AAO模板对交流电沉积金属Ni的影响

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AAO模板对交流电沉积金属Ni的影响

【摘要】采用二次阳极氧化的方法制备了孔径在70-110nm的阳极氧化铝模板(AAO),利用制备的模板交流电沉积金属Ni纳米线。二次氧化后逐级降低电压到0V,有效地减薄了阻挡层的厚度,阻挡层的厚度是影响电沉积效果的主要因素。利用扫描电镜及透射电镜表征发现,恒压40V制备的模板进行交流电沉积的Ni纳米线有序性好,直径均匀,与模板的孔径一致,效果最好。同时,实验中采用完整的正弦交流电信号沉积的纳米线不连续,且呈颗粒状聚集,而采用二极管整流后得到的纳米线连续,均匀。

【关键词】阳极氧化铝模板;交流电沉积;Ni纳米线;氧化电压

The AAO Preparation Technology Influence on AC Electrochemical Deposition of Ni Nanowire

XING Xiao-yun PENG Zhi CHEN Li-na SONG Guo-jun

(College of Chemical and Environmental Engineering, Qingdao University, Qingdao Shandong, 266071)

【Abstract】Highly ordered anodic aluminum oxide(AAO) pores were successfully fabricated on aluminum template using a two-step anodization method. The pore diameter of AAO was from 70nm to110nm. After the secondary anodic oxidation step, the anodic oxidation voltage decrescence step by step to 0 voltage, could effectively reduce the thickness of barrier layer. The thickness of barrier layer was one of the most important influencing factors. The characterization by SEM and TEM showed that the Ni nanowires fabricated by 40V AAO templates had a good order , uniformity and the same diameter with AAO. At the same time, Ni nanowire deposited by whole sinusoidal alternating current was not continuous, they aggregated by grains. The using of diode rectification could get continuous Ni nanowires.

【Key words】AAO; Alternating current deposition; Ni nanowires; Oxidation voltage

0引言

阳极氧化铝模板(AAO)具有高度有序的阵列结构,模板的孔径及厚度可控,又有较好的热稳定性和化学稳定性而被广泛使用[1]。利用阳极氧化铝模板可以合成各种纳米材料。其中,金属纳米管/线在微电极束[2]、单电子器件[3]、垂直磁记录[4]等领域具有重要的应用前景。一维镍纳米材料因其有高度的磁各向异性,因而有更优越的性能[5]。一维镍纳米线采用电沉积法在AAO模板中获得。

电沉积分为直流电沉积、交流电沉积等方法。交流电沉积不需要除去铝基底及阻挡层,利用铝基底作为一极,在交流作用下可直接在孔洞中沉积金属。此方法简单容易操作,不会改变孔径大小。但由于阻挡层的存在使得电沉积过程有一定难度。目前交流电沉积一维Ni纳米线的工作还不多,沉积条件也有待优化。

本文首先采用二次阳极氧化方法制备孔径在70-100nm之间的AAO模板,优化阳极氧化条件,找出降低阻挡层厚度的方法。利用交流电沉积的方法得到Ni纳米线,并表征其形貌,探索交流电沉积的影响因素。

1实验

1.1阳极氧化铝模板的制备

采用二次阳极氧化的方法制备AAO模板,制备步骤为:铝片预处理,电抛光,一次氧化,除一次氧化膜,二次氧化,后处理等步骤。二次氧化结束后程序降低电压,每10分钟降低5V直至电压降低为0V。采用逐级降低电压的方法,可以有效地减薄阻挡层厚度[6],从而为交流电沉积创造有利条件。

1.2交流电沉积法制备Ni纳米线

交流电沉积纳米线时不需要除去模板的铝基底,只需要减薄阻挡层后,通过控制沉积参数即可获得所需的纳米线。本实验中,阳极氧化铝模板为阴极,铂电极为阳极,电解液为5wt% NiSO4·6H2O,加入2wt% H3BO3调节pH值。HP3325B 函数发生器作为交流电源,正弦交流电有效值为14V,频率为150Hz,沉积时间为10min。首先采用完整的正弦波电沉积纳米线,然后接入二极管,滤去正向的电源信号,只使用负向的电源波沉积样品,并将两样品进行比较。

采用JSM26390LV(JEOL)型扫描电子显微镜(SEM)和JEM22000EX(JEOL)型透射电子显微镜(TEM)对制备的AAO模板以及Ni纳米线的形貌和结构标征。

2实验结果及讨论

2.1氧化电压对AAO模板形貌的影响

在0.3M的草酸溶液中,采用恒压法分别在40V、50V、60V条件下制备了AAO模板,其形貌如图1所示。

图1恒压法制备的AAO模板(ab、cd、ef分别为

恒压40V、50V、60V时正面及侧面的SEM图)在一定范围内,提高电压可以增加氧化膜的生长速度[7]。由图1可以看出,在草酸溶液中制备AAO模板,当氧化电压为40V和50V时所得模板较为规整,模板孔为规则的六边形。而电压增加到60V时,由于阳极氧化过程放热较多,反应剧烈,因而氧化形成的纳米孔形状变得不规则。模板的厚度及孔径大小随电压的变化如图2所示。

图2模板的孔径及厚度随着电压的变化规律

从图2可以看出,随着电压的增大,模板的孔径相应增大。恒压40V氧化得到孔径约为68nm的AAO模板。恒压50V时,模板孔径增大到80nm。当电压升高到60V,模板孔径明显的增大,大约在100nm,但是,模板孔经大小不均匀,孔径的分布范围变宽。模板厚度随着电压的增大而增加。因此,在40V及50V时模板规整、有序,是制备模板的最佳电压条件,这与文献报道是一致的[8]。

2.2氧化电压对阻挡层厚度的影响

在阳极氧化的过程中,铝的表面有一层非常致密,电阻率极高的氧化层,其组成绝大部分为非晶态的Al2O3,这一层致密的氧化层称为阻挡层。阻挡层非常致密,但是很薄[9],很难通过电镜表征。我们采用测量电阻的方法表征阻挡层厚度。由于导线、铝电极和电解液的电阻较小,可以忽略,所以测得的电阻主要是由阻挡层产生的。实验发现,恒压40V制备的模板电阻(1.5MΩ)明显小于50V时制备的电阻(2.5 MΩ)。这说明阻挡层的厚度与氧化电压成正比。我们在二次氧化完成后,采用逐级降低电压至0V的办法来降低阻挡层厚度。

2.3交流电信号对Ni纳米线形貌的影响

采用完整的正弦交流电信号以及接入二极管滤去正向电源信号后分别沉积Ni纳米线得到的扫描电镜如图2所示。

图3交流电源信号对纳米线形貌的影响(a为完整的

正弦波信号,b为接入二极管后只有负向的电源信号)

由图3可以看出,交流电沉积电源信号为完整的正弦波时,沉积的Ni不连续成纳米线,而是呈颗粒状聚集,但是加入二极管后通过沉积可以得到连续的纳

相关文档
最新文档