最新放射性基础知识[1]

合集下载

放射性基础知识

放射性基础知识
核技术应用与辐射防护
3.β+衰变 放射性核素的原子核放出正电子变为原子序数 减1、质量数相同的核素的过程称为β+衰变。β+衰 变可以被看做母核中的一个质子转变为中子,同时 放出正电子和中微子的结果。能发生β+衰变的都是 人工放射性核素。

A Z
X Y β v E
A Z 1
核技术应用与辐射防护
衰变 衰变
A
母体
B
一代子体
C
二代子体 核技术应用与辐射防护
§1.2 放射性核素的衰变类型与衰变纲图
1.2.1 衰变类型
1.α衰变 放射性核素的原子核放射α粒子而变为另一种核素的原 子核的过程为α衰变。α衰变可以表示为
A Z
X
A 4 Z 2
Y E
其中X为母体,Y为子体,E为从母体变为子体所放出的能量 (衰变能)。
27 13
Al( , P)30 Si 14
28 14
31 Si( , P)15 P
39 19
K( , P)42 Ca 20
27 13
Al( ,2P)29 Al 13
核技术应用与辐射防护
6.内转换 处在激发态的原子核把激发能直接授予核外某一个电子, 使它脱离原子核束缚而成为自由电子的过程称为内转换,这 个发射出来的电子称为内转换电子。
E 核
内转换电子与β粒子存在显著差别,前者能量是分立 的、单色的,后者是连续的。这一点可以用来测量核的能 级。
核技术应用与辐射防护
Ra 1.3810 s
11 1
Ag 4.73410 s
3 1
核技术应用与辐射防护
(2)半衰期(Half Life)T1/2 半衰期T1/2的定义为:特定能态的放射性核素的核数目 衰减一半所需时间的期望值,即放射性母体原子核数目衰 减至原来数目的一半所需要的时间。根据

放射性基础知识及工业辐射安全防护培训

放射性基础知识及工业辐射安全防护培训
(四 ) 辐照类型
1.内照射 放射性物质通过食入、吸入、经过皮肤表面深入等途径进入人体内。 2.外照射 体外源的照射。对于X射线、 γ射线,由于其特性,主要考虑外照射所带来的危害。
(五 ) 辐射效应 辐射效应:辐射照射人体后可以引起人体发生某些生物学效应,称之为辐射效应。 分类:分为躯体效应和遗传效应。
*
(六)放射源、射线装置的分类
1.分类原则 由于放射源的应用领域广泛,活度的变化范围很大,高活度源能在短期内对人体产生严重的确定性效应,而低活度源不可能产生这种效应。所以必须有一个放射源分类系统,才能将放射源的安全管理与辐射风险联系在一起,作为与放射源安全和保安等许多相关活动的一个基础。
*
*
放 射 源 分 类 表(常用) 核素名称 I类源 II类源 III类源 IV类源 V类源 (贝可) (贝可) (贝可) (贝可) (贝可) Am-241 ≥6×1013 ≥6×1011 ≥6×1010 ≥6×108 ≥1×104 Am-241/Be ≥6×1013 ≥6×1011 ≥6×1010 ≥6×108 ≥1×104 Au-198 ≥2×1014 ≥2×1012 ≥2×1011 ≥2×109 ≥1×106 Ba-133 ≥2×1014 ≥2×1012 ≥2×1011 ≥2×109 ≥1×106 C-14 ≥5×1016 ≥5×1014 ≥5×1013 ≥5×1011 ≥1×107 Cd-109 ≥2×1016 ≥2×1014 ≥2×1013 ≥2×1011 ≥1×106 Cf-252 ≥2×1013 ≥2×1011 ≥2×1010 ≥2×108 ≥1×104 Cl-36 ≥2×1016 ≥2×1014 ≥2×1013 ≥2×1011 ≥1×106 Co-57 ≥7×1014 ≥7×1012 ≥7×1011 ≥7×109 ≥1×106 Co-60 ≥3×1013 ≥3×1011 ≥3×1010 ≥3里 8.11毫居 2.7微居 Cr-51 ≥2×1015 ≥2×1013 ≥2×1012 ≥2×1010 ≥1×107 Cs-134 ≥4×1013 ≥4×1011 ≥4×1010 ≥4×108 ≥1×104

放射性的基础知识

放射性的基础知识

一、放射性1、放射性核衰变核衰变:有些原子核不稳定,能自发地改变核结构,这种现象称为核衰变;放射性:在核衰变过程中总是放射出具有一定动能的带电或不带电的粒子,即α、β、γ射线,这种现象称为放射性;天然放射性:天然不稳定核素能自发放出射线的特性;人工放射性:通过核反应由人工制造出来的核素的放射性。

2、放射性衰变的类型①α衰变:不稳定重核(一般原子序数大于82)自发放出4He核(α粒子)的过程;α粒子的质量大,速度小,照射物质时易使其原子、分子发生电离或激发,但穿透能力小,只能穿过皮肤的角质层②β衰变:放射性核素放射β粒子(即快速电子)的过程,它是原子核内质子和中子发生互变的结果;负β衰变(β-衰变):核素中的中子转变为质子并放出一个β-粒子和中微子的过程。

β-粒子实际上是带一个单位负电荷的电子。

β射线电子速度比α射线高10倍以上,其穿透能力较强,在空气中能穿透几米至几十米才被吸收;与物质作用时可使其原子电离,也能灼伤皮肤;正β衰变(β+衰变):核素中质子转变为中子并发射出正电子和中微子的过程;电子俘获:不稳定的原子核俘获一个核外电子,使核中的质子转变成中子并放出一个中微子的过程。

因靠近原子核的K层电子被俘获的几率大于其他壳层电子,故这种衰变又称为K 电子俘获;③γ衰变:原子核从较高能级跃迁到较低能级或者基态时所发射的电磁辐射;γ射线是一种波长很短的电磁波(约为0.007~0.1nm),穿透能力极强,它与物质作用时产生光电效应、康普顿效应、电子对生成效应等;3、放射性活度和半衰期①放射性活度:单位时间内发生核衰变的数目;A—放射性活度(s-1),活度单位贝可(Bq),其中1Bq=1s-1,1贝可表示1s内发生1次衰变;N—某时刻的核素数;t—时间(s);λ—衰变常数,放射性核素在单位时间内的衰变几率;②半衰期(T1/2):放射性核素因衰变而减少到原来的一半所需时间;4、核反应:用快速粒子打击靶核而给出新核(核产物)和另一粒子的过程称为核反应;方法:用快速中子轰击发生核反应;吸收慢中子的核反应;用带电粒子轰击发生核反应;用高能光子照射发生核反应;二、照射量和剂量1、照射量dQ——γ或x射线在空气中完全被阻止时,引起质量为dm的某一体积元的空气电离所产生的带电粒子(正或负)的总电量值(C,库仑);x——照射量,国际单位制单位:库仑/kg,即C/kg伦琴(R),1R=2.58×10-4C/kg伦琴单位定义:凡1伦琴γ或x射线照射1cm3标准状况下(0℃,101.325kPa)空气,能引起空气电离而产生1静电单位正电荷和1静电单位负电荷的带电粒子;2、吸收剂量:在电离辐射与物质发生相互作用时单位质量的物质吸收电离辐射能量的大小;D——吸收剂量;——电离辐射给予质量为dm的物质的平均能量;吸收剂量D的国际单位为J/kg,专门名称为戈瑞,简称戈,用符号Gy表示:1Gy=1J/kg拉德(rad) 1rad=10-2Gy吸收剂量率(P):单位时间内的吸收剂量,单位为Gy/s或rad/s3、剂量当量(H):在生物机体组织内所考虑的一个体积单元上吸收剂量、品质因数和所有修正因素的乘积,H=DQND——吸收剂量(Gy);Q——品质因数,其值决定于导致电离粒子的初始动能,种类及照射类型;N——所有其他修正因素的乘积,通常取为1;剂量当量(H)的国际单位J/kg,希沃特(Sv),1Sv=1J/kg雷姆(rem),1rem=10-2Sv剂量当量率:单位时间内的剂量当量,Sv/s或rem/s;4、第二节环境中的放射性本节要求:了解环境中放射性的来源,放射性核素在土壤、水、大气等环境中的分布,了解放射性核素对人体的危害及内照射概念。

放射性防护知识培训【2024版】

放射性防护知识培训【2024版】
主要内容
一、放射性基础知识
1、基础概念
2、射线分类及危害
3、常用的辐射量及单位
二、放射卫生法规
1、《职业病防治法 》
2001年
国务院令60号
1、《放射工作人员健康管理规定》(卫生部令第52号)
2、《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)
3、《放射性同位素与射线装置放射防护条例》国务院令第44号
( GBZ101-2002 ) 《放射性白内障诊断标准》 ( GBZ67-2002) 《职业性放射性疾病诊断标准》 (总则)等
25 2024/11/1
二、放射卫生法规与标准
主要管理对象及范围
放射工作卫生 防护管理办法
放射防护器材与 含放射性产品卫 生管理办法
放射事故管理 规定
放射工作单位
生产、销售和 进口企业
22 2024/11/1
二、放射卫生法规与标准
(一)放射卫生防护基本标准
《电离辐射防护与辐射源安全基本标准》 ( GB 18871-2002 )
《用于X、γ线外照射放射防护的剂量转换因 子》(GB11712-89)
《不同年龄公众成员的放射性核素的ALI值》 (GB/T16142-1995)等为剂量估算提供基本 参数的标准也属于放射卫生防护基本标准。
国家标准
专业标准 地方标准 企业标准
21 2024/11/1
二、放射卫生标准
2、放射卫生标准按其性质和使用范围共分6类: (一)放射卫生防护基本标准 (二)职业照射的防护标准 (三)公众照射的防护标准 (四)医疗照射的防护标准 (五)放射病诊断标准及处理原则 (六)监测规范和方法标准
发给放射工作人员上岗证,方可上岗 放射工作人员上岗证每年复核一次,每5年焕

放射性基础知识1

放射性基础知识1
放射性辐射防护
RADIATION AND PROTECTION
放射性基础知识
1、原子核的组成 2、核衰变或核蜕变 3、解放射性衰 变规律 4、放射性的应用
医疗照射问题
X照射 CT SPECT PET MRI 放疗 BNCT
CT
CT(electronic computer Xray tomography technique) 电子计算机X射线断层扫 描技术
99 m
Tc T1/ 2 6h99Tc ( E 0.140MeV )
内转换——137Cs 137Ba
• 注意: γ跃迁只改变核的状态,不改变核的组成,故
又称同质异能跃迁,用符号:I.T.表示。 • 4、每一次蜕变放出的粒子情况有以下三种: 1)、一次蜕变放出某种粒子一个。例如 238U每发生一次蜕变就放出能量为 4.18MeV的α粒子一个。 2)、分支蜕变。每次蜕变或放出这种或放 出那种粒子一个,各占一定的比例,用百 分数表示。如RaC每次蜕变有99.96%的 几率放出β粒子,有0.04%几率放出α粒子。 又如:226Ra每次蜕变有94.3%的几率放 出4.793MeV的α粒子,有5.7%的几率放 出4.612MeV的α粒子。 3)、一次蜕变放出好几个光子。
放疗
加速器(感应加速器、 回旋加速器、直线加速 器) 近距离后装治疗机 伽马刀
BNCT
硼中子俘获治疗(Boron Neutron Capture Therapy,简称BNCT)通过在肿瘤细胞内的 原子核反应来摧毁癌细胞
一、原子核的组成
核子 中子
+ ++
质子
电子
原子模型
原子核的组成
M P 1.0073
原子核自发地发射各种射线的现象,称 为放射性。

放射性基本知识ppt课件

放射性基本知识ppt课件

半价层
如何判定放射性对人体健康影响的大源自?放射性无声、无色、无臭、无味,人体是无法感觉到它 们的存在的,只有用专业仪表才能探测到。人们利用射 线与物质相互作用并把能量消耗在物质中的原理,用仪 器测量出某种射线在这个过程中由物质吸收的能量,就 可以知道射线辐射场的强弱,也就是说,物质吸收的能 量越多,射线辐射场越强,对人体健康的影响就越大。 单位物质吸收的能量称为吸收剂量,单位为戈瑞(Gy), 定义为每千克物质中吸收1焦耳的能量(J/kg)。物质在 单位时间内的吸收剂量称为吸收剂量率,单位为戈瑞/小 时(Gy/h)或戈瑞/秒(Gy/s)。通过选用专门的仪器, 测量各种射线在空气中的吸收剂量或吸收剂量率,我们 就能够知道它们的存在和大小,从而判断出它们对我们 的影响。
什么是同位素和核素
什么是放射源?

放射源是指用放射性物质制成的能产生辐射照射 的物质或实体,放射源按其密封状况可分密封源 和非密封源。密封源是密封在包壳或紧密覆盖层 里的放射性物质,如料位计、探伤机等使用的都 是密封源,常用的密封源有钴-60、铯-137、 铱-192等。非密封源是指没有包壳的放射性物质, 也称开放源或开放型放射源,医院核医学中使用 的放射性示跟踪剂属于非密封源,如碘-131、碘125、锝-99m等。

放射性基本知识
什么是放射性?

放射性是自然界存在的一种自然现象。世界上一 切物质都是由原子构成的,每个原子的中心有一 个原子核。大多数物质的原子核是稳定不变的, 但有些物质的原子核不稳定,会自发地发生某些 变化,这些不稳定的原子核在发生变化的同时会 发射出特有的射线,这种性质就是人们常说的放 射性。 有的放射性物质在地球诞生时就存在了,如 铀、钍、镭等,它们叫做天然放射性物质。另一 方面,人类出于不同的目的制造了一些具有放射 性的物质,这种物质叫人工放射性物质。

放射性的基础知识

放射性的基础知识

放射性的基础知识一、 放射性衰变不稳定的原子核,能自发放出射线,转变成稳定的原子核,这一转变过程称为放射性衰变。

自然界存在着稳定性核素和放射性核素,放射性衰变是原子核内部的物理现象。

稳定的原子核中,中子和质子数目通常保持一定的比例,当中子数或质子数过多时,原子核便不稳定,形成放射性核素。

放射性核素又分为天然放射性核素(自然界存在的,如U-238, Th-232,Ra-226和K-40等)和人工放射性核素(由人工核反应生产的,如Cs-137,Co-60,I-131等)。

1、 核衰变方式,主要有以下几种:① α衰变,放射性原子核放出α粒子(He 原子核)后生成另一个核的过程。

Z X A →Z-2YA-4+2He 4+Q 它一般发生在原子序数较高的重原子核中,尤其为原子序数大于82的重金属原子核中,如88Ra 226→86Rn 222+2He 4+4.879Mev 92U 238→90Th 234+2He 4+4.15Mev ② β衰变,分β-衰变、β+衰变和电子俘获三种情况。

β-衰变为放出负电子(e -)的衰变,它是由于原子核中中子过多而造成,放出一个负电子后,核内一个中子转变为一个质子,原子序数增加1,衰变式为:Z X A →Z+1Y A +β-+ν+Q由于β-衰变产生的能量在β-粒子和反中微子ν之间分配,因此β-粒子的能量是连续分布,最大为Q ,最小为0,如:55Cs 137→56Ba 137+β-+ ν+Q 27Co 60 →28Ba 60+β-+ ν +Q 同理β+ 衰变是放出正电子(e +)的衰变,它是由于原子核内质子过多而引起的,放出一个正电子后,核内一个质子转变为一个中子,原子序数减少1,其衰变式为:Z X A →Z-1Y A +β++ν+Q 自然界中找不到正电子衰变的核素。

电子俘获又称K 俘获,它是原子核自核外层轨道上(通常在K 层)俘获一个电子,使核里的一个质子转变成一个中子,并放出中微子,衰变式为:Z X A +e +→Z-1Y A +ν+Q 很多放射性同位素会发生电子俘获衰变,如:26Fe 55 +e -→25Mn 55+ν+Q 53I 125 +e -→52Te 125+ν+Q 电子俘获过程中会伴随发生标识χ射线,γ射线和俄歇电子(即外层电子跃迁至K 层时,过剩能量传递给另一个壳层电子发出)。

放射性基础知识剖析课件

放射性基础知识剖析课件

放射性诊断的原理与方法
放射性诊断的原理
利用放射性核素标记的化合物,通过显像仪器获取人体内部结构和功能的信息, 从而对疾病进行诊断。
放射性诊断的方法
包括单光子发射计算机断层成像(SPECT)、正电子发射断层成像(PET)和X 射线计算机断层成像(CT)等。
放射性治疗的基本原理与技术
放射性治疗的原理
THANK YOU
放射性安全与防护的伦理原则
最小化原则
在满足医学、科研等需要的前提下,应尽量减少放射性物质的用 量和使用频率,以降低对环境和公众健康的潜在风险。
合理化原则
在必须使用放射性物质的情况下,应采取科学的方法和技术手段, 确保操作安全、有效,防止事故发生。
责任原则
从事放射性工作的人员应具备相应的专业知识和技能,遵守法律法 规和伦理规范,对公众健康和环境安全负责。
该公约是IAEA与各成员国政府签订的国际条约,旨在确保核设施、核材料和放射性材料的安全与保护,预防核事 故的发生。
我国放射性安全与防护法规
放射性污染防治法
我国制定的专门针对放射性污染防治的法律,规定了放射性设施的建设、运行、退役等全过程的监管 要求。
放射性物品运输安全管理条例
该条例规定了放射性物品的包装、运输、暂存等环节的安全管理要求,保障公众健康和环境安全。
总结词
放射性衰变是指放射性元素从一种不稳定的状态转变为另一种稳定的状态的过 程。
详细描述
放射性衰变主要有三种类型,即α衰变、β衰变和γ衰变。每种衰变都有其特定 的规律和特点,如半衰期、能量释放等。了解这些规律对于正确应用放射性物 质和评估其对环境和生物的影响具有重要意义。
02
放射性辐射的生物效应
辐射生物效应的分类与特点

放射性基础知识

放射性基础知识


Q
92238U
α(24He)+90234Th
蜕变产物的确定用位移定律确定, 即:蜕变前后总质量数和总电荷数不变。
衰变—— 238U 234Th
+
+
+
++
+
Parent nu+cleus
+ +
4He nucleus emitted
238U4He + 234Th
particle gets the most decay energy
原子核或原子称为核素。
A Z
X
N
C 12 66
12 6
C
12 C
核子数、中子数、质子数和能态只要有一个不同,就 Nhomakorabea不同的核素。
20886Tl 3980Sr
60Co
28028Pb Y 91
39
58Co
两种核素,A同,Z、N不同。 两种核素,N同,A、Z不同。 两种核素,Z同,A、N不同。
60Co 60Com 两种核素,A、Z、N同,能态不同。
A Z
X

e Z A1Y

Q
电子俘获
A proton changes to neutron
Electron
X ray
衰变
+
+ ++
+ +
+
+ +
photon
99mTcT1/2 6h99Tc (E 0.140MeV)
射线特点:
1、光子是从原子核中发射的; 2、常常伴随在 、 衰变之后; 3、单能; 4、 射线的能量与原子核相关。

放射性基础知识课件

放射性基础知识课件

个人防护措施与监测仪器
个人防护用品
接触放射性物质的工作人员必须配备适当的个人防护用品, 如防护服、手套、口罩、眼镜等,以减少放射性物质的摄入 和接触。
监测仪器
为了确保放射性物质的安全使用和防护措施的有效性,需要 使用各种监测仪器对工作环境和人员进行检查和监测。
放射性废物的处理与处置
放射性废物的分类
放射性在科研中的应用案例
放射性示踪
利用放射性同位素标记生物活性分子,研究生物 体内的代谢过程、药物分布及药代动力学等。
放射性标记
利用放射性同位素标记化合物,研究化学反应机 理、催化反应过程等。
放射性探测
利用放射性射线的探测,研究物质的微观结构、 物理化学性质等。
THANKS
感谢观看
研究化学反应速度以及影响反 应速度的各种因素。
示踪技术在生物学和医学 领域的应用
追踪生物体内的物质运动和变 化规律,研究生物体内代谢过 程和新陈代谢机理。
示踪技术在工业生产中的 应用
用于生产流程跟踪、质量控制 等领域,提高生产效率和产品 质量。
放射性同位素在医学、工业及科研中的应用
医学应用
用于诊断和治疗疾病,如 PET/CT、放射免疫治疗等;同 时也可用于药物研发和实验动物
模型构建等。
工业应用
用于工业无损检测、材料改性、 防腐、控制反应过程等;同时也 可用于生产流程跟踪、质量控制 等领域,提高生产效率和产品质
量。
科研应用
用于研究物质的物理化学性质、 化学反应动力学、生物学代谢过 程等;同时也可用于环境科学、
地球科学等领域的研究。
05
放射性安全与防护措施
放射性物质的安全操作规程
细胞与组织的辐射生物效应

放射性基本知识及其安全防护

放射性基本知识及其安全防护

放射性基本知识及其安全防护1. 什么是放射性?放射性是指物质具有放射性衰变的性质,即放射出高能粒子或电磁波的过程。

放射性包括三种辐射形式:α粒子、β粒子和γ射线。

•α粒子是带有两个质子和两个中子的氦离子,具有较小的穿透能力;•β粒子是带有电荷的电子或正电子,能够渗透数毫米的空气或一些材料;•γ射线是一种高能电磁波,能够穿透很厚的屏蔽材料。

2. 放射性的来源放射性的来源多种多样,包括自然界和人工产生。

2.1 自然界放射性源自然界中存在许多放射性核素,如钾-40、铀-238和钍-232等。

这些核素会通过放射性衰变产生放射性辐射。

2.2 人工放射性源人类的活动也会产生放射性物质。

例如,核能发电厂产生的核废料和探测用的放射性同位素都属于人工放射性源。

3. 放射性的危害放射性对人类和环境造成潜在危害。

3.1 人体的辐射效应人体受到辐射后,会发生不同程度的生物效应,包括:•紧急效应:高剂量辐射会迅速导致身体组织的高度破坏,可能导致急性放射病或死亡;•长期效应:长期低剂量辐射可能导致遗传效应和慢性疾病,如癌症。

3.2 环境的辐射影响放射性物质排放到环境中可能对生态系统产生影响。

一些放射性物质在土壤和水中会逐渐积累,从而进入食物链中,对动植物和人类产生食物污染和辐射危害。

4. 放射性安全防护为了减少放射性对人类和环境的危害,需要采取一系列的安全防护措施。

4.1 辐射防护原则辐射防护原则包括三个基本原则:时间、距离和屏蔽。

•时间原则:尽量减少接触放射性源的时间,减少暴露剂量;•距离原则:保持与放射性源的距离,距离越远,暴露剂量越小;•屏蔽原则:使用合适的屏蔽材料,如铅和混凝土,来阻挡辐射。

4.2 个人防护在进行与放射性物质相关的工作时,必须采取个人防护措施,包括:•戴防护手套、眼镜和口罩等个人防护装备;•避免食物和饮水的污染;•注重个人卫生,经常洗手,防止放射性物质附着在身体表面。

4.3 环境防护对于放射性源,需要采取适当的环境防护措施,包括:•确保放射性废料的储存和处置符合相关的安全标准;•监测环境中的辐射水平,及时发现和处理辐射事故;•加强环境监测和管理,保护环境和公众的安全。

放射性和放射源基础知识

放射性和放射源基础知识

6、衰变规律
一定数量的放射性核素在衰变过程中,其原子数N随 时间的增加而减少,并服从如下指数衰变规律。
Nt= No e-λt No — t=0时的起始放射性核素的原子数 T — 衰变时间 Nt — 经时间t后该放射性核素所剩下的原子数; λ — 该放射性核素的衰变常数,它是说明放射性核素 衰变速率的,是放射性核素的基本物理参数之一,它与 半衰期的关系为:T=0.693/λ。
3.生活中处处都有放射性 尽管100多年前人们才发现放射性,但放射
性从来就存在于我们的生活中。放射性可以说无 时不有,无处不在,我们吃的食物、喝的水、住 的房屋、用的物品、周围的天空大地、山川草木 乃至人体本身都含有一定的放射性。
人们受到的放射性照射大约有82%来自天然 环境,大约有1 7%来自医疗诊断,而来自其他活 动大约只有1%。
一、放射性的基础知识
1、放射性的发现 1895年 伦琴发现X 射线 1896年 贝克勒尔发现物质的放射性 1898年 居里夫妇发现发现镭和钋 1899年 卢瑟福发现α和β射线 1911年 卢瑟福发现原子核 1934年 费米利用中子制造人工放射性核素 1945年 美国在广岛和长崎投下原子弹 1951年 第一次核能发电在美国实现 1972年 X 射线计算机断层扫描装置(CT)
(4)感光作用,射线使碘化银分解,使照像底 片感光,其程度与放射性强度及射线照射时 间的长短有关。
(5)产生热量,射线被物质吸收,动能转为热 能,使物质温度升高。
(6)可以引起物质发生化学反应及其它变化, 如使H20、HCl、NH4+分解,使有机组织的 分子破坏而造成细胞的死亡,等等。
人们已经认识到了射线作用于周围物 质时发生的上述现象,并在日常生活中正 确利用了它们,如胶片感光、仪器测量、 生态保鲜、灭菌等等,总之在各个领域均 得到了有益利用,因此,大家可以大可不 必将放射性视为一只老虎,没有必要谈虎 色变,当然,驯化了的老虎才不会伤人。

放射性基础知识

放射性基础知识
12
放射源分类
根据对人的危害程度,分为5类。 Ⅰ类放射源属极危险源。没有防护情况下,接触几分钟到1
小时就可致人死亡。 Ⅱ类放射源属高危险源。没有防护情况下,接触几小时到几
天可致人死亡。 Ⅲ类放射源属中危险源。没有防护情况下,接触几小时就可
对人造成永久性伤害,接触几天至几周也可致人死亡。 以上三类放射源为危险放射源 Ⅳ类放射源属低危险源。基本不会对人造成永久性损伤,但
对长时间、短距离接触的人可能造成可恢复的临时性损。 Ⅴ类放射源属极低危险源。不会对人造成永久性损伤。
13
放射源的危害
主要是射线对人体造成的危害 。人体在电离辐射的照射,将产生躯体效应或遗传 效应。 。随机效应:指发生的可能性(并非严重程度)。 小剂量造成的致癌效应和各种遗传效应属于此类。 因此,应避免一切不必要的照射。 。确定性效应:指发生疾病的严重程度随剂量的不 同而变化的效应。如皮肤损伤、组织损伤直至死 亡。这种效应通常只有在放射事故情况下才可能 发生。由于管理不善,造成放射性物质(源)丢 失、被盗可导致此类效应的发生。
8
放射性度量单位
剂量 。某一对象所接受或吸收的辐射的一种量度。 。吸收剂量 。定义:授予该体积的总能量除以该体积的质量 而得的商。 。SI单位是焦耳每千克(J.Kg¯¹ ),称为戈瑞(Gy) 。有效剂量 。定义:人体各组织或器官的当量剂量乘以相应 的组织权重因数后的和。单位用J.Kg¯¹称为Sv。
。年有效剂量,1mSv(不适用无责任方负责的天然照 射和医疗照射)
。特殊情况下,如果5个连续年的年平均剂量不超过 1mSv;则某单一年份的有效剂量可提高到5mSv。
。眼晶体的年当量剂量为15mSv 。皮肤的年当量剂量为50mSv 。现在放射工作人员限值为20mSv

辐射基础知识

辐射基础知识

一、放射性基本常识1.1 放射性与射线自然界中存在的各种各样的物体,大的如宇宙中的星球,小的如肌体的细胞。

都是由各种不同的物质组成的。

物质又是由无数的小颗粒所组成的。

这种小颗粒叫做“原子”,由几个原子还可以组成较复杂的粒子叫分子。

如水,就是由二个氢原子和一个氧原子化合成一个水分子。

无穷多的水分子聚在一起。

就是宏观的水。

原子虽然很小,它仍有着复杂的结构。

原子由原子核和一定数量的电子组成。

原子核在中心,带正电。

电子绕着原子核在特定的轨道上运动,带负电。

整个原子的正负电荷相等,是中性的。

原子核内部的情况又是怎样的呢?简单地讲,原子核是由一定数量的质子和中子组成。

中子数比质子数稍多一些。

两者数目具有一定的比例。

一个原子所包含的质子数目与中子数目之和,称为该原子的质量数。

它也就是原子核的质量数。

简单归纳一下:质子(带正电,数目与电子相等)原子核原子中子(不带电,数目=质量数-原子序数)电子(质量小,带负电,数目与质子相等,称为原子序数)原子的化学性质仅仅取决于核外电子数目,也就是仅仅取决于它的原子序数。

我们把原子序数相同的原子称作元素。

有些原子,尽管它们的原子序数相同,可是中子数目不相同,这些原子的化学性质完全相同。

而原子核有着不同的特性。

例如:11H、21H、31H,它们就是元素氢的三种同位素。

又如:59Co和60Co是元素钴的两种同位素。

235U和238U是元素铀的两种同位素自然界中已发现107种元素,而同位素有4千余种。

原子核里的中子比质子稍多,确切地说,质子数与中子数应有一个合适的比例(如轻核约为1:1,重核约为1:1.5)。

只有这样的原子核才是稳定的,这种同位素就叫做稳定同位素。

如果质子的数目过多或过少,也即中子数目过少或过多。

原子核往往是不稳定的,它能够自发地发生变化,同时放出射线和能量。

这种原子核就叫做放射性原子核。

它组成的原子就叫做放射性同位素,如59Co是稳定同位素,60Co是放射性同位素。

放射性基础知识

放射性基础知识

第一讲 放射性基础知识
物质的微观结构 放射性 放射性核素的衰变 放射性强弱的表示- 放射性强弱的表示-放射性活度 辐射源 辐射危害
1.物质的微观结构
所有的物质都是由分子 所有的物质都是由分子构成的 分子构成的 分子是由原子 分子是由原子构成的组成元素的基本单位 原子构成的 原子是由原子核 电子构成的 原子是由原子核和电子构成的 原子核和 原子核由质子 中子构成的 原子核由 质子 和 中子 构成的 , 构成 质子和 构成的, 原子核的质子和中子统称为核子. 原子核的质子和中子统称为核子.
X射线的发现:1895年冬,伦琴在德国维尔茨堡大 射线的发现:1895年冬 年冬,
学的实验室里做阴极射线管辉光实验. 学的实验室里做阴极射线管辉光实验 . 伦琴用高压 电场轰击阴极射线管内的两个金属电极, 电场轰击阴极射线管内的两个金属电极 , 把电子从 金属原子中打出来,此即"阴极射线" 金属原子中打出来,此即"阴极射线" .
玻尔的原子模型 1913年尼尔斯 玻尔对" 年尼尔斯 1913年尼尔斯玻尔对"小太阳系 原子模型"进行了完善, 原子模型"进行了完善,提出了 玻尔模型. 玻尔模型. 1.原子核外的电子只能在一些特定的轨道上运 不连续的, 运动轨道是不连续的 动,运动轨道是不连续的,每个确定的轨道 都具有与其相关的确定能量.电子运动轨道 离原子核越远,相对应的原子的能量越高, 离原子核越远,相对应的原子的能量越高, 这些不连续的能量值组成了原子的不同的 能级" "能级". 2.原子从较高的激发态向较低的激发态或基态 跃迁的过程是辐射能量的过程, 跃迁的过程是辐射能量的过程,该能量以光 子的形式( 辐射出去, 子的形式(波)辐射出去,辐射的能量等于 这两个能级的差值. 这两个能级的差值.

放射性基本知识课件

放射性基本知识课件

什么是放射源?

放射源是指用放射性物质制成的能产生辐射照射 的物质或实体,放射源按其密封状况可分密封源 和非密封源。密封源是密封在包壳或紧密覆盖层 里的放射性物质,如料位计、探伤机等使用的都 是密封源,常用的密封源有钴-60、铯-137、 铱-192等。非密封源是指没有包壳的放射性物质, 也称开放源或开放型放射源,医院核医学中使用 的放射性示跟踪剂属于非密封源,如碘-131、碘125、锝-99m等。
放射性基本知识
什么是放射性?

放射性是自然界存在的一种自然现象。世界上一 切物质都是由原子构成的,每个原子的中心有一 个原子核。大多数物质的原子核是稳定不变的, 但有些物质的原子核不稳定,会自发地发生某些 变化,这些不稳定的原子核在发生变化的同时会 发射出特有的射线,这种性质就是人们常说的放 射性。 有的放射性物质在地球诞生时就存在了,如 铀、钍、镭等,它们叫做天然放射性物质。另一 方面,人类出于不同的目的制造了一些具有放射 性的物质,这种物质叫人工放射性物质。
什么是放射性半衰期?

在放射源使用过程中,常常用半衰期来表示放射 性变化的快慢。所谓半衰期,就是放射性核素衰 变掉一半所需要的时间。每经过一个半衰期,放 射源的活度就只剩原来活度的一半了。半衰期越 长,表明这个放射源的活度变化得越慢,半衰期 越短,表明这个放射源的活度变化得越快。每种 放射性核素都有一个特有的半衰期,其范围从几 百万分之一秒到几十亿年。根据半衰期的长短, 我们可以更合理地选用合适的放射源开展工作。
就是单位时间内的照射量常用 伦/小时,毫伦/小时或微伦/秒表示
辐射量与单位
吸收剂量D : 吸收剂量定义为单位质量被照物质平均吸收的辐射能量。 专用单位是拉德 rad,国际单位专用名称 戈瑞 Gy 1 Gy = 100 rad 1 rad = 0.01Gy 空气的吸收剂量D与照射量X的关系为:D空气=33.7X (Gy),这里照 射量X的单位是采用国际单位库仑/千克。如果照射量X的单位是采 用伦琴,则关系式变为:D空气=8.69x10-3X (Gy)。因此,只要知道 辐照场中某点的照射量,就可以按照此关系式计算该点的吸收剂量 吸收剂量率: 是单位时间内物质吸收剂量 的增量。 表示方式: Gy/h, mGy/h,u Gy/s等

放射性基本知识ppt课件

放射性基本知识ppt课件

如:226Ra
222Rn+ α
注意:上述反应是在核内进行的,核衰变或蜕变只
取决于原子核的本性自发进行。当然在特殊情况下,
例如当温度高达几百万度时,对核蜕变有显著影响;
同时,人为地使原子核发生反应也是可能的,
例如:用高能的粒子轰击原子核也可引起核的变化
(这类变化叫核反应) 完整最新版课件
4
核衰变或核蜕变
• 1)、1KgU-235完全裂变释放的能量相
当与20000tTNT炸药的威力。
• 2)、1gU-235≈2.5t优质煤
完整最新版课件
41
• 核能,是核裂变能的简称。
• 铀-235原子核在吸收一个中子以后能分裂,在放
出2—3个中子的同时伴随着一种巨大的能量,这 种能量比化学反应所释放的能量大的多,这就是
2 核素的概念
有一定原子序数和一定核质量数和 能态的同类原子叫做一种核素。 如:23892U、 23592U
原子序数相同、质量数不同的原子
3
同位素
称为同完整位最新素版课。件 如:23892U、 23592U 3
核衰变或核蜕变
1、核衰变或核蜕变的概念:
原子核自发地发生变化,同 时放射出α、β、γ等核辐射 的现象。
法。
•②带电粒子核反应。这类反应生成的新元素
的数量虽然是不可称量的,但对发现新的超铀 元素起着重要作用,对今后合成更重的超铀元 素也是最有希望的方法。
•③热核爆炸。
完整最新版课件
19
• 超铀元素的应用有:
• ①核燃料。反应堆能大量生产钚239,作为快
中子增殖堆的核燃料。
• ②能源。利用它们在衰变过程释放的热或将
衰变率又称放射性活度或活度,习惯上 称放射性强度或放射性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、国际标准(我国执行此标准)1990年
1、放射性工作人员:20mSv(希)/年(有些资料为50)(10μSv/小时)
2、一般公众人员:1mSv/年(有些资料为5)(0.52μSv/小时)
二、单位换算等知识:
1μSv/h=100μR/h 1nc/kg.h=4μR/h
1μR=1γ(原核工业找矿习惯用的单位) 放射性活度:
1Ci(居里)=1000mCi 1mCi=1000μci
1Ci=3.7×1010Bq(贝克) =37GBq
1mCi=3.7×107Bq =37MBq
1μCi=3.7×104Bq=37KBq
1Bq=2.703×10-11Ci=27.03pci
照射量: 1R=103mR=106μR 1R=2.58×10-4c/kg
吸收计量: 1Gy=103mGy=106μGy 1Gy=100rad 100μrad=1μGy
计量当量: 1Sv(希)=103mSv=106μSv 1Sv=100rem (雷姆)
100μrem=1μSv
其他: 1Sv相当1Gy 1克镭=0.97Ci ≈1Ci
氡单位: 1Bq/L=0.27em=0.27×10-10Ci/L
三、放射性同位素衰变值的计算:
A=A0eλ-t t=T1/2 ; A0已知源强 A是经过时间后的多少
根据放射性衰变计算表查表计算
放射性屏蔽:
四、放射源与距离的关系:
放射源强度与距离的平方乘反比。

X=A.г/R2 A:点状源的放射性活度; R:与源的距离;
г:照射量率常数
注:Ra—226 (t 1608年 ) г=0.825伦.米2/小时.居里
Cs—137 (t 29.9年 ) г= 0.33伦.米2/小时.居里Co—60 (t 5.23年 ) г=1.32伦.米2/小时.居里。

相关文档
最新文档