MATLAB 数学实验 第五章概率统计
Matlab与数学实验(第二版)(张志刚 刘丽梅 版) 习题答案

Matlab与数学实验(第二版)(张志刚刘丽梅版)习题答案(1,3,4,5章)第一章d1zxt1用format的不同格式显示2*Pi,并分析格式之间的异同。
a=2*pi ;disp('***(1) 5位定点表示2*pi:')format short , a % 5位定点表disp('***(2) 15位定点表示2*pi:')format long , a % 15位定点表disp('***(3) 5位浮点表示2*pi:')format short e , a % 5位浮点表示disp('***(4) 15位浮点表示2*pi:')format long e , a % 15位浮点表示disp('***(5) 系统选择5位定点和5位浮点中更好的表示2*pi:')format short g , a % 系统选择5位定点和5位浮点中更好的表示disp('***(6) 系统选择15位定点和15位浮点中更好的表示2*pi:')format long g , a % 系统选择15位定点和15位浮点中更好的表disp('***(7) 近似的有理数的表示2*pi:')format rat , a % 近似的有理数的表disp('***(8) 十六进制的表示:')format hex , a % 十六进制的表disp('***(9) 用圆角分(美制)定点表示2*pi:')format bank , a % 用圆角分(美制)定点表示d1zxt2利用公式求Pi的值。
sum=0 ;n=21;for i = 1:4:n % 循环条件sum= sum+(1/i) ; % 循环体enddiff=0 ;for j = 3:4:(n-2) % 循环条件diff= diff+(1/j) ; % 循环体endpai=4*(sum-diff)d1zxt3 编程计算1!+3!+...+25!的阶乘。
matlab讲义

matlab讲义随机过程实验讲义刘继成华中科技大学数学与统计学院前言 (1)第一章Matlab 简介 (2)第二章简单分布的模拟 (6)第三章基本随机过程 (9)第四章Markov过程 (12)第五章模拟的应用和例子 (16)附录各章的原程序 (51)参考文献 (75)若想检验数学模型是否反映客观现实,最自然的方法是比较由模型计算的理论概率和由客观试验得到的经验频率。
不幸的是,这两件事都往往是费时的、昂贵的、困难的,甚至是不可能的。
此时,计算机模拟在这两方面都可以派上用场:提供理论概率的数值估计与接近现实试验的模拟。
模拟的第一步自然是在计算机程序的算法中如何产生随机性。
程序语言,甚至计算器,都提供了“随机”生成[0,1]区间内连续数的方法。
因为每次运行程序常常生成相同的“随机数”,因此这些数被称为伪随机数。
尽管如此,对于多数的具体问题这样的随机数已经够用。
我们将假定计算机已经能够生成[0,1]上的均匀随机数。
也假定这些数是独立同分布的,尽管它们常常是周期的、相关的、……。
……本讲义的安排如下,第一章是Matlab简介,从实践动手角度了解并熟悉Matlab环境、命令、帮助等,这将方便于Matlab的初学者。
第二章是简单随机变量的模拟,只给出了常用的Matlab 模拟语句,没有堆砌同一种变量的多种模拟方法。
对于没有列举的随机变量的模拟,以及有特殊需求的读者应该由这些方法得到启发,或者参考更详细的其他文献资料。
第三章是基本随机过程的模拟。
主要是简单独立增量过程的模拟,多维的推广是直接的。
第四章是Markov过程的模拟。
包括服务系统,生灭过程、简单分支过程等。
第五章是这些模拟的应用。
例如,计算概率、估计积分、模拟现实、误差估计,以及减小方差技术,特别给读者提供了一些经典问题的模拟,通过这些问题的模拟将会更加牢固地掌握实际模拟的步骤。
平稳过程的模拟、以及利用平稳过程来预测的内容并没有包含在本讲义之内,但这丝毫不影响该内容的重要性,这也是将会增补进来的主要内容之一。
概率统计学实验报告

《概率统计》实验报告实验人员:系(班):矿业工程系机械设计制造及其自动化1404班 学号:20141804408 姓名:李君阳 实验地点:电教楼四层三号机房实验名称:《概率统计》实验时间:2016.5.10,2016.5.17 16:30——18:30.实验目的:1.加强学生的动手能力,让学生掌握对MATLAB 软件的应用。
2.为以后的数学计算节省时间,提高精确度,准确度,合理的利用科学技术。
实验内容:(给出实验程序与运行结果)一、古典概型2、在50个产品中有18个一级品,32个二级品,从中任意抽取30个,求其中恰有20个二级品的概率.解:p=C 3220C 1810c 5030=0.2096>> p=nchoosek(32,20)*nchoosek(18,10)/nchoosek(50,30)p =0.2096二、计算概率1、某人进行射击,设每次射击的命中率为0.02,独立射击200次,试求至少击中两次的概率.2、一铸件的砂眼(缺陷)数服从参数为0.5的泊松分布,求此铸件上至多有1个砂眼的概率和至少有2个砂眼的概率. 解:1.p=1-c 2000∗0.98400-c 2001*0.98199*0.02=0.1458>> p=binopdf(2,200,0.02)p =0.1458 2.P(ζ=0)= 5.00*!05.0-e P(ζ=1)= 5.01*!15.0-e P(ζ1)=0.9098P(ζ)=0.09024、设随机变量()23,2X N ,求()25P X <<;()2P X >解:P(2<X<5)=F(5)-F(2)= )5(1,0σa F -=)235(1,0-F -)232(1,0-F = -=0.08413-(1-0.6915)=0.5328P(|X |>2)=P(X<-2)+P(X>2)=P(X<-2)+1-P(X<2)=0.6977normcdf(5,3,2)-normcdf(2,3,2) ≤2≥吕梁学院《概率统计》实验报告ans =0.5328>> normcdf(-2,3,2)-normcdf(2,3,2)+1ans =0.6977三、作图1、画出N(2,9),N(4,9),N(6,9)的图像进行比较;(图1)画出N(0,1),N(0,4),N(0,9)的图像进行比较.解:y1=normpdf(x,2,3);y2=normpdf(x,4,3);y3=normpdf(x,6,3);plot(x,y1,x,y2,x,y3)>> x=-40:0.01:40;y1=normpdf(x,0,1);y2=normpdf(x,0,2);y3=normpdf(x,0,3);plot(x,y1,x,y2,x,y3)(图2)四、常见统计量的计算1、根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:42 41 39.2 37.6 40.2 40 41 41.4 36.1 43.140.3 39.3 38.4 36.5 38.1 38.5 39.1 40.6 38.3 39.7求其公司中层管理人员年薪的样本均值、样本方差、样本标准差,绘制直方图。
数学软件Maple使用教程

数学软件Maple使⽤教程数学实验数学软件Maple使⽤教程序⾔⼀.什么是数学实验?我们都熟悉物理实验和化学实验,就是利⽤仪器设备,通过实验来了解物理现象、化学物质等的特性。
同样,数学实验也是要通过实验来了解数学问题的特性并解决对应的数学问题。
过去,因为实验设备和实验⼿段的问题,⽆法解决数学上的实验问题,所以,⼀直没有听说过数学实验这个词。
随着计算机的飞速发展,计算速度越来越快,软件功能也越来越强,许多数学问题都可以由计算机代替完成,也为我们⽤实验解决数学问题提供了可能。
数学实验就是以计算机为仪器,以软件为载体,通过实验解决实际中的数学问题。
⼆.常⽤的数学软件⽬前较流⾏的数学软件主要有四种:1.MathACD其优点是许多数学符号键盘化,通过键盘可以直接输⼊数学符号,在教学⽅⾯使⽤起来⾮常⽅便。
缺点是⽬前仅能作数值运算,符号运算功能较弱,输出界⾯不好。
2.Matlab优点是⼤型矩阵运算功能⾮常强,构造个⼈适⽤函数⽅便很⽅便,因此,⾮常适合⼤型⼯程技术中使⽤。
缺点是输出界⾯稍差,符号运算功能也显得弱⼀些。
不过,在这个公司购买了Maple公司的内核以后,符号运算功能已经得到了⼤⼤的加强。
再⼀个缺点就是这个软件太⼤,按现在流⾏的版本5.2,⾃⾝有400多兆,占硬盘空间近1个G,⼀般稍早些的计算机都安装部下。
我们这次没⽤它主要就是这个原因。
3.Mathematica其优点是结构严谨,输出界⾯好,计算功能强,是专业科学技术⼈员所喜爱的数学软件。
缺点是软件本⾝较⼤,⽬前流⾏的3.0版本有200兆;另⼀个缺点就是命令太长,每⼀个命令都要输⼊英⽂全名,因此,需要英语⽔平较⾼。
4.Maple优点是输出界⾯很好,与我们平常书写⼏乎⼀致;还有⼀个最⼤的优点就是它的符号运算功能特别强,这对于既要作数值运算,⼜要作符号运算时就显得⾮常⽅便了。
除此之外,其软件只有30兆,安装也很⽅便(直接拷贝就可以⽤)。
所以,我们把它放到学校⽹上直接调⽤。
MATLAB概率习题

数学实验(概率论)题目一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。
1. 用MA TLAB 计算泊松分布用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率. 3.用MA TLAB 计算均匀分布乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。
4.用MA TLAB 计算指数分布用MA TLAB 计算:某元件寿命ξ服从参数为λ(λ=11000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少? 5。
用MATLAB 计算正态分布 某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例? 二.用MATLAB 计算随机变量的期望和方差 1.用MA TLAB 计算数学期望(1)用MATLAB 计算离散型随机变量的期望 1)。
一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值 2)。
已知随机变量X 的分布列如下:{}kk X p 21== ,,2,1n k =计算.EX (2)用MATLAB 计算连续型随机变量的数学期望假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的均匀分布,其概率密度为: 1()0a x bx b aϕ⎧≤≤⎪=-⎨⎪⎩其它计算我国该种商品在国际市场上年销售量的期望.ξE .(3)用MATLAB 计算随机变量函数的数学期望假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大? 2. 用MA TLAB 计算方差(1)利用MATLAB 计算:设有甲、乙两种股票,今年的价格都是10元,一年后它们的试比较购买这两种股票时的投资风险.。
概率-matlab上机实验

数学实验-概率学院:理学院班级:xxxx姓名:xxxx学号:xxxx指导教师:xxxxx实验名称:概率试验目的:1)通过对mathematica软件的练习与运用,进一步熟悉和掌握mathematica软件的用法与功能。
2)通过试验过程与结果将随机实验可视化,直观理解概率论中的一些基本概念,并初步体验随机模拟方法。
实验步骤:1)打开数学应用软件——Mathematica ,单击new打开Mathematica 编辑窗口;2)根据各种问题编写程序文件;3)运行程序文件并调试;4)观察运行结果(数值或图形);5)根据观察到的结果写出实验报告,并析谈学习心和体会。
实验内容:1)概率的统计定义2)古典概型3)几种重要分布1)二项分布2)泊松分布4)概率问题的应用(一)概率的统计定义我们以抛掷骰子为例,按古典概率的定义,我们要假设各面出现的机会是等可能的,这就要假设:(1)骰子的质料绝对均匀;(2)骰子是绝对的正方体:(3)掷骰子时离地面有充分的高度。
但在实际问题中是不可能达到这些要求的,假设我们要计算在一次抛掷中出现一点这样一个事件 的概率为多少,这时,已无法仅通过一种理论的考虑来确定,但我们可以通过试验的方法来得到事件 概率:设反复地将骰子抛掷大量的次数,例如n 次,若在n 次抛掷中一点共发生了 次,则称是 这个事件在这n 次试验中的频率,概率的统计定义就是将 作为事件 的概率P( )的估计。
这个概念的直观背景是:当一个事件发生的可能性大(小)时,如果在同样条件下反复重复这个实验时,则该事件发生的频繁程度就大(小)。
同时,我们在数学上可以证明:对几何任何一组试验,当n 趋向无穷时,频率 趋向同一个数。
<练习一>模拟掷一颗均匀的骰子,可用产生1-6的随机整数来模拟实验结果1) 作n=200组实验,统计出现各点的次数,计算相应频率并与概率值1/6比较;2) 模拟n=1000,2000,3000组掷骰子试验,观察出现3点的频率随试验次数n 变化的情形,从中体会频率和概率的关系。
MATLAB 数学实验 数学实验教案

教师教案( 2008 —2009 学年第二学期 )课程名称:数学实验授课学时:32授课班级:2007级任课教师:钟尔杰教师职称:副教授教师所在学院:应用数学学院电子科技大学数学实验教案第 1 页共11 页数学实验教案第 2 页共11 页第一章MA TLAB使用入门本章数学实验方法教学时数为6学时,指导学生完成实验报告为2学时,共8学时。
分四次课完成本章教学任务。
一、教学内容及要求1.教学内容:(1)MA TLAB命令操作方法、向量创建与一元函数图形(2学时);(2)矩阵创建与二元函数图形(2学时);(3)数据显示格式与字符串数组(2学时)。
2.教学要求:(1)熟悉MA TLAB的命令操作方式,掌握向量创建方法和一元函数图形绘制方法;(2)掌握矩阵创建方法与二元函数图形绘制方法;(3)熟悉MA TLAB数据显示格式几种常用格式,掌握字符串数组操作方法。
二、教学重点与难点1.教学重点:MA TLAB向量创建,矩阵创建方法,一元函数和二元函数图形绘制方法,字符串数组的使用和操作。
2.教学难点:MA TLAB二元函数图形绘制,字符串操作。
三、教学设计1.通过简单表达式使用创建向量和矩阵;2.一元函数的图形是曲线,在二维空间中表示;通过衰减振荡曲线绘制例子,介绍曲线的线型、颜色控制方法;3.二元函数的图形是曲面,在三维空间中表示。
介绍典型问题——数字地球绘制使学生了解绘三维图形的三个重要环节;四、作业1.熟悉MA TLAB命令操作方式,表达式和常用函数使用,简单的数学模型求解;2.计算国际象棋发明人的报酬问题。
用MA TLAB计算说明明国际象棋发明人想要索取的大麦几乎可以覆盖整个地球;3.熟悉MA TLAB基本绘图命令,在多个图形窗口中绘制曲线图形和曲面图形;4.熟悉字符串数组的操作,设计一段程序计算农历年,将计算结果显示为字符串;5.完成数学实验报告一:抛射曲线问题的数学实验五、本章参考资料1.张志涌等编,精通MA TLAB6.5,北京航空航天大学出版社,2004数学实验教案第 3 页共11 页2.MA TLAB网站:六、教学后记1.本章介绍数学软件MA TLAB使用的基本方法,向量和矩阵创建,一元函数和二元函数绘图方法。
运用MATLAB的统计实验寓于概率统计教学的探索与实践

绘 图命令 画各 种二 维 、 三维 图形 , 有专 用 的绘制 各种 统 计 图形 的函数 , 以省 大 量 的时间 与精力 嘲 。 也 可
2 寓 于 概 率 统 计 教 学 中 的 统 计 实 验
概率 论与 数理 统计 是 研究 随机 现象及 其 统计 规律 的一 门学 科 , 它广 泛 应 用 于 社 会 、 济 、 学 等 各 个领 经 科 域n 。随着 社会 生 产力 与科 学技 术 的发展 , 门学科 的理论 和 应用也 得 到 了迅速 发展 , ] 这 特别 是 计算 机技 术及
实 现 数 学 实 验 。 在 概 率 统 计 教 学 过 程 中 加 强学 生 的 实 践 性 教 学 环 节 , 养 学 生 的 应 用 能 力 。 培 、
关键 词 : 统计实 课堂教学; 验; 应用能力
中图分 类 号 : G 4. 624
文 献标 识码 : A
文 章编 号 : 1 8 6920) — 7— 0 — 5( 90 0 9 3 09 0 20 0
为学生 今后 的工 作 打下 初步 的基 础 。
目前 的一 些 概率 统计 新编 教材 或 多或 少地增 加 了部 分数 学 软件教 学 内容 。在 概率 统计 课程 教学 中介 绍
数 学软 件 已成 为 改革 发展 的趋 势[ 。 同时 , 对许 多 专业 按照 “ 3 ] 针 厚基 础 、 口径 、 能力 、 素质 ” 宽 重 高 的教 学改 革 思路 , 学实 验 的开展 可 以在数 学教 育 中体 现学 生 的主体 意识 , 学生 做 到会 学 、 数 让 会用数 学 , 提高 学生 数学 学 习的趣 味性 、 体现 数学 教育 的时 代性[ 。因此 , 4 ] 将数 学 实验 融 人 概率 统 计 教 学 , 概率 统 计 教 学 改革 中非 常 是
Maltab在概率统计教学中的应用举例

Maltab在概率统计教学中的应用举例摘要:针对计算机系学生,在概率统计教学过程中引入Matlab进行计算,可以加强学生的实践性教学环节,培养学生的应用能力和动手能力。
关键词:概率分布正态分布参数估计概率论与数理统计是对随机现象的统计规律进行演绎和归纳的科学,是从数量上研究随机现象的客观规律的一门数学学科,是近代数学的重要组成部分。
当前,概率论与数理统计已广泛应用于自然科学、社会科学、工程技术、工农业生产和军事技术中,并且正广泛地与其他学科互相渗透或结合。
概率论与数理统计是一门实践性很强的课程,大多数学生会觉得很抽象,不直观。
因而有必要在传统的教学方法中加入计算机数学语言辅助教学,发挥计算机进行数学实验的优点,提高学生的学习兴趣和教学质量。
MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
MATLAB 已发展成集数值计算、符号计算、绘图和仿真等于一身的工具软件。
由于其不断丰富的工具箱,MA T LAB已被广泛用于数学计算、统计、自动控制、电子、通信、模式识别和经济等领域。
针对计算机系学生,在概率统计课程中使用matlab进行辅助教学具有一下有点:操作简单易学、功能强大实用、画图方便迅速。
下面结合教学中的实例,列举matlab在概率统计教学中的若干应用。
1 Matlab在教学中的应用举例Matlab软件提供了统计工具箱,里面有大量的概率统计函数可直接应用,大大简化了计算过程。
1.1 Matlab在概率中的应用举例随机数是概率论中基本内容,其中二项分布的随机数据的产生可以用函数binornd,命令格式R=binornd(N,P)%N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
如:> R=binornd(8,0.5,[1,10])R=4655545515正态分布的随机数据的产生的函数是normrnd格式R=normrnd(MU,SIGMA)%返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。
MATLAB教程课后实验报告题目及解答[第一至第五章]
![MATLAB教程课后实验报告题目及解答[第一至第五章]](https://img.taocdn.com/s3/m/512b4436f111f18583d05a96.png)
MATLAB教程实验报告实验项目名称实验一 Matlab基本操作学生姓名汪德旺专业班级 09数教(1)班学号 0301090131实验成绩日期一. 实验目的和要求1、了解MATLAB 的开发环境。
2、熟悉Matlab的基本操作。
3、掌握建立矩阵的方法。
4、掌握MATLAB各种表达式的书写规则以及常用函数的使用。
5、填写实验报告,实验报告文件取名为report1.doc。
6、于邮件附件形式将实验报告文件report1.doc 发到邮箱*******************,邮件主题为班级学号姓名,如:09数教1班15号张三。
二、实验内容1、先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)0 122sin851ze =+(2)2212 1ln(0.4552i z x x+⎡⎤==⎢⎥-⎣⎦其中(3)0.30.330.3sin(0.3)ln,22a ae e az a--+=++a=-3.0,-2.9,-2.8,…, 2.8, 2.9,3.0(4)2242,011,12,0:0.5:2.521,23t tz t tt t t⎧≤<⎪=-≤<=⎨⎪-+≤<⎩其中t2.已知:1234413134787,2033657327 A B--⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1)A+6*B和A-B+I(其中I为单位矩阵) (2)A*B和A.*B(3)A^3和A.^3(4)A/B和B\A(5)[A,B]和[A([1,3],:);B^2]3、设有矩阵A 和B123453016678910A=,B=17-691112131415023-41617181920970212223242541311⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦(1)求它们的乘积C 。
(2)将矩阵C 的右下角3*2子矩阵赋给D 。
(3)查看MATLAB 工作空间的使用情况。
matlab概率论部分数学实验指导书

1.9
0.8
1.1
0.1
0.1
4.4 5.5 1.6 4.6 3.4
0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0
试就下列两种情况分析这两种药物的疗效有无显示性的差异。 ( α = 0.05 ) 。 ① X 与 Y 的方差相同;② X 与 Y 的方差不同。 (7) 、 已知某一试验, 其温度服从正态分布, 现在测量了温度的五个值为: 1250, 1265,1245,1260,1275。问是否可以认为 µ = 1277 (8) 、其它教材上的题目或自己感兴趣的题目。 ( α = 0.05 ) 。 ?
A =[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 22
20 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16
实验四、样本的统计与计算 实验目的: 熟练使用 matlab 对样本进行基本统计,包括样本的位置统计、分散性统计、样 本中心矩、分布的形状统计。求样本均值、中位数、样本方差,偏度、峰度、 样本分位数和其它数字特征,并能做出频率直方图和经验分布函数。 实验内容: 来自总体的样本观察值如下,计算样本的样本均值、中位数、样本方差、极差, 偏度、峰度、画出频率直方图,经验分布函数图。
Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用概率论与数理统计是一门重要的数学学科,它主要研究随机事件发生的概率和随机变量的规律性。
Matlab是一种强大的科学计算软件,具有丰富的数学计算工具和图形绘制功能,因此在《概率论与数理统计》教学中,Matlab被广泛应用于概率论和数理统计的理论研究、统计分析和数据可视化等方面。
一、概率论的应用1. 概率计算:Matlab可以进行各种概率计算,包括事件的概率计算、条件概率计算、概率分布计算等。
通过编写相应的概率计算程序,可以方便地进行概率问题的求解和验证。
2. 模拟实验:概率论中常常需要进行大量的随机实验,通过模拟实验来验证概率理论的结论。
Matlab提供了丰富的随机数生成函数,可以生成各种分布的随机样本并进行相关的分析和验证。
3. 统计分布拟合:在概率论中,常常需要对实际观测数据进行统计分布的拟合。
Matlab提供了多种分布的函数和工具箱,可以帮助进行数据的拟合和参数估计。
二、数理统计的应用1. 描述统计分析:Matlab可以对数据进行基本的描述统计分析,包括数据的中心趋势、离散程度和分布状况的度量等。
通过编写相应的统计分析程序,可以方便地获取数据的平均值、方差、标准差等统计指标。
2. 参数估计与假设检验:在数理统计中,常常需要对总体参数进行估计和假设检验。
Matlab提供了多种参数估计和假设检验的函数和工具箱,可以进行参数的点估计、区间估计和假设检验等分析。
3. 数据可视化与分析:Matlab具有强大的数据可视化功能,可以绘制各种图表和图形,包括直方图、散点图、箱线图等。
通过对数据进行可视化分析,可以更直观地了解数据的分布特征和相关关系。
除了以上应用,Matlab还可以在概率论与数理统计的教学中进行实际案例分析和建模。
通过编写相应的程序和脚本,可以更具体地研究和解决实际问题,提高学生的应用能力和创新思维。
Matlab在《概率论与数理统计》教学中的应用范围广泛,包括概率计算、模拟实验、统计分布拟合、描述统计分析、参数估计与假设检验、数据可视化与分析等方面。
MATLAB数学实验课后答案

数学实验MATLAB参考答案(重要部分)P20,ex1(5) 等于[exp(1),exp(2);exp(3),exp(4)](7) 3=1*3, 8=2*4(8) a为各列最小值,b为最小值所在的行号(10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture(11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10)(12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10)P20, ex2(1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a 与c相等,但他们不等于b(2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码P20,ex3>> r=2;p=0.5;n=12;>> T=log(r)/n/log(1+0.01*p)T =11.5813P20,ex4>> x=-2:0.05:2;f=x.^4-2.^x;>> [fmin,min_index]=min(f)fmin =-1.3907 %最小值min_index =54 %最小值点编址>> x(min_index)ans =0.6500 %最小值点>> [f1,x1_index]=min(abs(f)) %求近似根--绝对值最小的点f1 =0.0328x1_index =24>> x(x1_index)ans =-0.8500>> x(x1_index)=[];f=x.^4-2.^x; %删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) %求另一近似根--函数绝对值次小的点f2 =0.0630x2_index =65>> x(x2_index)ans =1.2500P20,ex5>> z=magic(10)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3417 24 76 83 90 42 49 26 33 6579 6 13 95 97 29 31 38 45 7210 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59>> sum(z)ans =505 505 505 505 505 505 505 505 505 505 >> sum(diag(z))ans =505>> z(:,2)/sqrt(3)ans =57.157746.188046.765450.229553.693613.85642.88683.46416.928210.3923>> z(8,:)=z(8,:)+z(3,:)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3423 5 82 89 91 48 30 32 39 6683 87 101 115 119 83 87 101 115 11910 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59P 40 ex1先在编辑器窗口写下列M函数,保存为eg2_1.m function [xbar,s]=ex2_1(x)n=length(x);xbar=sum(x)/n;s=sqrt((sum(x.^2)-n*xbar^2)/(n-1));例如>>x=[81 70 65 51 76 66 90 87 61 77];>>[xbar,s]=ex2_1(x)xbar =72.4000s =12.1124P 40 ex2s=log(1);n=0;while s<=100n=n+1;s=s+log(1+n);endm=n计算结果m=37clear;F(1)=1;F(2)=1;k=2;x=0;e=1e-8; a=(1+sqrt(5))/2;while abs(x-a)>ek=k+1;F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1); enda,x,k计算至k=21可满足精度P 40 ex4clear;tic;s=0;for i=1:1000000s=s+sqrt(3)/2^i;ends,toctic;s=0;i=1;while i<=1000000s=s+sqrt(3)/2^i;i=i+1;ends,toctic;s=0;i=1:1000000;s=sqrt(3)*sum(1./2.^i);s,tocP 40 ex5c=[15 14 14 14 14 15 16 18 20 22 23 25 28 ...31 32 31 29 27 25 24 22 20 18 17 16];plot(t,c)P 40 ex6(1)clear;fplot('x^2*sin(x^2-x-2)',[-2,2])x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y)y=inline('x^2*sin(x^2-x-2)');fplot(y,[-2 2])(2)参数方法t=linspace(0,2*pi,100);x=2*cos(t);y=3*sin(t); plot(x,y)(3)x=-3:0.1:3;y=x;[x,y]=meshgrid(x,y);z=x.^2+y.^2;surf(x,y,z)(4)x=-3:0.1:3;y=-3:0.1:13;[x,y]=meshgrid(x,y);z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;surf(x,y,z)(5)t=0:0.01:2*pi;x=sin(t);y=cos(t);z=cos(2*t);plot3(x,y,z)(6)theta=linspace(0,2*pi,50);fai=linspace(0,pi/2,20);[theta,fai]=meshgrid(theta,fai); x=2*sin(fai).*cos(theta);y=2*sin(fai).*sin(theta);z=2*cos(fai);surf(x,y,z)(7)x=linspace(0,pi,100);y1=sin(x);y2=sin(x).*sin(10*x);y3=-sin(x);plot(x,y1,x,y2,x,y3)page41, ex7x=-1.5:0.05:1.5;y=1.1*(x>1.1)+x.*(x<=1.1).*(x>=-1.1)-1.1*(x<-1.1);plot(x,y)page41,ex8分别使用which trapz, type trapz, dir C:\MATLAB7\toolbox\matlab\datafun\ page41,ex9clear;close;x=-2:0.1:2;y=x;[x,y]=meshgrid(x,y);a=0.5457;b=0.7575;p=a*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1);p=p+b*exp(-y.^2-6*x.^2).*(x+y>-1).*(x+y<=1);p=p+a*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);mesh(x,y,p)page41, ex10lookfor lyapunovhelp lyap>> A=[1 2 3;4 5 6;7 8 0];C=[2 -5 -22;-5 -24 -56;-22 -56 -16];>> X=lyap(A,C)X =1.0000 -1.0000 -0.0000 -1.00002.0000 1.0000 -0.0000 1.0000 7.0000Chapter 3%Exercise 1>> a=[1,2,3];b=[2,4,3];a./b,a.\b,a/b,a\bans =0.5000 0.5000 1.0000ans =2 2 1ans =0.6552 %一元方程组x[2,4,3]=[1,2,3]的近似解ans =0 0 00 0 00.6667 1.3333 1.0000%矩阵方程[1,2,3][x11,x12,x13;x21,x22,x23;x31,x32,x33]=[2,4,3]的特解Exercise 2(1)>> A=[4 1 -1;3 2 -6;1 -5 3];b=[9;-2;1];>> rank(A), rank([A,b]) %[A,b]为增广矩阵ans =3ans =3 %可见方程组唯一解>> x=A\bx =2.38301.48942.0213Exercise 2(2)>> A=[4 -3 3;3 2 -6;1 -5 3];b=[-1;-2;1];>> rank(A), rank([A,b]) ans =3ans =3 %可见方程组唯一解>> x=A\bx =-0.4706-0.2941Exercise 2(3)>> A=[4 1;3 2;1 -5];b=[1;1;1];>> rank(A), rank([A,b])ans =2ans =3 %可见方程组无解>> x=A\bx =0.3311-0.1219 %最小二乘近似解Exercise 2(4)>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1 2 3]';%注意b的写法>> rank(a),rank([a,b])ans =3ans =3 %rank(a)==rank([a,b])<4说明有无穷多解>> a\bans =110 %一个特解Exercise 3>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1,2,3]';>> x=null(a),x0=a\bx =-0.62550.6255-0.20850.4170x0 =11%通解kx+x0 Exercise 4>> x0=[0.2 0.8]';a=[0.99 0.05;0.01 0.95];>> x1=a*x, x2=a^2*x, x10=a^10*x>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> x0=[0.8 0.2]';>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> [v,e]=eig(a)v =0.9806 -0.70710.1961 0.7071e =1.0000 00 0.9400>> v(:,1)./xans =1.17671.1767 %成比例,说明x是最大特征值对应的特征向量Exercise 5%用到公式(3.11)(3.12)>> B=[6,2,1;2.25,1,0.2;3,0.2,1.8];x=[25 5 20]'; >> C=B/diag(x)C =0.2400 0.4000 0.05000.0900 0.2000 0.0100 0.1200 0.0400 0.0900 >> A=eye(3,3)-CA =0.7600 -0.4000 -0.0500 -0.0900 0.8000 -0.0100 -0.1200 -0.0400 0.9100 >> D=[17 17 17]';x=A\D x =37.569625.786224.7690%Exercise 6(1)>> a=[4 1 -1;3 2 -6;1 -5 3];det(a),inv(a),[v,d]=eig(a) ans =-94ans =0.2553 -0.0213 0.04260.1596 -0.1383 -0.22340.1809 -0.2234 -0.0532v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766%Exercise 6(2)>> a=[1 1 -1;0 2 -1;-1 2 0];det(a),inv(a),[v,d]=eig(a) ans =1ans =2.0000 -2.0000 1.00001.0000 -1.0000 1.00002.0000 -3.0000 2.0000v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i%Exercise 6(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> det(A),inv(A), [v,d]=eig(A)ans =1ans =68.0000 -41.0000 -17.0000 10.0000-41.0000 25.0000 10.0000 -6.0000-17.0000 10.0000 5.0000 -3.000010.0000 -6.0000 -3.0000 2.0000v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887%Exercise 6(4)、(以n=5为例)%关键是矩阵的定义%方法一(三个for)n=5;for i=1:n, a(i,i)=5;endfor i=1:(n-1),a(i,i+1)=6;endfor i=1:(n-1),a(i+1,i)=1;enda%方法二(一个for)n=5;a=zeros(n,n);a(1,1:2)=[5 6];for i=2:(n-1),a(i,[i-1,i,i+1])=[1 5 6];enda(n,[n-1 n])=[1 5];a%方法三(不用for)n=5;a=diag(5*ones(n,1));b=diag(6*ones(n-1,1));c=diag(ones(n-1,1));a=a+[zeros(n-1,1),b;zeros(1,n)]+[zeros(1,n);c,zeros(n-1,1)] %下列计算>> det(a)ans =665>> inv(a)ans =0.3173 -0.5865 1.0286 -1.6241 1.9489-0.0977 0.4887 -0.8571 1.3534 -1.62410.0286 -0.1429 0.5429 -0.8571 1.0286-0.0075 0.0376 -0.1429 0.4887 -0.5865 0.0015 -0.0075 0.0286 -0.0977 0.3173 >> [v,d]=eig(a)v =-0.7843 -0.7843 -0.9237 0.9860 -0.9237 0.5546 -0.5546 -0.3771 -0.0000 0.3771-0.2614 -0.2614 0.0000 -0.1643 0.0000 0.0924 -0.0924 0.0628 -0.0000 -0.0628-0.0218 -0.0218 0.0257 0.0274 0.0257d =0.7574 0 0 0 00 9.2426 0 0 00 0 7.4495 0 00 0 0 5.0000 00 0 0 0 2.5505%Exercise 7(1)>> a=[4 1 -1;3 2 -6;1 -5 3];[v,d]=eig(a) v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766>> det(v)ans =-0.9255 %v行列式正常, 特征向量线性相关,可对角化>> inv(v)*a*v %验算ans =-3.0527 0.0000 -0.00000.0000 3.6760 -0.0000-0.0000 -0.0000 8.3766>> [v2,d2]=jordan(a) %也可用jordanv2 =0.0798 0.0076 0.91270.1886 -0.3141 0.1256-0.1605 -0.2607 0.4213 %特征向量不同d2 =8.3766 0 00 -3.0527 - 0.0000i 00 0 3.6760 + 0.0000i>> v2\a*v2ans =8.3766 0 0.00000.0000 -3.0527 0.00000.0000 0.0000 3.6760>> v(:,1)./v2(:,2) %对应相同特征值的特征向量成比例ans =2.44912.44912.4491%Exercise 7(2)>> a=[1 1 -1;0 2 -1;-1 2 0];[v,d]=eig(a)v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i>> det(v)ans =-5.0566e-028 -5.1918e-017i %v的行列式接近0, 特征向量线性相关,不可对角化>> [v,d]=jordan(a)v =1 0 11 -1 0d =1 1 00 1 10 0 1 %jordan标准形不是对角的,所以不可对角化%Exercise 7(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> [v,d]=eig(A)0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887>> inv(v)*A*vans =0.0102 0.0000 -0.0000 0.00000.0000 0.8431 -0.0000 -0.0000-0.0000 0.0000 3.8581 -0.0000-0.0000 -0.0000 0 30.2887%本题用jordan不行, 原因未知%Exercise 7(4)参考6(4)和7(1), 略%Exercise 8 只有(3)对称, 且特征值全部大于零, 所以是正定矩阵. %Exercise 9(1)>> a=[4 -3 1 3;2 -1 3 5;1 -1 -1 -1;3 -2 3 4;7 -6 -7 0]>> rank(a)ans =3>> rank(a(1:3,:))ans =2>> rank(a([1 2 4],:)) %1,2,4行为最大无关组3>> b=a([1 2 4],:)';c=a([3 5],:)'; >> b\c %线性表示的系数ans =0.5000 5.0000-0.5000 1.00000 -5.0000%Exercise 10>> a=[1 -2 2;-2 -2 4;2 4 -2]>> [v,d]=eig(a)0.3333 0.9339 -0.12930.6667 -0.3304 -0.6681-0.6667 0.1365 -0.7327d =-7.0000 0 00 2.0000 00 0 2.0000>> v'*vans =1.0000 0.0000 0.00000.0000 1.0000 00.0000 0 1.0000 %v确实是正交矩阵%Exercise 11%设经过6个电阻的电流分别为i1, ..., i6. 列方程组如下%20-2i1=a; 5-3i2=c; a-3i3=c; a-4i4=b; c-5i5=b; b-3i6=0; %i1=i3+i4;i5=i2+i3;i6=i4+i5;%计算如下>> A=[1 0 0 2 0 0 0 0 0;0 0 1 0 3 0 0 0 0;1 0 -1 0 0 -3 0 0 0;1 -1 0 0 0 0 -4 0 0;0 -1 1 0 0 0 0 -5 0;0 1 0 0 0 0 0 0 -3;0 0 0 1 0 -1 -1 0 0;0 0 0 0 -1 -1 0 1 0;0 0 0 0 0 0 -1 -1 1];>>b=[20 5 0 0 0 0 0 0 0]'; A\bans =13.34536.44018.54203.3274-1.18071.60111.72630.42042.1467%Exercise 12>> A=[1 2 3;4 5 6;7 8 0];>> left=sum(eig(A)), right=sum(trace(A))left =6.0000right =6>> left=prod(eig(A)), right=det(A) %原题有错, (-1)^n应删去left =27.0000right =27>> fA=(A-p(1)*eye(3,3))*(A-p(2)*eye(3,3))*(A-p(3)*eye(3,3))fA =1.0e-012 *0.0853 0.1421 0.02840.1421 0.1421 0-0.0568 -0.1137 0.1705>> norm(fA) %f(A)范数接近0ans =2.9536e-013%Exercise 1(1)roots([1 1 1])%Exercise 1(2)roots([3 0 -4 0 2 -1])%Exercise 1(3)p=zeros(1,24);p([1 17 18 22])=[5 -6 8 -5];roots(p)%Exercise 1(4)p1=[2 3];p2=conv(p1, p1);p3=conv(p1, p2);p3(end)=p3(end)-4; %原p3最后一个分量-4roots(p3)%Exercise 2fun=inline('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x'); fzero(fun,2)】%Exercise 3fun=inline('x^4-2^x');fplot(fun,[-2 2]);grid on;fzero(fun,-1),fzero(fun,1),fminbnd(fun,0.5,1.5)%Exercise 4fun=inline('x*sin(1/x)','x');fplot(fun, [-0.1 0.1]);x=zeros(1,10);for i=1:10, x(i)=fzero(fun,(i-0.5)*0.01);end;x=[x,-x]%Exercise 5fun=inline('[9*x(1)^2+36*x(2)^2+4*x(3)^2-36;x(1)^2-2*x(2)^2-20*x(3);16*x(1)-x(1)^3-2*x(2)^2-16*x(3)^2]','x');[a,b,c]=fsolve(fun,[0 0 0])%Exercise 6fun=@(x)[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))];[a,b,c]=fsolve(fun,[0.5 0.5])%Exercise 7clear; close; t=0:pi/100:2*pi; x1=2+sqrt(5)*cos(t); y1=3-2*x1+sqrt(5)*sin(t);x2=3+sqrt(2)*cos(t); y2=6*sin(t);plot(x1,y1,x2,y2); grid on; %作图发现4个解的大致位置,然后分别求解y1=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.5,2])y2=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.8,-2])y3=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[3.5,-5])y4=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[4,-4])%Exercise 8(1)clear;fun=inline('x.^2.*sin(x.^2-x-2)');fplot(fun,[-2 2]);grid on; %作图观察x(1)=-2;x(3)=fminbnd(fun,-1,-0.5);x(5)=fminbnd(fun,1,2);fun2=inline('-x.^2.*sin(x.^2-x-2)');x(2)=fminbnd(fun2,-2,-1);x(4)=fminbnd(fun2,-0.5,0.5);x(6)=2feval(fun,x)%答案: 以上x(1)(3)(5)是局部极小,x(2)(4)(6)是局部极大,从最后一句知道x(1)全局最小, x(2)最大。
matlab在概率统计教学中的应用浅析

matlab在概率统计教学中的应用浅析
随着经济的发展和科技的进步,社会对统计学的需求也在不断增加,概率统计是其中的重要组成部分。
为了满足这种需求,教育机构和研究机构需要更好地将概率统计内容和技术传授给未来的学生和研究人员。
Matlab是一种高级编程语言,在概率统计教学领域发挥着重要作用。
本文旨在探讨Matlab在概率统计教学中的应用。
首先,Matlab可以用来实现复杂的数学模型,例如高斯模型、概率密度函数和联合概率分布,以及贝叶斯统计方法。
使用Matlab,学生可以快速地使用编程语言来描述实际问题。
系统模拟可以大大提高教学效率,更好地培养学生的分析技能,让学生更好地理解概率统计的基本概念和原理。
另外,Matlab可以用来生成概率图表。
使用Matlab,学生可以使用数据可视化语言来绘制概率分布图表,包括离散概率分布图表和连续概率分布图表。
使用可视化工具,学生可以观察不同类型的数据的发展趋势,帮助他们更好地理解概率模型的意义。
此外,Matlab可用来模拟复杂的实验,以便进行科学研究。
学生可以使用Matlab编程语言来试验不同的统计方法,探究它们的优势和劣势。
这将有助于学生更充分地了解概率统计,并能够完成更有深度的科研。
总之,Matlab在概率统计教学中发挥了重要作用,可以帮助学生更好地理解和体会概率统计的原理和方法。
Matlab具有实用性和可扩展性,可以帮助学生更好地研究概率统计问题,提高学生的学习
能力和分析能力。
教师应当积极利用Matlab,为学生提供一个先进的概率统计教学环境,为他们的科学研究提供有力的支持。
在概率统计教学中运用MATLAB渗透数学实验的探索

[ 收稿 日期]08 0 — 4 20 — 3 2 [ 基金项目] 广西民族大学青年科研基金项 目(07 N 3 。 2 0Q 2 ) [ 作者简介] 农吉夫(95 , 壮族)广西东兰人, 17一)男( , 硕士, 讲师, 研究方向: 概率统计及气象预报建模 ; 吴建生(94 , 17一)陕西
与科学技 术的发展 , 这门学科 的理论 和应用也得到 了迅速发 展 , 特别是 计算机技术及数学软 件的发展 , 得诸多的统计分 析得 以 使 借助 数学软件得 以实现 , 如参数估 计 、 假设 检验、 方差分析 和 回归分 析等计算 问题 , 也无需 担心大 量的统 计数据带来 的计 算量 等 问题 。因此 , 在概率统计教学过程 中 , 以培养 学生应用统计方法解 决实际问题 的能力 为出发点 , 应 使学 生掌握概率论 的基本知识 和理解统 计方法 的基本思想 , 具有一定 的统计应用 能力 , 并能借 助于计算 机及统 计软件完 成统计 计算 , 分析统 计结果 , 出统计 做 推断 。为 学生将来 的工作 打下初 步的基础 。 目前 的一 些概率统计新 编教材也都或多或少地增 加了部分数学 软件 内容 。在 概率统计课 程教 学 中介 绍数学软 件 已成 为改 革发展 的趋势 。同时 , 对许多专业按照 “ 针 厚基 础、 口径 、 宽 重能力 、 高素质” 的教学改革思路 , 数学实验 的开展可 以在 数学教做到会学 、 会用数学 , 提高学生数学 学习的趣味性 、 体现数学教 育的时代 性。因此 , 学实 验融入 将数
概率统计 教学 , 概率统计教学改革 中非常值得探讨和研究 的课题。 是
一
、
M A L B 软 件 辅 助 概 率统 计 教 学 的 特 点 TA
辅助教学 , 帮助“ 师教好 , 教 学生 学好” 该课程 , 不应该 把大量的课 时花费在 掌握计算 机软 件的使用 与编程 上 , 要求 计算机 软件 是 配角 , 决不 能让它成为课程 中的主角 , MAT A L B可 以达 到该 目的。 2 功能强大实 用。MA L 6 51 . T AB .1 提供 了统计工具箱 , ] 有大量的概率统 计函数可直接进行计算 , 当教学 中增 加新 的《 每 概率
《概率论与数理统计》课程教案

《概率论与数理统计》课程教案主讲教师__________ 所在单位______________授课班级____________ 专业_____________________ 撰写时间_________________实验2 频率稳定性实验●随机投掷均匀硬币,观察国徽朝上与国徽朝下的频率解●>> n= 3000~;m=0;●for i=1:n● t=randperm(2); %生成一个1~2的随机整数排列● x=t-1; %生成一个0~1的随机整数排列● y=x(1); %取x排列的第一个值● if y==0;● m=m+1;● end●end●p1=m/n●p2=1-p1endendif k==0t=t+1; elset=t; endende=m/te = 2.7313实验4:蒲丰(Buffon)投针实验,用频率估计π值●在画有许多间距为d的等距平行线的白纸上,随机投掷一根长为l(l≤d)的均匀直针,求针与平行线相交的概率,并计算π的近似值解:设针与平行线的夹角为α(0≤α≤π),针的中心与最近直线的距离为x(0≤x≤d/2)。
针与平行线相交的充要条件是x≤(l/2)sinα,这里x(0≤x≤d/2并且0≤α≤π。
建立直角坐标系,上述条件在坐标系下将是曲线所围成的曲边梯形区域,总的区域即x和α所有可能取值构成的矩形区域,且所有可能取值是机会均等的,符合几何概型,则所求概率为p=g的面积G的面积=∫l2sinαdαππd2=2lπd≈mn故可得π的近似计算公式π≈2nlmd,其中n为随机试验次数,m为针与平行线相交的次数。
解●>> clear,clf●n=;l=0.5;m=0;d=1;●for i=1:n● x=(l/2)*sin(rand(1)*pi); y=rand(1)*d/2;● if x>=y● m=m+1;● end●end●p1=m/n●pai=2*n*l/(m*d)实验5 生日悖论实验●在100个人的团体中,不考虑年龄差异,研究是否有两个以上的人生日相同。
matlab数学实验胡良剑第五章

第五章%Exercise 1x=[0 4 10 12 15 22 28 34 40];y=[0 1 3 6 8 9 5 3 0];trapz(x,y)%Exercise 2x=[0 4 10 12 15 22 28 34 40];y=[0 1 3 6 8 9 5 3 0];diff(y)./diff(x)%Exercise 3xa=-1:0.1:1;ya=0:0.1:2;[x,y]=meshgrid(xa,ya);z=x.*exp(-x.^2 -y.^3);[px,py] = gradient(z,xa,ya);px%Exercise 4t=0:0.01:1.5;x=log(cos(t));y=cos(t)-t.*sin(t);dydx=gradient(y,x)plot(x,dydx) %dydx函数图,作图观察x=-1时,dydx的值约0.9 %以下是更精确的编程计算方法[x_1,id]=min(abs(x-(-1)));%找最接近x=-1的点,id为这个点的下标dydx(id)%Exercise 5(1)fun=@(x)1/sqrt(2*pi)*exp(-x.^2/2);quadl(fun,0,1)或用trapzx=linspace(0,1,100);y=1/sqrt(2*pi)*exp(-x.^2/2);trapz(x,y)%Exercise 5(2)fun=inline('exp(2*x).*cos(x).^3');quadl(fun,0,2*pi)或用trapzx=linspace(0,2*pi,100);y=exp(2*x).*cos(x).^3;trapz(x,y)%Exercise 5(3)fun=@(x)x.*log(x.^4).*asin(1./x.^2);quadl(fun,1,3)或用trapzx=1:0.01:3;y=feval(fun,x);trapz(x,y)%Exercise 5(4)fun=@(x)sin(x)./x;quadl(fun,1e-10,1) %注意由于下限为0,被积函数没有意义,用很小的1e-10代替%Exercise 5(5)fun=inline('x.^(-x)','x');quadl(fun,1e-10,1) %注意由于下限为0,被积函数没有意义,用很小的1e-10代替%Exercise 5(6)fun=inline('sqrt(1+r.^2.*sin(th))','r','th');dblquad(fun,0,1,0,2*pi)%Exercise 5(7)%先在Editer窗口建立90页函数dblquad2,再在Command窗口clear;fun=@(x,y)1+x+y.^2;clo=@(x)-sqrt(2*x-x.^2);dhi=@(x)sqrt(2*x-x.^2);dblquad2(fun,0,2,clo,dhi,100)%Exercise 6t=linspace(0,2*pi,100);x=2*cos(t);y=3*sin(t);dx=gradient(x,t);dy=gradient(y,t);f=sqrt(dx.^2+dy.^2);trapz(t,f)%Exercise 6另一解法%先写参数方程x=2*cos(t);y=3*sin(t);%计算x'(t)=-2*sin(t),y'(t)=3*cos(t)%4*sin(t)^2+9*cos(t)^2=4+5*cos(t)^2fun=@(t)sqrt(4+5*cos(t).^2);quadl(fun,0,2*pi)%Exercise 7%先算出z的梯度dz/dx=(1-2*x^2)*exp(-x^2-y^2),dz/dy=(1-2*y^2)*exp(-x^2-y^2);%根据曲面面积公式fun=@(x,y)sqrt(1+((1-2*x.^2).*exp(-x.^2-y.^2)).^2+((1-2*y.^2)*exp(-x.^2-y.^2)).^2);dblquad(fun,-1,1,0,2)%或者用下列纯粹离散化解法xa=linspace(-1,1);ya=linspace(0,2);[x,y]=meshgrid(xa,ya);z=x.*exp(-x.^2-y.^2);[zx,zy]=gradient(z,xa,ya);f=sqrt(1+zx.^2+zy.^2);s=0;for i=2:length(xa)for j=2:length(ya)s=s+(xa(i)-xa(i-1))*(ya(j)-ya(j-1))*(f(i,j)+f(i-1,j)+f(i,j-1)+f(i-1,j-1))/4;%每个近似长方体高用四顶点平均值endends%Exercise 8funl=inline('-(-x).^0.2.*cos(x)');funr=inline('x.^0.2.*cos(x)');quadl(funl,-1,0)+quadl(funr,0,1)%Exercise 9 (以I32为例)fun=@(x)abs(sin(x));h=0.1;x=0:h:32*pi;y=feval(fun,x);t1=trapz(x,y)h=pi;x=0:h:32*pi;y=feval(fun,x);t2=trapz(x,y)%步长与周期一致,结果失真q1=quad(fun,0,32*pi)q2=quadl(fun,0,32*pi)%Exercise 10(1)先在Editer窗口建立88页函数deriv,再在Command窗口fun=inline('x.^2.*sin(x.^2+3*x-4)','x');deriv(fun,[1.3 1.5],0.1,1e-3) %取0.1为初始步长%注:书后习题答案错,1.3处导数应为2.4177,1.5处导数应为-11.3330%Exercise 10(2)%先在程序编辑器,写下列函数,保存为ex5_10_2ffunction d=ex5_10_2f(fname,a,h0,e)h=h0;d=(fname(a+h)-2*fname(a)+fname(a-h))/(h*h);d0=d+2*e;while abs(d-d0)>ed0=d;h0=h;h=h0/2;d=(fname(a+h)-2*fname(a)+fname(a-h))/(h*h);end%再在指令窗口执行fun=@(x)x.^2*sin(x.^2-x-2);d=ex5_10_2f(fun,1.4,0.1,1e-3)%Exercise 11%提示:f上升时,f'>0;f下降时,f'<0; f极值,f'=0.%Exercise 12在程序编辑器,写下列函数,保存为ex5_12function I=ex5_12(fname,a,b,n)h=(b-a)/n;x=a:h:b;f=fname(x);I=f(1)+f(n+1);for i=2:nif i-2*floor(i/2)==0I=I+4*f(i);elseI=I+2*f(i);endendI=h/3*I;%再在指令窗口执行ex5_12(inline('1/sqrt(2*pi)*exp(-x.^2/2)'),0,1,50) %注:原题n=5改为偶数n=50%更加符合Matlab风格的编程ex5_12function I=ex5_12f(fname,a,b,n)x=linspace(a,b,n+1);f=fname(x);I=(b-a)/n/3*(f(1)+f(n+1)+2*sum(f(3:2:n))+4*sum(f(2:2:n)));%Exercise 13fun=inline('5400*v./(8.276*v.^2+2000)','v');quadl(fun,15,30)%Exercise 14重心不超过凳边沿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.0156 0.0938 0.2344
0.3 0.2 0.1 0
0
1
2
3
4
5
6
0.3125
0.2344 0.0938
0.0156
9/18
计算二项分布随机变量X=k的命令使用格式为 的命令使用格式为 计算二项分布随机变量 Pk=binopdf(k,n,p) , , 其中, 是随机变量取值 是随机变量取值, 是贝努里试验的重数 是贝努里试验的重数, 其中,k是随机变量取值,n是贝努里试验的重数,p 重贝努里试验中事件A发生的概率 为n重贝努里试验中事件 发生的概率. 重贝努里试验中事件 发生的概率. 对于二项分布随机变量X,计算累加概率P{X ≤ k}的 对于二项分布随机变量 ,计算累加概率 的 MATLAB命令使用格式为 MATLAB命令使用格式为 P = binocdf(k,n,p) , , MATLAB的二项分布随机数发生器使用格式为 的二项分布随机数发生器使用格式为 R= binornd(n,p,L,M) , , , 二项分布随机数. 产生 L×M 个二项分布随机数. ×
2500 2000 1500 1000 500 0 0 0.2 0.4 0.6 0.8 1
2004
1 2 3 4 5 6 7 8 9 10
4/18
相遇问题: 乙两船在24小时内独立地随机到 例5.2 相遇问题 甲,乙两船在 小时内独立地随机到 达码头. 达码头 设两船到达码头时刻分别为 X 和 Y 均匀分布随机变量 X ~ U(0 , 24), Y ~ U(0 , 24) 如果甲船到达码头后停留2小时 小时,乙船到达码头后停留 如果甲船到达码头后停留 小时 乙船到达码头后停留 1小时.问两船相遇的概率有多大? Y 小时. 小时 问两船相遇的概率有多大?
计算命令 :z = norminv(p,mu,sigma) , ,
13/18
3000
产生正态分布随机数的函数为 randn(),使用格式为 , R=randn(m,n) ,
2000 1000 0 -4
-2
0
2
4
产生m× 阶矩阵 矩阵中元素都是区间( , ) 阶矩阵R, 产生 ×n阶矩阵 ,矩阵中元素都是区间(– 3,3)内的 正态随机数. 正态随机数. 创建10000个正态随机数,将区间 ,3]分为十 个正态随机数, 例5.6 创建 个正态随机数 将区间[–3, 分为十 三个小区间,分别绘频数和频率直方图. 三个小区间,分别绘频数和频率直方图. data=randn(10000,1); 0.3 N=hist(data,13); 0.2 figure(1),bar([-3:0.5:3],N,'r') 0.1 figure(2),M=N/10000; 0 -3 -2 -1 0 1 2 3 bar([-3:0.5:3],M,'r')
6/18
贝努里概型 与贝努里试验
X P
0 0.5
1 0.5
Bernoulli,1654--1705
设事件A出现的概率为 例5.3设事件 出现的概率为 设事件 出现的概率为p=0.5.模 . 次贝努里试验, 拟100次贝努里试验,统计实验结果中 次贝努里试验 出现的次数和" 出现的次数 出现的次数. "0"出现的次数和"1"出现的次数. 出现的次数和 data=fix(2*rand(100,1)); N=hist(data,2) 实验序号 0出现次数 出现次数 1出现次数 出现次数 1 50 50 2 52 48 3 52 48 4
P{ X < x } = 1 2π σ
∫
x
∞
exp[( t ) 2 / 2σ 2 ]dt
计算命令 :p = normcdf(x,mu,sigma) , , 逆累积分布函数值,即已知概率值p, 逆累积分布函数值,即已知概率值 ,求z 使得
P{ X < z } = 1 2π σ
∫
z
∞
exp[( t ) 2 / 2σ 2 ]dt = p
⑦
8/18
记
Y = X1 + X2 + X3 + X4 + X5 + X6 Y ~ B( n, p )
n k
Y 服从 服从n=6的二项分布 的二项分布
k 6 k
p=0.5
P{Y = k } = C p (1 p ) k =0,1,2,…,6 二项分布概率计算函数: 二项分布概率计算函数 binopdf(x,n,p) x 是n重贝努里试验中事件 出现的次数 重贝努里试验中事件A出现的次数 重贝努里试验中事件 出现的次数.
11/18
function [P1,profits]=prob1(N) p=0.002; join=50;pay=10000; all=join*N; X1=fix(all/pay); %赔付最大承受人数 P1=1-binocdf(X1,N,p); %赔偿概率 puples=binornd(N,p,1,8); %八年出事故人数模拟 Pays=pay*puples; %八年赔付金模拟 %八年利润模拟 profits=all-Pays; [P,p]=prob1(1500) P= 0.0118
D1 = {( x , y ) | x ≤ y & y ≤ x + 2} D2 = {( x , y ) | y ≤ x & x ≤ y + 1}
S1 = 0.5 × 22 2
S 2 = 0.5 × 23 2
24 2 S1 S 2 P{( X , Y ) ∈ D} = = 0.1207 2 24
24 S1 S 2 P {( X , Y ) ∈ D} = 24 2
2
24
S1 S2
O 24
S1 = 0.5 × 22 2 S 2 = 0.5 × 23 2
X
D = {( x , y ) | x 1 ≤ y ≤ x + 2,0 < x , y < 24}
5/18
相遇问题的统计试验 function F=shipmeet(N) if nargin==0,N=2000;end P=24*rand(2,N); X=P(1,:);Y= P(2,:); I=find(X<=Y&Y<=X+2); J=find(Y<=X&X<=Y+1); F=(length(I)+length(J))/N plot(X,Y,'b.') ,hold on F= 0.1185
概率统计应用实验
随机数与统计直方图 相遇问题及其统计试验 贝努里试验与二项分布 正态随机数及应用 计算面积的蒙特卡罗方法
1/18
均匀分布随机数
O
1
MATLAB产生均匀随机数方法 rand(m,n) 产生均匀随机数方法: 产生均匀随机数方法 , 产生m× 个 之间均匀随机数 均匀随机数.随机数等可能落入区 产生 ×n个 0,1 之间均匀随机数 随机数等可能落入区 内长度相等子区间中. 间[0,1]内长度相等子区间中. , 内长度相等子区间中 引例1. 观察12个 引例 观察 个1—4之间整型随机数情况 1+ fix(4*rand(1,12)) ans= 4 1 3 2 4 4 2 1 4 2 引例2. 观察1000个随机点分布情况 引例 观察 个随机点分布情况 P=rand(2,1000); x=P(1,:);y=P(2,:); plot(x,y,'b.')
N=hist(data,n) , 计算结果N是 个数的一维数组 分别表示data中各个 个数的一维数组, 计算结果 是n个数的一维数组,分别表示 中各个 小区间的数据量.这种方式只计算而不绘图. 小区间的数据量.这种方式只计算而不绘图.
3/18
统计10000个均匀随机数在五 例5.1 统计 个均匀随机数在五 个小区间的分布 . data=rand(10000,1); hist(data,5) N5=hist(data,5) N5 = 1969 2010 2018 1999 1 条形图是根据数据绘小矩形或 小柱体.使用格式: 小柱体.使用格式 bar(data) 0.5 或bar3(data) 0 x=linspace(0,pi,10); y=sin(x); bar(y,'r') bar3(y,'r')5 54 467/18
61 39
六层Galton板(六重贝努里试验) 板 六重贝努里试验) 六层 小球自顶部落下,在每 例5.4 小球自顶部落下 在每 一层遭遇隔板,以 一层遭遇隔板 以1/2的概率 向右( 下落,底部六个隔 向右(左)下落 底部六个隔 形成七个槽.模拟 板,形成七个槽 模拟 形成七个槽 模拟100个小 ① ② ③ ④ ⑤ ⑥ 个 球依次落下,统计 统计Galton板 球依次落下 统计 板 底部各槽中小球数 X=fix(2*rand(6,100)); Y=sum(X)+1; N=hist(Y,7) %统计 统计 bar(N) N= 4 6 22 28 29 9 2
0.1 mu=170;sigam=6; z=norminv(0.95,mu,sigam) 0.05 data=mu+sigam*randn(1000,1); 0 II=find(data>=z); 150 F=length(II)/10000
2/18
3
4
统计直方图 直方图绘图命令: , 直方图绘图命令 hist(data,n)
2000 1000 0
1 2 3 4 5 其中,data是需要处理的数据块 是需要处理的数据块, 其中 是需要处理的数据块 绘图原理:利用 利用data中最小数和最大数构成一区间 将 中最小数和最大数构成一区间,将 绘图原理 利用 中最小数和最大数构成一区间 区间等分为n个小区间 个小区间, 区间等分为 个小区间,统计落入每个小区间的数据 量.以数据量为高度绘小矩形,形成直方图.如果省 以数据量为高度绘小矩形,形成直方图. 略参数n,MATLAB将n的默认值取为 . 略参数 , 将 的默认值取为10. 的默认值取为 直方图也可以用于统计计算