正交曲线桥直做的设计方法

合集下载

正交曲线桥直做的设计方法

正交曲线桥直做的设计方法

Don't rely too much on friends, human nature basically has a bad side.模板参考(页眉可删)正交曲线桥直做的设计方法1、概述交通事业的迅猛发展,使国内公路工程建设进入黄金时代。

公路等级不断提高,在设计总体布局方面要求桥位确定,桥梁设计应服从路线线形标准设计。

所以为了满足布线时平西线形指标,就会有部分桥梁在路线总体线形限制下处于曲线段,使桥梁结构类型的选择、结构计算方面难度加大。

同时从桥梁美观学考虑,曲线桥梁在整体布置方面要求更高。

因此在平曲线半径较大的情况下,采用“曲线桥直做”方案,在平、纵、横设计上可以通过特殊处理,达到桥型经济、美观的目的。

2、设计条件及侨型的确定曲线桥与路线正交且曲线半径较大时,“曲线桥直做”方案更容易近似曲线,经过计算分析和实地模型,得出平曲线半径是作为“曲线桥直做”的重要因素。

按加拿大安大略省公路桥梁设计规范是采用公式:L 2<b×R其中L一桥梁中心线处梁长R一平曲线半径b-桥架全幅的半宽作为曲线桥直线桥计算的判别条件,同时又根据“曲线桥直做”近几年的工程实践经验,对于简支曲线梁桥则以选用空心极梁为最佳结构类型;根据理论计算对于平曲线半径大于700m、20m跨径以内先张法板,最大增减值在(-36cm+36cm)以内,而且通过调整钢筋长度的方法很容易预制出不同的板长。

3、桥型布置与计算分析“曲线桥直做”即墩台轴线沿曲线径向布置,并且墩台轴线方向交于圆心,梁长为曲线的弦长。

由于桥梁内、外边缘线对应的曲线半径不同,使每片梁内侧的长度不等,也造成每跨中每片梁长短不一,按曲线直做墩台不平行也就使权梁的每跨布置是由许多块不同长度的个梯形组成一踏的大梯形。

曲线桥对于位于国曲线内,桥梁中心线以及桥梁内、外边缘线均为一同心曲线;对于位于缓和曲线内,桥梁中心线为缓和曲线,而对内、外边缘线是随中线曲率变化的渐变曲率曲线,而不应按缓和曲线计算。

正交曲线桥直做的设计方法的开题报告

正交曲线桥直做的设计方法的开题报告

正交曲线桥直做的设计方法的开题报告开题报告题目:正交曲线桥直做的设计方法一、选题背景桥梁作为一种重要的交通工具,对于人们生产和生活起到了重要的作用。

而正交曲线桥是一种新型的桥梁形式,在近年来被广泛地应用于各种项目中。

正交曲线桥不仅可以解决传统桥梁斜交难题,而且能够提高桥梁通行效率以及安全性能。

目前,正交曲线桥设计方法研究还处于起步阶段,需要更加深入的研究和探讨。

二、研究意义正交曲线桥是新型的桥梁形式,其可以提高道路通行效率以及安全性能。

因此,在进行正交曲线桥建设时,需要对其设计方法进行深入的研究和探讨。

本研究将对正交曲线桥设计方法进行系统化的研究,针对正交曲线桥的特征和设计需求,提出合理有效的设计方案,为相关工程实践提供设计知识支撑。

三、研究内容1、正交曲线桥的设计特点及需求分析2、正交曲线桥的设计原理及设计方法3、浅析正交曲线桥的施工与监测方法四、研究方法本研究主要采用文献调研和样例分析相结合的方法,通过系统地查阅相关文献、资料,了解和分析正交曲线桥的设计特点和需求,进而确定正交曲线桥的设计原则和方法。

同时,通过实例分析,验证研究成果的可行性。

五、工作计划第一阶段(2021.7-2021.8):搜集正交曲线桥相关文献和资料,开展文献调研工作。

第二阶段(2021.9-2021.11):深度分析正交曲线桥的设计特点和需求,确定正交曲线桥的设计原则和方法。

第三阶段(2021.12-2022.2):通过实际案例的分析,验证研究成果的可行性。

第四阶段(2022.3-2022.5):论文撰写及修改工作,完成开题报告、中期报告和毕业论文。

六、预期研究成果本研究将提出一套适用于正交曲线桥设计的方法,为相关工程实践提供设计思路和技术支持,同时也能够对正交曲线桥的施工和监测提供一定参考意义。

正交曲线桥直做的设计方法

正交曲线桥直做的设计方法

正交曲线桥直做的设计方法
正交曲线桥是一种常见的桥梁结构,它通常由多个正交和曲线连接而成,具有良好的
经济性和美观性。

正交曲线桥设计的方法主要包括以下几个方面。

一、布置方案设计:
该设计方面主要是针对正交曲线桥道床的布置、曲线半径的选择以及桥梁标准截面的
选择进行设计。

设计师需要根据实际情况确定道床的布置,考虑到桥梁的纵向、横向坡度,通行车辆的速度和视线等因素,以根据实际需要选择合适的曲线半径,并结合其它实际情
况确定桥梁标准截面。

二、梁型设计:
正交曲线桥梁中,梁型是设计中的一个重要环节。

初步设计时,需要考虑桥梁受力情况、建造复杂性、造型美观性等因素,选定合适的梁型。

钢结构梁一般具有较好的强度。

三、节点设计:
节点设计是整个桥梁设计的重点,尤其是正交曲线桥梁的节点设计,需要考虑结构的
复杂性、制作难度、连接方式以及结构的稳定性等因素。

节点的复杂程度,需要考虑它的
构造、制作、运输、吊装等因素,并综合考虑节点周围的主要构造的力学特性。

四、荷载计算:
荷载计算是整个设计中必不可少的一个环节,其目的是为了确定结构的受力情况,以
保证结构的稳定性和安全性。

此时需要考虑到不同方向上的集中荷载、自重荷载、活载荷
载等多种荷载情况,并根据实际情况做出合理的假设。

以上是正交曲线桥直做的设计方法的一些方面,设计人员在设计时应注意加强结构稳
定性、经济性和美观性等方面的考虑,以满足人们对桥梁的安全、方便、快捷和美观等需
求需求。

施工图桥梁测量参数复核实例计算

施工图桥梁测量参数复核实例计算

施工图桥梁测量参数复核实例计算(惠罗10标项目经理部张斌斌毛锦波)[摘要] 一些工程项目由于忽视施工图纸的审核工作,在施工过程中出现桩基、盖梁、支座垫石平面位置、标高偏差、梁长偏差等引发的质量问题,严重影响了项目的工程进度和质量,鉴于测量在图纸会审中的重要作用,下面本文就以惠罗10标公峨1#大桥右幅桥为例,重点阐述如何进行桥梁图纸中的竖曲线、平曲线、坐标、标高、横坡和梁长等测量参数的复核。

[关键词]:图纸会审;平曲线;竖曲线;纵断面;坐标;标高;横坡;梁长1 、工程概况1.1 桥梁工程地质概况公峨1#大桥位于云贵高原与广西丘陵过渡的斜坡地带。

桥区附近海拔516.5~650.0m,相对高差133.5m;轴线通过段地面高程为525.7~568.7m之间,相对高差为43.00m;桥位所处地面起伏变化较大。

桥区位于罗甸县罗妥乡所管辖,有乡村公路通知桥1.2 桥梁结构类型①. 通过两阶段施工的设计,对线性的优化以及调整,本阶段左幅1#桥采用7X30米预应力砼先简支后连续的T型桥梁,左幅2#桥采用2X30米预应力砼先简支后连续的T型桥梁,左幅3#桥采用20X30预应力砼先简支后结构连续T型梁桥方案。

②. 桥型结构上部结构:预应力砼先简支后连续T型梁;下部结构:0#岸桥台采用重力式U型桥台,承台桩基础,20#台采用扩大基础施工。

桥墩为钢筋砼圆形双柱式墩,基础为桩基础。

③. 桥面采用分离式,桥面宽度为12.25m;具体布置为0.5m(护栏)+11.25(行车道)+0.5(护栏)。

桥面铺装为0.1(沥青)+防水层+0.08(混凝土)。

1.3 桥梁线性指标1.3.1 平曲线本桥平面分别位于圆曲线(起始桩号:YK106+538,终止桩号为YK106+686.872,半径:R=800m,左偏曲线)、缓和曲线(起始桩号:YK106+686.872,终止桩号:YK106+836.872,参数:A=346.410,左偏曲线)、直线(起始桩号:YK106+836.872,终止桩号:K107+006.007)、圆曲线(起始桩号:K107+006.007,终止桩号:107+156.889,半径R=2500m,右偏曲线),本初桥位17-20跨为整幅路基宽度,本桥处于断链上右幅YK107+000.122=整幅K107+006.007。

正交试验设计(交互作用)

正交试验设计(交互作用)

-4.6
8.2 9.1
29.5
7.7 13.3
3.0 0.8
-1.5
2.7 3.0
4.9
2.6 4.4
0.4 3.6
6.4
合成率/% D
1
69.2
2
71.8
3
78.0
3
74.1
1
77.6
2
66.5
2
69.2
3
69.7
1
78.8
15.6 -2.5
11.8
5.2 -0.8
3.9
6
CDBA
C2D1B3A2
A1
C1 (y1+ y3)/2 =(0.484+0.532)/2=0.508
C2 (y2+ y4)/2 =(0.448+0.516)/2=0.482
A2
(y5+ y7)/2 =(0.472+0.554)/2=0.513 (y6+ y8)/2 =(0.480+0.552)/2=0.516
说明:
表头设计中的“混杂”现象(一列安排多个因素或交互作 用)
(A×C)2
(B×C)1 (A×D)2
D
(A×D)1
(B×C)2
(B×D)1
(C×D)1
试验号
1 2 3 4 5 6 7 8 K1 K2 K3 K4 k1 k2 k3 k4 极差R 因素主→次 优方案
因素
A
B
C
1
1
1
1
1
1
2
2
2
2
2
1
1
2
2
2
2
2

施工图桥梁测量参数复核实例计算

施工图桥梁测量参数复核实例计算

施工图桥梁测量参数复核实例计算(惠罗10标项目经理部张斌斌毛锦波)[摘要] 一些工程项目由于忽视施工图纸的审核工作,在施工过程中出现桩基、盖梁、支座垫石平面位置、标高偏差、梁长偏差等引发的质量问题,严重影响了项目的工程进度和质量,鉴于测量在图纸会审中的重要作用,下面本文就以惠罗10标公峨1#大桥右幅桥为例,重点阐述如何进行桥梁图纸中的竖曲线、平曲线、坐标、标高、横坡和梁长等测量参数的复核。

[关键词]:图纸会审;平曲线;竖曲线;纵断面;坐标;标高;横坡;梁长1 、工程概况1.1 桥梁工程地质概况公峨1#大桥位于云贵高原与广西丘陵过渡的斜坡地带。

桥区附近海拔516.5~650.0m,相对高差133.5m;轴线通过段地面高程为525.7~568.7m之间,相对高差为43.00m;桥位所处地面起伏变化较大。

桥区位于罗甸县罗妥乡所管辖,有乡村公路通知桥1.2 桥梁结构类型①. 通过两阶段施工的设计,对线性的优化以及调整,本阶段左幅1#桥采用7X30米预应力砼先简支后连续的T型桥梁,左幅2#桥采用2X30米预应力砼先简支后连续的T型桥梁,左幅3#桥采用20X30预应力砼先简支后结构连续T型梁桥方案。

②. 桥型结构上部结构:预应力砼先简支后连续T型梁;下部结构:0#岸桥台采用重力式U型桥台,承台桩基础,20#台采用扩大基础施工。

桥墩为钢筋砼圆形双柱式墩,基础为桩基础。

③. 桥面采用分离式,桥面宽度为12.25m;具体布置为0.5m(护栏)+11.25(行车道)+0.5(护栏)。

桥面铺装为0.1(沥青)+防水层+0.08(混凝土)。

1.3 桥梁线性指标1.3.1 平曲线本桥平面分别位于圆曲线(起始桩号:YK106+538,终止桩号为YK106+686.872,半径:R=800m,左偏曲线)、缓和曲线(起始桩号:YK106+686.872,终止桩号:YK106+836.872,参数:A=346.410,左偏曲线)、直线(起始桩号:YK106+836.872,终止桩号:K107+006.007)、圆曲线(起始桩号:K107+006.007,终止桩号:107+156.889,半径R=2500m,右偏曲线),本初桥位17-20跨为整幅路基宽度,本桥处于断链上右幅YK107+000.122=整幅K107+006.007。

正交曲线桥直做的设计方法

正交曲线桥直做的设计方法

正交曲线桥直做的设计方法正交曲线桥设计是道路和交通工程中一个非常重要的部分,它为交通工具提供了安全、舒适和高效的行驶条件。

如何进行正交曲线桥的设计十分关键,下面就介绍一下正交曲线桥设计的方法。

第一步:了解正交曲线桥的基本概念和要求正交曲线桥是一种特殊形式的连续梁桥,具有直线斜交与曲线相接的特殊形式。

正交曲线桥除了符合一般桥梁的基本要求,还需要满足以下要求:1.桥梁的斜角度数为90度,即桥面轴线与路面轴线的交线垂直,并避免与不良地质条件的接触。

2.宽度和灵活的连接是必须的,以适应大约90度转角和不同宽度的直线段。

3.水平半径必须适当,且有利于交通流量的控制或限制。

4.曲线段必须在桥梁的中心。

第二步:进行正交曲线桥的选址规划正交曲线桥的选址是一个关键的环节,也是建设一座成功的正交曲线桥的基础。

选址时应考虑以下因素:1.地形条件:正交曲线桥的选址要符合地势的自然条件,避免在地势崎岖或河流汹涌的地方选择。

2.道路状况:选址时需要考虑周边的道路状况和流量,要确保正交曲线桥不会影响周边交通的通行。

3.环保和社会影响:选址时还需要考虑环境和社会影响,尽可能减少对自然环境和周边居民的影响。

第三步:进行正交曲线桥的桥梁结构设计正交曲线桥的桥梁结构设计需要满足以下要求:1.要符合交通工具的设计标准,确保交通流动的舒适性和安全性。

2.要符合地形自然条件,如挡墙、护栏等的设计。

3.要考虑桥梁的自重和外荷载,进行结构选型,将桥梁结构设计成适当的断面形式。

第四步:进行正交曲线桥的施工方案设计正交曲线桥的施工方案设计要考虑以下因素:1.现场施工安全性的保证,如防火、防滑和防爆等。

2.施工成本和质量的控制,如人力、物力和设备投入的合理规划。

3.工期安排的合理性,如进度控制和资源利用的优化。

第五步:进行正交曲线桥的运营管理规划正交曲线桥的运营管理规划要考虑以下因素:1.桥梁设施的维护和保养,如定期检查、维修和更新等。

2.交通状况和流量的监测,如道路状况、车流量等数据的收集和分析。

某高铁曲线桥简支梁墩布置放样

某高铁曲线桥简支梁墩布置放样

曲线上构造物坐标的计算案例——某高铁曲线桥简支梁墩布置放样先看一下相关图纸的截图:这是曲线要素表:这是曲线桥墩中心线与路线中心线的关系图全图与局部放大图:这是图纸上全部的桥墩位置参数图:这里取两处有代表性的位置,这是圆曲线上某段:这是缓和曲线上某段:简支梁墩曲线布置大样图:桥墩及基础尺寸:图纸的附注说明:————————————————————————————————————————————————————————————补充相关尺寸在讲述之前,有必要补充一下以上设计文件中没有给出或者标注不清晰的相关尺寸:1.简支箱梁宽度11.6米;2.直线上,简支箱梁在桥墩上假设时,相邻两箱梁之间留10cm的缝宽,以桥墩中线为界,两侧各5cm;3.两轨道中心线之间的距离为4.4米。

按我的理解,以目前大多数测量工程师的理论和实践基础,本日志所呈现的高铁简支墩梁,在直线上的放样和计算应该没有问题。

因此本文仅针对曲线上的一些情况来阐述。

两个关键点曲线又分圆曲线和缓和曲线两种情况,按照对设计文件的理解,圆曲线和缓和曲线上简支墩梁放样的关键在于两点:1.对外距E的处置,这个涉及到构造物控制线的左、右距离的确定;2.构造物控制线(即桥墩基础的中轴线)相对于路线的夹角,这个涉及到控制线的方位。

第1点,E的数值没有问题,每个桥墩都标注了这个参数,关键是要理解这个E值如何落实到放样计算中,此外,若能自己计算验证出E值的数值则更好。

第2点,控制线的方位,附注说明中说得很清楚,平分偏角的补角,这个在圆曲线上很简单,也就是对应中桩的法线(即正交),而在缓和曲线上就不行了,那到底偏多少呢,这个需要计算确定,而且必须确定好,否则墩梁的施工放样会有问题。

圆曲线上各参数的含义及计算先来简单一点的,理解一下圆曲线上各参数的含义及计算方法。

其关键的示意图再次展示如下:由于高铁轨道的左线和右线分别进行平面设计,左线、右线分别有对应的直曲表,从该图可得知,墩梁的定位以左线为基准。

桥梁设计指导书

桥梁设计指导书

桥梁、涵洞设计指导书为明确设计要求,提高工作效率,优质、按时完成初步设计及施工图设计,特编制桥涵、分离式立交设计指导书(本设计指导书适用于常规结构,对特殊的桥梁结构要根据具体情况另行确定)。

具体内容如下:一、技术标准及主要技术指标1、公路等级:一级公路、二级公路及农村道路桥梁2、设计汽车荷载等级:公路—Ⅰ级(二级公路及以上),公路-II级(二级公路以下)3、设计洪水频率:特大桥 1/300大、中、小桥、涵洞、路基 1/100注:其余未列出部分根据桥规定执行4、地震设计烈度:地震动峰值加速度0.05g,基本烈度为VI度,按Ⅶ度设防。

(湖北省内可适用)5、被交叉道路净高要求(净宽可根据原路情况调整,净高统一按以下标准标注)。

高速、一级、二级公路净高:5.00m三级、四级公路净高:4.50m城镇道路主干路汽通净高:3.50m,净宽不小于6.0m机通净高:2.70m,净宽不小于4.5m人通净高:2.20m,净宽不小于4.0m对现有道路宽度大于标准尺寸的采用现有道路宽度,桥下净高地方有特殊要求的,可能的前提下原则上满足地方要求,但桥型布置图立面中通道净高设置应按照规范要求标准标注。

汽通、机通、人通,净高要求扣除道路路面铺装结构层厚度。

对净高满足、但净宽不符合规范要求的通道,列入涵洞工程设置表。

对通道+排灌结合设计的涵洞,边沟侧向应考虑设置护栏设施。

其余技术指标均按交通部部颁《公路工程技术标准》(JTG B01—2003)执行。

设计深度应满足《公路工程基本建设项目设计文件编制办法》的要求。

图表格式应满足交通部《公路工程基本建设项目设计文件图表示例》的要求。

图纸右下方文字部分统一称“附注”。

二、施工图设计内容第四篇桥梁、涵洞1、说明2、桥梁设置一览表3、主要工程数量表4、桥梁设计图(1)桥位平面图(桥下有道路穿过的桥梁须示意桩位)(2)桥型总体布置图(3)全桥桩位坐标表(4)桥梁上部构造图(采用标准图的应在桥型图附注说明中说明清楚)(5)桥台一般构造图及相应钢筋布置图(桥台一般构造图应标示出控制点标高、支座垫石位置及布置大样、地面横向地面线(横向地形起伏较大时);钢筋图包括肋板、承台、桩基或扩大基础钢筋图;台帽、支座垫石、耳背墙、牛腿、挡块、U台侧墙钢筋图及U台台后排水统一绘制通用图)(6)桥墩一般构造图及相应钢筋布置图(桥墩一般构造图应标示出控制点标高、支座垫石位置及布置大样、地面横向地面线(横向地形起伏较大时);钢筋图包括墩柱钢筋图、系梁钢筋图、承台钢筋图、桩基或扩大基础钢筋图;墩帽、支座垫石、挡块钢筋图统一绘制通用图)(6)附属结构(桥面系平面布置、护栏、泄水管(集束排水构造)、锥坡、搭板)(采用标准图的应在桥型图附注说明中说明清楚);5、涵洞设置表(各种涵洞列同一表)6、涵洞工程数量表(各种类型涵洞分列)7、涵洞设计图(各种类型涵洞分别绘制,要求一涵一图)第六篇路线交叉1、互通区桥梁设置一览表2、分离式立体交叉设置一览表3、分离式立体交叉主要工程数量表4、分离式立体交叉设计图同第四篇桥梁、涵洞,但桥位平面不出5、通道、天桥设置、渡槽一览表三、施工图设计出图要求1、图纸格式按制图标准,严格区分线条粗细、类型,要求图纸整洁,布局合理,同一图纸内同一性质的数字及汉字应统一字体类型和大小,图框必须采用标准图框(图框采用外部参照)。

关于MIDAS里面曲线桥支座模拟

关于MIDAS里面曲线桥支座模拟

向各位达人请教,我在计算曲线桥时,当模拟横向支座(大于2个)时,采用弹性连接里面的刚性连接(支座点于主梁连接)。

算出来的支反力。

有时不能让人信服,请问大家都是怎么模拟的?这里我只说说双支座的模拟,3支座以此类推:1.不模拟支座的实际高度时-虚拟刚臂法:在实际支座位置建立两个节点,把这两个节点与对应梁上的节点分别连接,建立两个虚拟单元。

虚拟单元的材料容重设为零,弹性模量建议取值10e5~10e10。

然后对所建立的两个节点进行“一般支承”或“节点弹性支承”约束,其中后者可以模拟实际支座的刚度。

2.模拟支座的实际高度时-弹性连接法:在实际支座位置建立两个节点,节点与主梁建模点进行“刚性连接”,主节点为主梁建模点。

将这两个节点向下复制,距离为支座高度+梁高(梁截面以顶对齐时),复制生成的点与对应的点用“弹性连接”进行连接,相应的刚度参考支座厂家的产品介绍。

然后对所复制的节点用“一般支承”进行固结,即约束各个方向的转角和位移。

当然如果不用模拟支座的实际刚度时,相应的刚度可取大值,建议取值范围为10e5~10e10。

楼上的概括的很全面,一般单、两个支座时用第一种方法,多支座时就得用第二种方法了。

以下是MIDAS官方的资料,弯桥支座一般这样模拟:i. 单、双支座模拟。

在实际支座位置建立节点,定义该节点的节点局部坐标,保证约束方向与曲梁的切向或径向一致,利用弹性连接(刚性)连接支座节点与主梁节点,然后利用一般支承来定义支座节点的约束条件。

ii. 多支座模拟。

对于多支座的情况利用单、双支座的方法会导致反力结果误差较大。

因弹性连接(刚性)在程序中是一种刚度较大的梁单元,传递荷载时,也会发生微小变形,与平截面假定不符。

此时,应在实际支座的顶、底位置分别建立节点,支座底部节点采用一般支承约束(约束D-ALL),利用弹性连接(一般)来模拟支座(输入支座刚度),支座顶节点和主梁节点通过刚性连接来连接。

个人认为这样与实际情况也不见得相符合,我们以前做过一个单箱三室的箱梁,四个腹板下面分别放支座,采用刚臂连接的方法(主梁(单梁模型)与下方实际位置的四个支座采用弹性连接里面的刚接),结果位于中间的两个支座的反力相比于两边的支座非常的大,约为两侧支座的20倍左右。

桥梁设计一般原则和程序

桥梁设计一般原则和程序

1.5 0
0.75
0.7 5
0.75
0.5或1.5
2021/3/8
38
二、桥梁横断面设计
桥梁断面设计:桥面净空、桥面宽度(行车道宽度、机动车道布置 和人行道、自行道)、横断面形式。
横断面形式: (1)高速公路、一级公路桥梁的横断面整体式布置,桥面宽度在满足
行车要求和行人要求前提下,还应满足桥梁的建筑限界的规定 (2)在可能的情况下,高速公路、一级公路上的桥梁宜设计为分离的
1.适用 2.安全 3.经济
4.美观 5.技术先进 6.环境保护和可持续发展
2021/3/8
4
1. 适用
(1)桥面宽度能满足当前及今后规划年限内的交通流量。 (2)桥梁结构在通过设计荷载时不出现过大的裂缝和变形。 (3)桥跨结构的下面有利于泄洪通航或车辆和行人的通行。 (4)桥梁的两端方便车辆的进入和疏散,不致交通堵塞。 (5)考虑综合利用,方便各种管线的铺设搭接。
2021/3/8
22
(1)确定桥梁总跨径
确定原则是满足泄洪能力和通航要求;保证对河床不产生 过大的冲刷。 总跨径越大,对河床冲刷越小;总跨径越小,对河床冲刷 越大。在允许冲刷的范围内,尽量减小总跨径,以节省总 造价
2021/3/8
23
(1)确定桥梁总跨径
对于总跨径的确定,应该具体问题具体分析 例如:
2021/3/8
19
一、桥梁平面布置
目的:确定桥位。 一般情况,桥梁的平面布置与线路、河道处的地形地物情况有关。 通常的布置方式有:正交、斜交。
对于小桥、涵洞,其平面位置要符合道路线路的走向,因为其设计和 施工的难度相对较低,可以设计成斜桥和弯桥。
对于特大桥、大桥、中桥,一般设计为直线,线路走向要符合和服从 于桥位,尽量避免把特大桥、大桥设计成斜桥和弯桥。

曲线梁桥的受力特点和分析方法

曲线梁桥的受力特点和分析方法

曲线梁桥的受力特点和分析方法摘要:由于在经济和审美上的优势,曲线梁桥被广泛应用于现代公路立交系统。

曲线梁的竖曲和扭转耦合,由于结构上的特点,相对于直梁桥而言,曲线梁的分析更为复杂。

本文对弯道梁桥的受力特点进行了介绍,并总结了分析弯道梁桥的有关理论。

关键词:曲线梁桥;弯扭耦合;支承体系;有限元法引言曲线梁桥是指主梁本身为弧形的弯曲桥梁。

由于其独特的线形,曲线梁桥突破了多种地形的限制,同时在高速公路、山地公路、城市桥梁等方面,由于其优美的曲线造型而得到了更快的发展。

曲线梁桥具有现实意义,发展前景非常看好,无论从几何角度、美学角度,还是从经济角度,都是如此。

1曲线桥梁受力特性1.1弯扭耦合作用由于受弯曲率的影响,当竖向弯曲时,曲线梁截面必然会产生扭转,而这种扭转又会导致梁的挠曲变形,这种挠曲变形被称为“弯扭耦合作用”。

对于弯道梁桥的设计,相对于直线型梁桥来说,要特别注意,因为弯道扭力耦合作用所产生的附加扭力,会使梁体结构产生较不利的受力条件,从而增加结构的挠曲变形。

值得注意的是,由于自重在使用荷载下占绝大多数,对于混凝土曲线箱梁桥而言,也会导致更明显的弯扭耦合。

由于弯道梁桥沿弯梁的线形布置支承不成直线,因此由于弯道外侧较重,导致桥体恒载重心相对于形心向外偏移。

曲线梁在自重的作用下,也会产生扭转和扭曲的变形,从而使曲线桥发生翻转,出现匍匐的现象,这就是曲线梁在自重的作用下产生的变形[1]。

1.2曲线梁内外侧受力不均匀曲线桥因弯曲和扭动耦合作用,变形大于同跨径的直线桥,且曲率半径越小、桥越宽,因此其简支曲线梁外缘的挠度比内缘大,这种变化趋势是显而易见的。

曲线梁桥体具有向外扭转的较大扭力、弯曲扭力耦合和偏载作用的可能。

扭转作用会越来越明显,曲率半径越小、跨度越大的曲线梁桥甚至会引起抗扭支座内侧支座产生空心现象,这种情况在抗扭转支座的内部支座上会产生空心现象,这种情况的发生曲线桥的支点反力与直线桥相比,有一种倾向,它的外侧会变大、内侧会变小,甚至在内侧产生负反力。

正交曲线桥直做设计方法

正交曲线桥直做设计方法

正交曲线桥直做设计方法引言正交曲线桥直做设计方法是一种常用于桥梁设计中的方法,其特点是可以通过简化计算和优化结构来提高桥梁的荷载承载能力和工作性能。

本文将介绍正交曲线桥直做设计方法的基本原理、设计步骤以及需要注意的问题。

基本原理在正交曲线桥直做设计方法中,首先需要明确桥梁的基本参数,如桥墩高度、桥面宽度、桥梁跨度等。

然后,根据这些参数,使用正交曲线的几何关系来设计桥梁的荷载传递路径和结构布置。

通过合理的设计,在最小的桥墩高度和桥面宽度的限制下,使得桥梁具有较高的承载能力和良好的工作性能。

设计步骤正交曲线桥直做设计方法的设计步骤如下:1.确定桥梁的基本参数:包括桥墩高度、桥面宽度、桥梁跨度等。

这些参数将作为设计的基础,对后续计算和布置起到重要作用。

2.根据载荷条件和规范要求,确定设计荷载的种类和大小。

根据不同的荷载条件,可以采用不同的设计方法和计算模型。

3.建立正交曲线的几何关系,通过桥墩与桥梁跨度之间的关系,确定正交曲线的形状。

4.进行初始荷载传递路径的计算,根据正交曲线的几何参数和设计荷载进行计算,得到初始的荷载传递路径。

5.进行结构布置的优化,在荷载传递路径的基础上,通过合理的布置和调整,优化桥梁的结构形式和性能。

6.进行完整性校核,对设计结果进行完整性校核,确保桥梁在各种工况下都能满足设计要求。

7.进行细化设计,根据桥梁的实际情况和使用要求,进行细化设计和施工方案的编制。

设计注意事项在进行正交曲线桥直做设计方法时,需要注意以下几点:•合理确定桥梁的基本参数:桥墩高度、桥面宽度等参数的选取应根据实际情况和规范要求,确保桥梁的安全性和工作性能。

•充分考虑荷载条件:在进行荷载计算和传递路径布置时,应考虑各种荷载条件和工况,确保桥梁在各种情况下都能满足要求。

•合理布置荷载传递路径:在进行荷载传递路径的计算和优化时,应考虑荷载的传递路径和力学性能,以及与其他结构的相互影响。

•进行完整性校核:设计结果应进行完整性校核,包括校核设计荷载、传递路径、结构形式和构件尺寸等,确保桥梁在各种工况下都能满足设计要求。

正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造细节的疲劳研究进展1 背景第二次世界大战后,一方面大量被战争毁坏的桥梁急需修复,另一方面建筑材料非常短缺。

在此情况下,欧洲的工程师们开始尝试采用一种新型的桥面结构形式――正交异性钢桥面板。

它由面板、纵肋和横肋组成,三者互相垂直,通过焊缝连接成一体共同工作。

它以自重轻、极限承载力大、施工周期短等优点,成为世界上大、中跨度现代钢桥通常采用的桥面结构形式。

从20世纪50年代德国最先使用这种桥面板至今,欧洲已有1000多座各种形式的正交异性钢桥面板桥梁,日本有将近250座正交异性钢桥面板桥梁,北美有100余座正交异性钢桥面板桥梁[1]。

我国正交异性钢桥面板我国正交异性钢桥面板的研究和应用起步较晚,直到20世纪70年代初,才建成第一座钢桥面板桥――潼关黄河铁路桥。

改革开放以来,国内正交异性钢桥面板桥呈现出迅猛发展势头。

迄今为止,我国已建造的采用正交异性钢桥面板的桥梁有30余座。

正在建造的采用正交异性钢桥面板的铁路钢桥有郑州黄河公铁两用桥和京沪高速铁路南京大胜关长江大桥等。

正交异性钢桥面板有其独特的优点,但同时钢桥面板疲劳开裂的事例也在许多国家的钢桥中出现。

最早报道的是英国Seven桥,该桥1966年建成通车后,分别于1971年和1977年发现了3种焊接细节的疲劳裂纹。

德国的Haseltal和Sinntal桥投入使用后不久,钢桥面板也都出现了疲劳裂纹。

此外,法国、日本、美国、荷兰等国也都发现了钢桥面板疲劳开裂事例。

钢桥面板在我国使用的时间虽然不长,但是已经在某些桥中发现了钢桥面板疲劳开裂的现象。

这些疲劳裂纹严重影响了桥梁的使用寿命,因此,对正交异性桥面板疲劳问题的研究是目前桥梁建设中的关键和热点,各国学者在此领域取得了一系列研究成果。

国内在20世纪80年代初,铁道科学研究院等相关单位以西江大桥为研究背景,对公路正交异性钢桥面板参与主桁共同工作时的结构特性进行了较为全面的分析及试验研究[2]。

曲线桥直做的设计方法

曲线桥直做的设计方法

科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON 2008NO .07SC I ENCE &TECH NO LOG Y I NFOR M A TI O N 学术论坛近年来,随着我国高等级公路和城市互通式立交建设迅速发展和GPS 控制网、航测遥感成图、路线CAD 系统等技术的应用日益广泛,公路的勘测设计已达到一个新的水平,除特殊的大型桥梁单独设计外,一般桥梁的平面布置往往要求服从于该类工程的高标准线形。

由于高等级公路设计中采用的平面线形主要以圆曲线或缓和曲线为主,因而许多桥梁等构造物都处在了曲线上。

曲线桥一般有以下两种形式:(1)曲桥弯作:就地浇筑的弯梁(板)以及预制安装的弯梁(板)等。

这样会使计算量增大,设计周期加长,施工也更复杂,且不利于机械化、标准化施工,从而增加工程造价。

(2)曲桥直作:将原本应是曲线的上部承载构件(例如曲梁或曲板),做成直线等长度构件。

线形虽为曲线,但各孔的梁(板)为直线,在曲线上以折线形式布置,各墩台中心即为折线交点。

再使边梁翼缘板曲线化,最终实现弯桥直作。

这种方法不仅简化了构件的设计与计算,而且降低了施工难度以及对某些施工工艺的要求。

1设计思路在进行公路的平、纵、横三方面综合设计时,应做到平面顺畅、纵坡均匀和横断面合理。

在平面线形设计时,应考虑车辆行使的安全舒适,以使驾驶人员的视觉和心理反应能保持线形的连续性。

当桥梁位于弯道上时。

尤其当弯道半径较大。

桥梁跨径又较小时。

大多以直代弯地修建成多跨直桥。

或将直桥上的人行道、路缘石和栏杆等稍加调整,设置成在平面上呈曲线形。

当弯道半径较小或跨径较大时.为了保证桥梁与道路线形的一致。

则应做成弯桥形式。

由于桥梁位于曲线中,所以在力学性质、荷载、构造和施工方面有其特点,故在桥梁设计中应注意结构形式的采用及布孔问题。

曲线桥与路线正交且曲线半径较大时,经过计算分析和实地模型,得出平曲线半径是作为曲线桥直做的重要因素。

小议曲线桥直做的设计方法

小议曲线桥直做的设计方法

标 准跨径 ;
粱板 总数 量 ;

a ——桥梁斜交角度 。
跨径以内先张法板 , 通过调整钢筋长度 的方法很容 易预制 出不 同
板 长 的 梁板 。
桥梁要求 达到既满足强度 、 刚度 、 稳定性 以及经济上 的要 求 ,
又要 与周 围环 境 相协 调 , 达到 技 术和美 学 的完 美 融合 的设 计思
计过程 中, 进行 梁板 平 面布置 设计是 解决这 一矛盾 的必 要手段 。 根据如下公式计算错 台幅度 : d=1×[ /i( / " 1s r 2一L /R 一口 一 1 s ( 2+L / R 一 l n t 2 ) /i / n k2 口 ] O( ) ×CS口一 L /R) 2 。
R——路 中心线 的曲率半径 ; B ——任一板 中心线 离路 中心线 的距离 。 根据公式知板梁 长度是 由内侧 向外侧递 增 , 布置形 式计算 按 出每片板梁 长度 , 过结构 分析计算 内力 , 算结 果按标 准跨径 通 计 的梁板配筋 , 而且 由于板长 变化值 较小 , 过调 整钢束 及钢筋 的 通
中图 分 类 号 : 4 .2 U4 8 4 文献标识码 : A
1 概述
交通事业 的迅 猛发展 , 国 内公 路工 程建设 进入 黄金 时代 。 使 公路等级不 断提 高, 设计 总体布局 方 面要求桥 位确 定 , 梁设 在 桥
计应 服从路线 线形 标 准设计 , 以为 了满 足布 线时 平 面线 形指 所
式 中: —— 桥梁 中心线 处梁长 : L径 ;
— —
6 —— 桥架全幅的半宽。
作为曲线桥直线桥计算 的判 别条件 , 同时 又根据 “ 曲线桥直 做” 近几年 的工程实践经验 , 对于简支 曲线 梁桥则以选用空 心板梁 为最佳结构类 型; 根据理论计算 对于平 曲线半径大 于 701,01 0 I I T2 T

桥梁设计方法及注意事项

桥梁设计方法及注意事项

技术设计
二、收集资料
收集资料是贯穿桥梁设计全过程的,不同设计阶段收集的资料深度和广度可能不一样,这 就需要我们设计人员及时沟通,修正、替换。
➢ 1.桥址地区的城市规划 ➢ 1.1对桥头广场、引道坡度、滨河道路、立体交叉及公用事业管线等的处理方法。 ➢ 1.2近、远期交通流量,道路级别类型,道路平面、纵断、横断面布置、路面结构,主要通行车
➢ 3 桥型布置图 比例 1:100~1:500
a. 绘出推荐方案的立面(或纵断面)、平面、横断面。 b.示出工程范围道路或河床断面、地质分界线、特征水位、冲刷深度、道路净高或通航净 空、墩台基础、基础埋置深度、桩号、控制点坐标、主要调治构筑物和防护工程、桥面 纵坡、过桥管线布置等。 c. 当为弯桥或斜桥时,应示出桥轴线半径、水流方向及斜交角度。
• 适用:指在正常适用时,具有良好的工作性能。 • 耐久:指在正常维护下,具有足够的耐久性能。 • 技术先进:尽可能采用成熟的新结构、新设备、新材料和新工
艺,淘汰和摈弃原来落后和不合理的东西。 • 经济合理:因地制宜,就地取材和方便施工;造价和使用年限
内养护费用总和最省。
一、桥梁设计程序
预可行性研究报告 可行性研究报告 初步设计 施工图设计
粒径、桥址处冲淤情况、河道上、下游有否水库、水库性质、库容及水库流域面积。桥址处过 流断面的历年水文资料,包括水位、流速、流量、当桥址处无水文站时,应收集与桥址相关的 水文站的有关资料。
➢ 2.1.2对通航河道、应充分了解河道等级、水运情况,船只吨位大小、客货运量,对流放排筏河 道,尚应了解排伐尺寸大小。索取航运管理部门对桥梁通航水位、桥下净高、净宽及孔径布置 的意见文件或签订的协议书。
通航河流上桥位的布置要充分考虑通航的要求

《桥梁工程》复习题(第二篇)有答案

《桥梁工程》复习题(第二篇)有答案

一、名词解释1、斜交角斜交角:是指桥轴线与水流方向所夹的锐角。

2、斜度斜度;是指桥轴线与水流方向垂线所夹的锐角。

3、正交桥梁正交桥梁:是指桥轴线与水流方向垂直的桥梁,该种桥梁主筋顺桥轴线,横向钢筋垂直于主筋。

4、斜交桥梁斜交桥梁:是指桥轴线与水流方向不垂直的桥梁,该种桥梁主筋顺桥轴线,横向钢筋部分垂直于主筋,部分平行于主筋.5、横隔梁:是装配式T型桥梁的一部分,起保证主梁相互连接整体的作用。

它的刚度愈大,桥梁的整体性就越好。

6、梁式桥:用梁作为桥身主要承重结构的桥。

而梁作为承重结构是以它的抗弯能力来承受荷载的.7、简支梁桥:由一根两端分别支撑在一个活动支座和一个铰支座上的梁作为主要承重结构的梁桥。

8、T型梁桥:以T型梁为主要承重结构的梁式桥。

在桥上荷载作用产生正弯矩时,梁作成这样上大下小的T形并在下缘配筋便充分利用了混凝土的抗压强度大和钢筋的高抗拉强度进而比矩形梁桥节省了材料,减轻了自重。

9、主筋:亦称纵向受力钢筋,仅在截面受拉区配置其的受弯构件称单筋截面受弯构件,同时在截面受压区配置其的称为双筋截面受弯构件.因此主钢筋按其受力不同而有受拉及受压主钢筋两种。

受拉主钢筋系承受拉拉力,受拉主钢筋则承受压应力.10、箍筋:用来满足斜截面抗剪强度,并联结受拉主钢筋和受压区混凝土使其共同工作,此外,用来固定主钢筋的位置而使梁内各种钢筋构成钢筋骨架的钢筋。

11、桥位施工测量:精准确地定出桥梁墩台的中心位置、桥轴线测量以及对构造物各细部构造的定位和放样。

12、交会法:在水中对墩台的定位测量中,从三个方向交会一点的测量方法。

13、预拱度:为了避免桥梁在使用过程中由于荷载而产生变形影响美观或其功能,在施工时预设与荷载变形相反方向的挠度,称为预拱度.其大小通常取全部恒载和一半静汽车荷载所产生的竖向挠度值,即F= -(Fg+1/2*Fp),式中Fg为恒载引起的挠度,Fp为静汽车荷载引起的挠度。

14、混凝土的施工配合比:是在现场砂和石一定含水量的情况下,对于一定拌和用量的混凝土中各种材料用量之比。

曲线桥梁偏心问题

曲线桥梁偏心问题

第一部分 桥梁在曲线上的布置一、梁的布置与基本概念1梁的布置设在曲线上的钢筋混凝土简支梁式桥,每孔梁仍是直的,于是各孔梁中线的连接线成为折线,以适应梁上曲线线路之需要。

但若按图1所示布置,使线路中线与梁的中线在梁端相交,则由图可以看出,线路中线总是偏在梁跨中线的外侧,当列车过桥时,外侧那片梁必然受力较大;况且列车运行时要产生离心力,使外侧的一片梁受力较大的现象更加严重。

为了使两片梁受力较为均衡,合理的布置方案应把梁的中线向曲线外侧适当移动。

一般情况下梁的布置有两种方案:⑴平分中矢布置:在跨中处梁的中线平分矢距f,即梁的中线与线路中线的偏距f1=f/2;在桥墩中线处梁的中线与线路中线的偏距E=f/2。

这种布置的特点是内外侧两片梁的偏距相同(f1=E=f/2),故两片梁的人行道加宽值相等。

⑵切线布置:在跨中处梁的中线与线路中线相切,即偏距f1=0;在桥墩中心处梁的中线与线路中线的偏距为E=f。

12图1梁的中线连成折线示意1----线路中线2-----梁的中线2基本概念桥梁工作线:在曲线上的桥,各孔梁中心线的连线是一折线,称桥梁工作线,与线路中线不一致,如图2, AB -BC 是桥梁工作线,abc是线路中线。

桥墩中心:两相邻梁中心线之交点是桥墩中心,如图2中的A,B 及C 各点。

基本概念中所述均指桥墩无预偏心的情况(见桥墩布置图3);有预偏心时见桥墩布置图4,桥墩中心在偏距的基础上再向曲线外侧偏移一距离,偏移距离详见设计图。

桥墩轴线:过桥墩中心作一直线平分相邻二孔梁中心线的夹角,这个角平分线即桥墩横轴(又称横向中线),如图2中的Bb ;过桥墩中心作桥墩横轴的垂线为桥墩纵轴(又称纵向中线)。

桥墩中心里程:桥墩横轴与线路中线之交点称桥墩中心在线路中线上的对应点,如图2中的a、b 及c 点。

桥墩中心里程即以其对应点的里程表示之。

偏距E:桥墩中心与其对应点之间的距离称为偏距,如图2的Aa 、Bb 及Cc ;偏距的大小由梁长及曲线半径决定之。

正交曲线桥直做的设计方法 (2)

正交曲线桥直做的设计方法 (2)

正交曲线桥直做的设计方法内容摘要]在当个公路建设中,部分桥梁在布线时受平面线形的影响而位于平曲线内。

针对此情况,结合具体工程实例,介绍了曲线桥直做的设计方案。

[主题词]曲线桥设计1 概述交通事业的迅猛发展,使国内公路工程建设进入黄金时代。

公路等级不断提高,在设计总体布局方面要求桥位确定,桥梁设计应服从路线线形标准设计。

所以为了满足布线时平西线形指标,就会有部分桥梁在路线总体线形限制下处于曲线段,使桥梁结构类型的选择、结构计算方面难度加大。

同时从桥梁美观学考虑,曲线桥梁在整体布置方面要求更高。

因此在平曲线半径较大的情况下,采用曲线桥直做方案,在平、纵、横设计上可以通过特殊处理,达到桥型经济、美观的目的。

2 设计条件及侨型的确定曲线桥与路线正交且曲线半径较大时,曲线桥直做方案更容易近似曲线,经过计算分析和实地模型,得出平曲线半径是作为曲线桥直做的重要因素。

按加拿大安大略省公路桥梁设计规范是采用公式:L 2<bR。

其中L一桥梁中心线处梁长R一平曲线半径b-桥架全幅的半宽作为曲线桥直线桥计算的判别条件,同时又根据曲线桥直做近几年的工程实践经验,对于简支曲线梁桥则以选用空心极梁为最佳结构类型;根据理论计算对于平曲线半径大于700m、20m跨径以内先张法板,最大增减值在(-36cm~+36cm)以内,而且通过调整钢筋长度的方法很容易预制出不同的板长。

3 桥型布置与计算分析曲线桥直做即墩台轴线沿曲线径向布置,并且墩台轴线方向交于圆心,梁长为曲线的弦长。

由于桥梁内、外边缘线对应的曲线半径不同,使每片梁内侧的长度不等,也造成每跨中每片梁长短不一,按曲线直做墩台不平行也就使权梁的每跨布置是由许多块不同长度的个梯形组成一踏的大梯形。

曲线桥对于位于国曲线内,桥梁中心线以及桥梁内、外边缘线均为一同心曲线;对于位于缓和曲线内,桥梁中心线为缓和曲线,而对内、外边缘线是随中线曲率变化的渐变曲率曲线,而不应按缓和曲线计算。

对于曲线桥直做梁板桥,计算分析基本上与直线梁板桥架结构计算是一致的,但是由于每片梁内、外侧长度不同,从计算角度考虑采用取平均梁长作为计算梁长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正交曲线桥直做的设计方法
、概述
交通事业的迅猛发展,使国内公路工程建设进入黄金时代。

公路等级不断提高,在设计总体布局方面要求桥位确定,桥梁设计应服从路线线形标准设计。

所以为了满足布线时平西线形指标,就会有部分桥梁在路线总体线形限制下处于曲线段,使桥梁结构类型的选择、结构计算方面难度加大。

同时从桥梁美观学考虑,曲线桥梁在整体布置方面要求更高。

因此在平曲线半径较大的情况下,采用曲线桥直做方案,在平、纵、横设计上可以通过特殊处理,达到桥型经济、美观的目的。

2、设计条件及侨型的确定
曲线桥与路线正交且曲线半径较大时,曲线桥直做方案更容易近似曲线,经过计算分析和实地模型,得出平曲线半径是作为曲线桥直做的重要因素。

按加拿大安大略省公路桥梁设计规范是采用公式:
L 2<bR。

其中L一桥梁中心线处梁长
R一平曲线半径
b-桥架全幅的半宽
作为曲线桥直线桥计算的判别条件,同时又根据曲线桥直做近几年的工程实践经验,对于简支曲线梁桥则以选用空心极梁为最佳结构类型;根据理论计算对于平曲线半径大于700m、20m跨径以内先张法板,最大增减值在(-36cm~+36cm)以内,而且通过调整钢筋长度的方法很容易预制出不同的板长。

相关文档
最新文档