PMOS开关管的选择与使用说明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PMOS开关管的选择与使用说明
首先要进行MOSFET的选择,MOSFET有两大类型:N沟道和P沟道。
在功率系统中,MOSFET 可被看成电气开关。
当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。
导通时,电流可经开关从漏极流向源极。
漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。
必须清晰MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。
这就是后面介绍电路图中栅极所接电阻至地。
假如栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。
当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。
虽然这时器件已经关闭,但仍旧有微小电流存在,这称之为漏电流,即IDSS。
第一步:选用N沟道还是P沟道
为设计选择准确器件的第一步是决定采用N沟道还是P沟道MOSFET。
在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。
在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。
当MOSFET 连接到总线及负载接地时,就要用高压侧开关。
通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。
第二步:确定额定电流
第二步是选择MOSFET的额定电流。
视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。
与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时。
两个考虑的电流情况是连续模式和脉冲尖峰。
该参数以FDN304P管DATASHEET为参考,参数如图所示:
在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。
脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。
一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。
选好额定电流后,还必须计算导通损耗。
在实际情况下,MOSFET并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。
MOSFET在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。
器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。
对MOSFET施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。
对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。
对便携式设计来说,采用较低的电压比较轻易(较为普遍),而对于工业设计,可采用较高的电压。
注重RDS(ON)电阻会随着电流稍微上升。
关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。
第三步:确定热要求
选择MOSFET的下一步是计算系统的散热要求。
设计人员必须考虑两种不同的情况,即最坏情况和真实情况。
建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。
在
MOSFET的资料表上还有一些需要留意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。
器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。
根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。
由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。
值得注意的是,在处理简朴热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立刻升温。
通常,一个PMOS管,会有寄生的二极管存在,该二极管的作用是防止源漏端反接,对于PMOS 而言,比起NMOS的优势在于它的开启电压可以为0,而DS电压之间电压相差不大,而NMOS 的导通条件要求VGS要大于阈值,这将导致控制电压必然大于所需的电压,会出现不必要的麻烦。
选用PMOS作为控制开关,有下面两种应用:
第一种应用,由PMOS来进行电压的选择,当V8V存在时,此时电压全部由V8V提供,将PMOS 关闭,VBAT不提供电压给VSIN,而当V8V为低时,VSIN由8V供电。
注意R120的接地,该电阻能将栅极电压稳定地拉低,确保PMOS的正常开启,这也是前文所描述的栅极高阻抗所带来的状态隐患。
D9和D10的作用在于防止电压的倒灌。
D9可以省略。
这里要注意到实际上该电路的DS接反,这样由附生二极管导通导致了开关管的功能不能达到,实际应用要注意。
来看这个电路,PG_C信号控制V4.2是否给P_GPRS供电。
此电路中,源漏两端没有接反,R110与R113存在的意义在于R110控制栅极电流不至于过大,R113控制栅极的常态,当栅极为高时,通过分压得到2脚为低,而栅极为低时,又可分压得到该脚为高,是个可以使用的开关电路。
实际上R113可以去掉,这里不需要一个栅极的下拉电阻来确定电位是因为PG_C 控制信号由MCU给出,有其稳定的高低两种电平,不会如上图所示的8V在不输入的情况下会出现未知电平导致出错。
R110可以更小,到100欧姆也可。