数据库作业

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据库新技术》课程

结课报告

班级:

学号:

姓名:

报告评语

教师签字:

日期:

成绩

2014年11月

数据仓库构建浅析

Data Warehouse Analysis

摘要:

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。

它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、集成性、稳定性和时变性。是面向主题的、集成的、不可更新的、随时间的变化而不断变化的,这些特点决定了数据仓库的系统设计不能采用同开发传统的OLTP数据库一样的设计方法。

Data warehouse, can be abbreviated as DW or DWH. The data warehouse is to develop the process of decision-making at all levels of the enterprise to provide support for all types of data collection strategies. It is a single data storage, reporting and analysis for decision support purposes created. Provide enterprises need business intelligence to guide business process improvement and monitoring time, cost, quality and control

The data warehouse is decision support system (dss) and online analytical application data sources structured data environment. Data Warehousing and get information from the database to solve problems.

Data warehouse is characterized by a subject-oriented, integrated, stability and time variability. Is subject-oriented, integrated, non-renewable, with the change of time and constantly changing, these characteristics determine the system design of data warehouse development can not be used with the same traditional OLTP database design methodology

关键字:数据仓库(Data warehouse),决策支持(decision support system)

引言:

计算机发展的早期,人们已经提出了建立数据仓库的构想。“数据仓库”

一词最早是在1990年,由Bill Inmon先生提出的,数据仓库是为支持企业决策而特别设计和建立的数据集合。企业建立数据仓库是为了填补现有数据存储形式已经不能满足信息分析的需要。数据仓库理论中的一个核心理念就是:事务型数据和决策支持型数据的处理性能不同。

企业在它们的事务操作收集数据。在企业运作过程中:随着定货、销售记录的进行,这些事务型数据也连续的产生。为了引入数据,我们必须优化事务型数据库。数据仓库的解决方法包括:将决策支持型数据处理从事务型数据处理中分离出来。数据按照一定的周期(通常在每晚或者每周末),从事务型数据库中导入决策支持型数据库——既“数据仓库”。数据仓库是按回答企业某方面的问题来分“主题”组织数据的,这是最有效的数据组织方式。数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

国内外研究现状:

数据仓库的发展现状和趋势:

随着各种计算机技术,如数据模型、数据库技术和应用开发技术的不断进步,数据仓库技术也不断发展,并在实际应用中发挥了巨大的作用。IDC 在1996年的一次对90年代前期进行的62个数据仓库项目的调查结果表明:进行数据仓库项目开发的公司在平均2.73年的时间内获得了平均为321%的投资回报率。使用数据仓库所产生的巨大效益同时又刺激了对数据仓库技术的需求,数据仓库市场正以迅猛势头向前发展:一方面,数据仓库市场需求量越来越大,每年约以400%的速度扩张;另一方面,数据仓库产品越来越成熟,生产数据仓库工具的厂家也越来越多。

国内外的应用情况:

1998 年在美国纽约举行的第四届知识发现与数据挖掘国际学术会议上有 30 多家软件公司展示了数据挖掘软件产品不少软件已经在北美和欧洲的国家得到了广泛的应用并收到明显的效益

目前国内真正应用数据挖掘的公司还不多比较成功的有菲奈特一融通公司和广州华工菲奈特一融通在 IBM 数据挖掘软件的基础上开发了商业智能套件 B1 O 航 ce 广州华工明天科技有限公司开发了多功能数据挖掘器(AFDMl.0) 此外一些外国公司的相关软件也开始在国内销售如 Platinum BO 以及 IBM

主要技术及研究方法:

数据库技术、ETL技术、OLAP技术、元数据管理技术、前台展现技术、报表技术、挖掘技术、仿真优化技术。

数据库技术:数据库技术是支撑数据仓库技术的最基础技术。有关系数据库、层次数据库、网络数据库等类型,目前呈现比较好的发展态势的对象关系数据库也是一种类型。最典型的是关系数据库的应用。

ETL技术:ETL技术是支撑数据仓库系统正常运转的基本技术。因为数据仓库系统是集成的、与时间相关的数据集合。随着时间的推移,各种新数据的进入,旧数据的转移等等工作,仓库建设前后,都没有间断过。要实现这些数据的自动更新运转,以及新业务数据、旧格式新的不同代码的数据进行较好的适应性自动更新运转,ETL技术是必不可少的技术之一。ETL是Extraction、Transformation、Loading数据抽取、转换、装载系统,该系统整合不同的数据源过来的数据,并对数据进行初步的规格化整理,清洗除杂。

OLAP技术:OLAP技术联机分析处理(OLAP)的概念最早是由关系数据库之父

E.F.Codd于1993年提出的。

数据管理技术:所谓元数据meta data是关于数据的数据,指在数据仓库建设过程中所产生的有关数据源定义,目标定义,转换规则等相关的关键数据。

同时元数据还包含关于数据含义的商业信息,所有这些信息都应当妥善保存,并很好地管理。为数据仓库的发展和使用提供方便。

前台展现技术:主要是具有对集成的数据模型(比如:仓库模型、多维CUBE 等)具有数据探查、检索、灵活的图表、甚至影像多媒体的展现技术。前台

相关文档
最新文档