及错位相减求和,得出数列{}n a 的前n 项和n S . (1)由条件可知:11112n n n n a a n ++⎛⎫=++ ⎪⎝⎭,1112n n n n n a a n ++∴++=, 1112n n n a a n n +∴-=+, n n a b n =,112n n n b b +∴-=; (2)由第(1)问可知,112n n nb b +-=,当1n =时,21112b b -=, 当2n =时,32212b b -=, 当3n =时,43312b b -=,当1n n 时,1112n n n b b ---=, 以上各式相加,得11112311112211111112222212n n n n b b ---⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦-=++++==- ⎪⎝⎭-,11a =,1111a b ∴==,1122n n b -⎛⎫∴=- ⎪⎝⎭,即1122n n b -=-; (3)由第(1)、(2)问知,nn a b n =,1122n n b -=-,则122n n n a n -=-, 设数列{}n c 的通项公式112n n c n -⎛⎫=⨯ ⎪⎝⎭,前n 项和为n T ,则012112311111232222n n n T c c c c n -⎛⎫⎛⎫⎛⎫⎛⎫=++++=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,1231111112322222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减,得1012111122111111111222222212n n nn n T n n --⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++-⨯=+-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,()1111114242222n n n n n n T ---⎛⎫⎛⎫⎛⎫-⨯-⨯=-+ ⎪⎪⎪⎝⎭⎝⎭⎝⎭∴=,∴数列{}n a 的前n 项和()()()21112422121232422n n n n n n n S n n T n n --+⎛⎫⎡⎤+=⨯++++-=⨯-=+-+⎢⎥⎢⎥⎣⎦-+ ⎪⎝⎭.17.(2022·黑龙江·哈尔滨市第六中学校高三阶段练习)已知数列{}n a 的前n 项和为n S ,且满足112a =,()1202n n n a S S n -+=≥(1)求n a 和 n S(2)求证:22221231124n S S S S n+++⋯+≤-. 【答案】(1)()1,121,221n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,12n S n = (2)证明见解析【分析】(1)利用1n n n a S S -=-可得1112n n S S --=,从而可求n S 及n a . (2)利用放缩法及裂项相消法可证不等式成立. (1)1n =时,1112S a ==,2n ≥时,112n n n n n a S S S S --=-=-, 所以1112n n S S --=,所以数列1n S ⎧⎫⎨⎬⎩⎭是以112S =为首项,公差为2的等差数列.所以()12122n n n S =+-⋅=,即12n S n=,当2n ≥时,()11221n n n a S S n n -=-=--,当1n =时,112a =,不满足上式, 所以()1,121,221n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩, (2)当1n =时,211114241S ==-⨯,原式成立. 当2n ≥时,22221232222222111111111144243434423n S S S S n n ⎛⎫+++⋯+=++++⋯+=+++⋯+ ⎪⨯⨯⨯⨯⎝⎭()11111412231n n ⎡⎤≤+++⋯+⎢⎥⨯⨯-⎢⎥⎣⎦ 111111424n n⎛⎫=+-=- ⎪⎝⎭ 所以22221231124n S S S S n+++⋯+≤-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 浅谈数列中a n 与S n 的递推公式的应用
对于任意一个数列,当定义数列的前n 项和通常用S n 表示时,记作S n =a 1+a 2+…+a n ,此时通项公式a n =⎩⎪⎨⎪⎧
S 1,n =1,S n -S n -1,n ≥2. 而对于不同的题目中的a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用a n =S n -S n -1(n ≥2)去解决不同类型的问题呢?
我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:
归纳起来常见的角度有:
角度一:直观运用已知的S n ,求a n ;
角度二:客观运用a n =S n -S n -1(n ≥2),求与a n ,S n 有关的结论;
角度三:a n 与S n 的延伸应用.
角度一:直观运用已知的S n ,求a n
方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式):
(1)先利用a 1=S 1求出a 1;
(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;
(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.
同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S n 求解.如:a 1+2a 2+3a 3+…+na n =2n -1,其中a 1+2a 2+3a 3+…+na n 表示数列{na n }的前n 项和.
1.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( )
A .a n =2n -3
B .a n =2n +3
C .a n =⎩⎪⎨⎪⎧ 1,n =12n -3,n ≥2
D .a n =⎩⎪⎨⎪⎧
1,n =12n +3,n ≥2 【解析】当n ≥2时,a n =S n -S n -1=2n -3.当n =1时,a 1=S 1=1,不满足上式.
【答案】C
2.(2015·河北石家庄一中月考)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1) ·3n +1+3(n ∈N *),则数列的通项公式a n = .
【解析】当n ≥2时,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2) ·3n +3;则用已知等式减去上式得(2n -
1)·a n =(2n -1)·3n ,得a n =3n ;当n =1时,a 1=3,满足上式;故a n =3n .
【答案】a n =3n
3.(2015·天津一中月考)已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n = .
【解析】由已知得S n +1=2n +1,则S n =2n +1-1;当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n ;当
n =1时,a 1=S 1=3,不满足上式;故a n =⎩
⎪⎨⎪⎧ 3,n =12n ,n ≥2. 【答案】a n =⎩⎪⎨⎪⎧
3,n =12n ,n ≥2 4.(2015·四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足a 3a 5=45,a 2+a 6=14.
(1)求{a n }的通项公式;
(2)若数列{b n }满足:b 12+b 222+…+b n 2n =a n +1(n ∈N *),求{b n }的前n 项和. 【解】(1)设等差数列{a n }的公差为d ,则d >0,
由a 2+a 6=14,可得a 4=7
由a 3a 5=45,得(7-d )(7+d )=45,解得d =2 或d =-2(舍) ∴a n =a 4+(n -4)d =7+2(n -4),即a n =2n -1.
(2)令c n =b n 2n ,则c 1+c 2+c 3+…+c n =a n +1=2n ① 当n ≥2时,c 1+c 2+c 3+…+c n -1=2(n -1) ②
由①-②得,c n =2,
当n =1时,c 1=2,满足上式;
则c n =2(n ∈N *),即b n 2n =2,∴b n =2n +1, 故数列{b n }是首项为4,公比为2得等比数列,
∴数列{b n }的前n 项和S n =4(1-2n )1-2
=2n +2-4.
此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与a n ,S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n ,还是S n .那么,主要从两个方向。